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A Further Experimental Results and Details

Run-time specification. The experiments in the main text and in the appendix were run on a
normal PC laptop with Processor Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 2112 Mhz, 4
Core(s), 8 Logical Processor(s), l6GB RAM. It took around 1.5 hours to run all the experiments.

A.1 Break-down Point

As expected, we do verify that as the sub-sample size becomes m = O(n), where the estimate is both
not stable and also does not optimize over hypothesis spaces with small critical radius or that satisfy
the Donsker property, then the estimate without cross-fitting breaks down, while the estimate with
cross-fitting maintains a decent performance, despite the high-variance of the nuisance estimate.

bias std  std_est  cov95

n=50, n,=1 cv=l 0500  0.000 0.000 0.000

n=50,np=2  cv=1 0500 0000 0000  0.000
n=100,n,=1  cv=1 0500 0000  0.000  0.000
n=100, no=2  cv=l 0500 0000 0000  0.000

n=500, nz=1 cv=1 0500  0.000 0.000 0.000
cv=2  0.002  0.066 0.045 0.798
n=500, n,=2 cv=1 0.500  0.000 0.000 0.000
cv=2  0.002  0.064 0.045 0.838
n=1000, n,=1 cv=l1  0.500  0.000 0.000 0.000
cv=2  0.000 0.046 0.031 0.817
n=1000, n,=2  cv=I1 0.500  0.000 0.000 0.000
cv=2  0.001 0.045 0.032 0.829

(a) Sub-sampled 1-NN with m = n

Figure 2: Comparison of bias, variance and coverage properties, with (cv=2) and without (cv=1)
cross-fitting (sample splitting), for the estimation of the treatment effect in the partially linear model,
when a sub-sampled 1-NN estimation is used for the nuisance function estimation. n is the number
of samples and n, the number of controls.

A.2 Random Forest Experiments

bias std std_est cov95 bias std std_est cov95

n=50, ngy=5 cv=1 0.102  0.149 0.144 0.873 n=50, ngy=5 cv=1 0.022  0.176 0.148 0.896
cv=2  0.103  0.165 0.143 0.836 cv=2  0.011 0.191 0.144 0.845

n=50, ny=10 cv=1 0.098  0.136 0.134 0.861 n=50, n,=10 cv=1 0.026  0.167 0.145 0.904
cv=2  0.099 0.148 0.133 0.846 cv=. 0.002  0.180 0.140 0.869

n=100, n,=5 cv=1 0.066  0.102 0.101 0.894 n=100, n,=5 cv=1 0.016  0.116 0.103 0.909
cv=2  0.064  0.109 0.101 0.877 cv=2 0013 0.125 0.101 0.877

n=100, n;=10 cv=1 0.074  0.099 0.097 0.873 n=100, n,=10 cv=1 0.018 0.114 0.103 0.908
cv=2  0.072  0.106 0.097 0.846 cv=2  0.016 0.128 0.100 0.870

n=500, ny=5 cv=1 0.020  0.044 0.045 0.930 n=500, n,=5 cv=1 0.012  0.050 0.046 0.908
cv=2  0.021 0.046 0.045 0.919 cv=2  0.008 0.053 0.045 0.900

n=500, ny=10 cv=1 0.027  0.045 0.044 0.908 n=500, n,=10 cv=1 0.013  0.048 0.046 0.923
cv= 0.026  0.046 0.044 0.896 cv=2  0.011 0.051 0.045 0911

n=1000, n,=5 cv=1 0.012  0.031 0.032 0.923 n=1000, n,=5 cv=1 0.010  0.035 0.033 0.924
cv=2  0.013 0.032 0.032 0.925 cv=2  0.006 0.036 0.032 0.912

n=1000, ny=10  cv=1 0.015 0.033 0.032 0.910 n=1000, n,=10  cv=1 0.012  0.035 0.033 0.909
cv=2  0.016 0.034 0.032 0.896 cv=2  0.008  0.038 0.032 0.893

0.49 10/11

(a) Sub-sampled Random Forest with m = n (b) Sub-sampled Random Forest with m = n

Figure 3: Comparison of bias, variance and coverage properties, with (cv=2) and without (cv=1)
cross-fitting (sample splitting), for the estimation of the treatment effect in the partially linear model,
when a sub-sampled Random Forest estimation is used for the nuisance function estimation. 7 is the
number of samples and n, the number of controls.
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A.3 Quantile-Quantile Plots

Figure 4:
fitting.

Figure 5:
fitting.

n=50, n_w=2: mean=0.54, std=0.16, std_est=0.14 n=50, n_w=2: mean=0.58, std=0.18, std_est=0.14
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Quantile-Quantile (Q-Q) plots for sub-sampled 1-NN, with (right) and without (left) cross-

n=1000, n_w=2: mean=0.51, std=0.03, std_est=0.03 n=1000, n_w=2: mean=0.51, std=0.03, std_est=0.03
3
3
Q
2 O
2
g 1 $
5 $ 1
H s
® K]
2 0 14
8 g o
o o
—1
-1
24 ° >
.
-2 -1 0 1 2 -2 -1 0 1 2

Theoretical quantiles Theoretical quantiles

Quantile-Quantile (Q-Q) plots for sub-sampled 1-NN, with (right) and without (left) cross-

n=50, n_w=10: mean=0.57, std=0.11, std_est=0.13 n=50, n_w=10: mean=0.61, std=0.11, std_est=0.13
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Figure 6: Quantile-Quantile (Q-Q) plots for sub-sampled Random Forest, with (right) and without
(left) cross-fitting.
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n=1000, n_w=10: mean=0.51, std=0.03, std_est=0.03 n=1000, n_w=10: mean=0.52, std=0.03, std_est=0.03

31 °

Ordered Values
Ordered Values

-2 -1 0 1 2 -2 -1 0 1 2
Theoretical quantiles Theoretical quantiles

Figure 7: Quantile-Quantile (Q-Q) plots for sub-sampled Random Forest, with (right) and without
(left) cross-fitting.

B Proof of Theorem (1|
Proof. For any g € G, by the linearity of the moment with respect to 6:
Alg) (0-00) = M(B,9) ~ M(00,9)
= M(0,9) — Mu(6, 9) + M(00,90) = M(b0,9) + Ma(6,9).

Moreover, for any g, with ||g — gol|2 = 0p(1):

Ag) (0—00) = Algo) (8- 60) + (Alg) — Alg0)) (900

) +0 (llg = goll= 16 — oll2)
= Algo) (006 ) +o0p (116 = ull>) -

Thus for any g, with ||g — go|l2 = 0,(1):

I
b
—
e}
(=}
g

>

Algo) (6= 00) = M(B.g) = My(0,.9) + M (B0, 90) — M (0o, 9) + M (0. 9) + 0 (10 — o]l2)-
Let G,,(0,9) := M(0,g) — M, (0, g), then we have:

Algo) (0= 00) = Gnlf,9) + M (0, 90) — M (B0, 9) + Ma(6..9) + 0,10 — bo])
Applying the above for g = g and by the definition of 6, we have:

Algo) (9= 0) = G0 ) + M(Bo, o) = M(B.9) + Ma(6,3) + 0,110 — boll2)

= Gu(B:9) + M(B0,90) ~ M(60.9) + 0p(n™"/ + 18~ bo]l).
Applying Neyman orthogonality and bounded second derivative of the moment with respect to g:
M (00, go) — M (6o, 9) = Dy M(6o, 90)l90 — 9] + O (Ilg — 90ll5) = O (llg — g0ll3) = 0p(n~"/?).
Thus we have that:
Algo) (0-00) = Cu(6,9) + 0072 + 10— boll).

Now we decompose the empirical process part into an asymptotically normal component and asymp-
totically equicontinuous parts that converge to zero in probability:

Gu(0.9) = Gulb0, 90) + (Gn(0.9) = Gu(00,9)) + (Gn(00.9) = Gu(60: 90)) -
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By the linearity of the moment, the middle term can be written as:
Gn(0,9) = Gn(00,9) = (A(9) — An(3))" (0 ~ bo).
Note that by a triangle inequality:
1A(9) = An(9)llop < 11 A(90) = An(g0)ll,p + 1A(9) = Alg0) — (An(9) — An(g0))llp

Note that the first quantity is a simple centered empirical process and hence assuming that a; ;(Z; go)
has bounded variance, by classical results in empirical process theory we have that:

1A(g0) = An(g0)ll,p, = 0p(1)
Moreover, by our stochastic equicontinuity condition we have that:
14(3) = Algo) = (An(@) = An(90)lop = 0p(n~1/%) = 0y(1).
Thus we get that || A(§) — An(g)|lop = 0p(1), and therefore:

Gu(0.9) ~ Gulb0.9) = o, (110 oll2) .

Moreover, since by our stochastic equicontinuity conditions:
Vi | A(§) = Algo) = (An(9) = An(g0))ll,p = 0p(1)
Vi llV(g) = Vigo) = (Va(9) = Valgo))llz = 0p(1)

we have by triangle inequality, the definition of the operator norm, and the fact that ||6p]|2 = O(1)
that:

1Gn (60, 9) = Gn (00, 90)llz < 1A(9) — Algo) = (An(9) — An(90))ll,, [100]l2
+ [IV(9) = V(go) = (Va(9) = Vau(g0)) I,

= op(n_l/ ).
Thus we can conclude that:

Ago) (8= 80) = GnlB0,90) + 0, (™2 + 10 = By ).

1

Assuming that the inverse A(gg) " exists, we can re-arrange to:

0~ B0 = Al(90) ™" Gulbo, 90) + 0p (/2 + 10— oll2)

Since G, (6o, go) is a mean-zero empirical process, we have that |G}, (6o, go)||2 = O, (n~'/?). Thus
the above equation implies that || — 6|2 = O,(n~'/2). Thus we get:

6~ 60 = A(g0) "' Gn(Bo,90) + 0 (n/?)

or equivalently that:

N (é - 90> = /nA(go) ' Gn(bo, 90) + 0p (1).

The first term converges in distribution to the claimed normal limit by invoking the Central Limit
Theorem. Thus the theorem follows by Slutsky’s theorem. O

C Proof of Lemma[3

Proof. Before diving into the proof, recall that ¢(Z1.,,, ) = arg min,,,|X; — x|, and define:

1
¢t = c(Ziins 5)s
2
.1 . 1
arg min |§ - Xi| if Xer >3,
% . i<nstX;<i

1 .
argmin |- — X;| if Xer <
i<nstX;>3 2

[
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That is, we let ¢} be the index of the nearest example in { X1, ..., X,} to %, and let c5 be the index
of the nearest example to % on the other side of % from.

A new observation Z = (X,Y), where X ~ unif]0, 1] and Y = I(X < 0.5), will be misclassified
it Yoz, x) is different from Y. Therefore it is mislabeled if it falls in the following set:

3.5 (Xer + Xey)] if Xer <4
£(Xep. X)) = [3:2(Xg =1
177 { B (XC1 + Xc;), 5] otherwise.
For a given pair of random variables X;,, X;,, we write:

)\Xi = ’I’LP(X € S(Xilvx’iz) | Xile’iz)'

1:72
We note By := {i < n|X; <1/2}.

Now we remark that if XC; < 0.5 then ‘1 — [Xc; + Xc;}

= XCI -‘rXc; —1land

Keg — (1 = Xex)[Xex ~ min Uy(Xe
— (1= X)X ~ _min Ui(Xe5)

where Uy (X )| Xer ~i.4.q unif[0, X+ ]. Here ~ means "has the same distribution as."

Therefore we have

2t 2t
IP’(XC* X — 1< X < ().5,XC*) - IP’( min Uj(Xe:) < —’XC* < ().5,XC*)
1 2 n 1 1 zE[n]\Bl 1 n 1 1

_1 ( 2t )"—\Bll
N anI ’

where | By| denotes the cardinality of set B;.

Therefore as X, — 0.5 and | B1| — n/2 we have
P(XCI+X*71<—‘X <05, X)) > 1-e 2

Similarly we remark that if XC; > 0.5 then ‘1 — [Xc; + Xc;]

:1_ch_Xc;‘ and
- Xer — 62|X*~m1nUb’5( Xer)

where UP (X.:)

ct i.4.d unif[O, 1-— XCT]'

Therefore we have

IP(I—X*—X <2 X >05X) (manb“( o
i€B; !

:1_(1_@)31'.

Therefore as X, — 0.5 and | B1| — n/2 we have

g—‘X > 0.5, Xor )

ot
P(1=Xo = X € 5 [Xe > 05, X ) 1
n

This directly implies that

n
Meg o = 5’1 B [XCT +X05]

(2),
where Exp(2) denotes an exponential distribution with rate parameter 2.

Moreover, we now also show that the expectation E [/\ Xe: LJ =0(1).
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As a first step, we note that we can write

2 o] =2 (x 2,52

|B1] 1 1 |B1| 1 1

— - <= P{l——=|>-].
w25 1) T\ T2 7

By Azuma’s concentration inequality, we know that

B 1
oo (12
n

1 P
‘ > 4) < Zne_% — 0asn — oo.
To treat the other term in the sum, we have that

2
1By 1| 1
n 21 7 4

|Bi] 1‘ 1
= Tl <z
n 2

=nE |P <X ES(XCI7X03) Xl:n) H(
[ |Bi] 1| _1
il e n 2|~ 4
where X;.,, := (X1,...,X,,) and ’E(Xq,Xg) denotes the length of the interval S(XC;,XC;).
|Bil 1] _1\]
_ <z
2| = 1)]
1B 1) L
n 217 4

<P <X € &(Xep, Xes ).

P (X e 6<Xc;,Xc;>,

—nE |P <X € 5(Xc;,X63),

Now by triangle inequality

nE UE(XC X)’]I<

=nE {2 11— (Xer + Xe)

_EE l—Xc I 1By 1 Sl ) E—XC* By 1 Sl
2 2 ! n 2 4 2 2 2 n 2 4
n , |B1] 1 1 n . |[Bi] 1| 1

= PE lminw; 1 |BY 2l < 2) | 4+ 2E U (|22 <2
2 {f?bri ( n 2’—4)]+2 Lefﬁf?sl ( n 2|°1

=nkE {mln U, -1 (
i€ By

|[Ba 1| _1
_Zl<Z
n 217 4

nk b?giU (1Bl 2 4)}

where U; := |3

We can express the expectation in terms of integrals of tail probabilities as

nE LIQE}UZ--H(BHEZ)}ZTLE{ [man I[(|Bl|> )’|31H

i€B

—nIE[/OOIP’(m}BnU ]I(|Bl|> )2t‘|Bl|)dt}
=0 | P (v 1(8112 ) = g |18ur) ]

<m1nU -1 (|Bl\ ) \B | ‘ |Bl)
_ (4 2t \ P! 1 n ot n
—< _|Bl|) (B2 ) s e (B2 )
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— X,»| ~ii.d. unif[0, 0.5], and the penultimate line follows from symmetry.
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where we have used the inequality that 1 — z < e™* for all x.

Hence, we have

/
nk man I(|B:|> E‘B)dt}
[an/ ( (11> 3) B | 1P
1 n
< - -2t > PRl >
nE[Bl|/O e ]I(Bl|4)dt] QE[l X H(|B1|4)]
2.

gZEEJO&QZﬂ—W(&QZ)s

Altogether, we have shown that
E [)\X] —0(1). )
The key point is to note that
16(Z1n) (D)3 = n'PR(Y # Yoz, x)
<n'PP(X € &(Xer, Xus)) < 0.

where (a) comes from realizing that
1
B(X € £(Xeg, X)) = 2B [Axg ] -
Therefore we proved the first point. Moreover if we denote

1:n 72

*( 1) (Z( 1) 1)

1
argmin |- — X7V 1fX(*( >4
S i<nstX{TPV<1 2
2 T 1 _ _ )
arg min |§ —Xi( 1)| ifX(*(Pl) < %
€1

i<nstX{TPV>1

where Z Sll) is Z1., with the first observation replaced with an independent copy Z 1 = (X' 1, }71),
then we remark that

P(c; ™ £ cjore; ™Y #£ch)
<PV #e) + P £ ¢h)

. (o, 4
<P(=c) +P(1 =) +PU =) +PU =) < =

where (b) comes from symmetry (each observation has an equal chance of being cj, for example).
Moreover we note that if neither c*{(_l) # ¢} nor c;(_l) # c5 then we have S(X(:(f)n , X(*_(Pl)) =
Cl C.
E(Xer, Xeg).
Now for ease of notation denote
Xc{,c; = (ch ) Xc;) ’

— (-1 (-1)
Xc;(fl)ycg(fl) = (ch(‘“’Xc;“” ,
— (=1 (=1)
Xc;,c;,c;"(*”,c;(*” = (X XC2,X *(_1),X -1
and

€ (Xcl,pg D e 1>> = 5(Xcl,XCQ)Ag(X(*(l)l)’X(*(l)l))
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Then we have that there is C' < oo such that

||V(Z,§)—1/(Z7g(_1))||2:\/ﬁ\/IP’(XES( () e >))

Cl 7627C1

ne[p(xee ( s ) Keper ez ! (CTH) #efor g™ o)
(ettsal = (g g D on i )

(
2nkE Ué‘ I (ci(fl) £ ctore) Y 2 cgﬂ by symmetry
< \/QnE lle (L= +1( =1) + L =) +1 () =1))]

© \/2nP(X € E(Xer e3)) (}P’ (¢t =1)+P (a;(—l) _ 1) FP(cs=1)+P (C;<-1> _ 1))
(d)
vn eihe3 vn
where to get (c) we exploited independence of (Xcx, Xc;) and the events {c] = 1}, {c; = 1},
{c*( D _ =1}, {c;(*l) = 1} and where to get (d) we exploited ‘

Moreover we also notice that

€

(Xee
(XCT,CE)
(XCT,CE)

~ 1 1 1 1
> *: —_—— _— — —_ *
P(cl 1,X1¢[2 ’2 s ,2-1-‘2 Xex ])
. -1 1|1 _
=P(c;=1)P X1¢[§* ichg 5+ §—Xc§] by independence
1 1 1 2 1
—“E|1-2|z —X.||=>-ZE||: - X

where ¢3 := argmin;e )\ {c1} |Xi 2| is the index of the second nearest nelghbor of 1 5 among
Xi.n- Note that 3 is not necessarily equal to c3, since the definition of c3 requires X.: to be on the

other side of % from X, while that of ¢5 does not.

By our knowledge of the expectation of the second order statistic among i.i.d. uniform random
variables, we obtain that

1 2 1 2 1 2
-l

n+1 n nn+1)

n n

Therefore, similarly to before, we also have that there is a constant ¢, ¢ > 0 such that

9) — (2,52 = \/ﬁ\/]P’(X € E(Xe. X)) 0 (X0, X0, ))

D )p(aY £ )

ATV # e =) P(Y £ )

ATV e =] p() £ o)

—1 1
P(X € £(Xer, Xe) 08 (X0, X, )i

(
\/]P’<X € E(Xer, Xy )AE (Xc(;(Pl) ’ XC(;PU)
[
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Therefore we proved the second point. The third point follows because
. . N N d
V| Va(9) = Valgo) — (V(9) — V(go))} =—VnV(§)=—VnV(9) = Ax,; .. — Exp(0.5)

where V,,(go) = V(go) = 0 by definition, and V,,(§) since the nearest neighbor estimator evaluated
at a training data point never misclassifies the point. O

D Proof of Corollary 4

Proof. We note that by monotonicity of L” norms, plugging the bound in (Algorithmic Stability)
into the right hand side terms of gives the stability conditions in lemma [2] Corollary [4] then
immediately follows. O

E Proof of Theorem [3

Proof. Denote Zi’:m,(f 0y b € {1,..., B} as the corresponding bagged samples when the I-th data
point Z; is replaced with an independent copy Z;. We have that for | € [n] :

sup [|g(z) — ¢V ()|l
z 2r

= ||sup
x b=1 2119y
B
= ||sup B Z (h(me)(x) - h(Zi)m (—l))(x)) ]l{atgm s.t. zb=2,}
z b=1 2112y

only if

Jt <mst Z0 = 7.

Fix any [ € [n]. To simplify notations, let
VI(Z")(x) == h(Z},,)(x) = h(Z 1)) (@),

and let Ay, be the event {3t < ms.t. Z) = Z;}.

Then

B

é > Vh(Z)(x)1a,

b=1

sup [§(z) — 97 (@) sup

2r

2112r
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By triangle inequality and symmetry of distributions

B
. a(— 1 “
sup [9(2) = V@) = |lsup|| 5 D VA(Z)(@)1a,
* r * b=1 212y
1 B
7 b
< BH;sngVh(Z @tal,|

B
1 . ) N
<3 Z{sgp VA(Z")@)1a,| —E [sngVh(zb)(x)ﬂAb Q‘Zl,...,Z”,Zl]}
b=1 2r
1 B
- )
= ]E[sngVh(Z )(z)1a, 2’21,...72,1,21] 2
b=1 .
1
< =

B
> {sgp |VA(Z") (@)1,
b=1

)T E [Slip "Vﬁ(Zb)(x)]lAb

‘217"'7ZTL7ZZ:|}
2

+ H]E {sgp HVﬁ(Zl)(fU)JlAl

‘Zla"'aZﬂle:l
2

2r

For ease of notations, denote
Z(l) = (Zl, ceey Zn, Zl)

and denote

Ry := sgp “Vﬁ(Zb)(x)]lAb

—E [sup
2 z

Vh(Z")@)1a,

, ‘Z(w] :

For the first term, we have by tower law that

B

> {sgp |VA(Z") @) 14,

b=1
1 B 2r i 1 B 2r
w|(Zn) | - ()

To further simplify, we use the following lemma:

—_

1
B

2r

B
>

b=1

Vh(Z") (@)L,

—-E [sup
2 T

)

L
2r

2r

2y

Lemma 7 (Marcinkiewicz-Zygmund inequality). Let p > 1. If Xy,...,X,, are i.id. random
variables such that E[X1] = 0, then there exists a constant C, such that

1 n
||% ;Xi”p < Cp”Xin'

Since Ry, b € [B] are i.i.d. conditional on Z(;), we then have that

1 B 2r %
5E |E (ZRb> 2
b=1
1/2r
<Ll (\/EC >2TIE R\ Z, _ G || Ry]|,,. by tower law
= B 2r b (l) - \/E b 2r y .
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Now also

d
- HIP’ (Al‘Zl,...,Zn,Zl>IE [ 1

2 @)

‘217"'7Zn72l:|

2r

.T) ‘ ’217"',Zn72l7141:|
2

2r
since VA(Z')(x) = 0 for all 2 on A$
= H]P)(Al)E[‘ .I‘)H2’21,...7Z7L,Zl7141:|
x 2r
since A; is independent of 71, ..., Z,, Z
:]P(Al) E|: x)H ’Z177ZnaZI7A1:|
x 2 2r
<P(A) by Jensen’s inequality and tower law
<P(A)- 20 by moment condltlon, since 27 < s.
By union bound,
m
m
P(A;) < —.
B BIE "
Therefore, altogether we obtain
sup [|g(z) — g1 (@) |2
T 2r
CQT m
< E R, +20- 2
Cor 1 Cor m
< 22 Z9(2)1 AE s 1 ‘Z 20 .
<75 )(z) 1A, , 2r+\/§ H [t ) ()14, ) (z)} 2T+ "
CQT 1 CQT m m
< : z)1 + 20— 420 - —
20 . OQr 027‘ m
< <|I1 2C - — + 2C - —
> \/E H AlHk \/E n
2C - Cy, ik Cor
= - (P(A 4+ —=-2C - — +2C’ —
2C - Co, 1/k X
< COQT.(@) +027.QC.T+QC.@_
VB n VB n n

Hence, we also have

2C - C! m\k  C m m
Sy — (=D < 2T.( ) 2r o.M .m
max |[sup [g(z) — g7 (@) N ") T 20 —+20 —.
Assuming
m = o(v/n)
and )
B >>m?/*.nl %,
this upper bound is of order o(n~'/?):
max ||sup [|§(z) — T @)la|| = o(n'?).
sn r 2r
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Remark 3. We could in fact relax the conditions in Theorem |5| by using Rosenthal’s inequality
instead of Marcinkiewicz-Zygmund inequality in the proof. Moreover, we can relax the bounded
moments condition to restrict on L™ norm instead of on L® norm. This gives the following theorem.

Theorem 8. Assume B, m satisfy

r—1

m = o(v/n) B>>mﬁ~nﬁ,

and assume the base estimator h has bounded moments:

max
I<n

sup (21 ) ()

for some constant C > 0. Then (Algorithmic Stability) is achieved:

= 0(n71/2).

max
I<n 2
= r

sup [[§(z) — 3V @)z

Therefore if a and v satisfy the condition (1)) then the condition (2)) is satisfied.

Proof of Theorem[S] We follow the proof of Theorem [5]and obtain

1S
E Z Vh(Zb)(x)]lAb

sup [|g(«) = 3V (@)]2| = |jsup

& 2r ke b—1 2oy

1IIE

BB +20

b=1 2r
o 1/2r
~.E|E (ZRb> Z +20- by tower law.
n

We then use the following lemma.
Lemma 9 (Rosenthal’s inequality). Letp > 1. If X1, ..., X, are i.i.d. random variables such that

E[X1] = 0, then there exists a constant C,, such that
R 1_1
77 Xl < (1Xill2 +n3 =2 1X4ll ) -

Since Ry, b € [B] are i.i.d. conditional on Z(;), we then have that by symmetry of distributions
2r
—-E|E (Z Rb>

1/2r

l

/27
= % 'E (\/EC”)QT <(E {R%‘Zu)})lm +B%1 (E [R%r’Z<z>D1/zr>2 T 2
= \(’;%‘ : H(]E {Rf‘Z(l)])l/z L Bz ( [RQT Z(l)Dl/Qr )

By triangle inequality, we have

\O/% : H(E {RﬂZ(l)blﬂ + B33 (E {R%T‘Z(Z)DI/QT

< 3% . H(IE [72|20]) " + 3%

2r

Z(l)} ) 1/2r

-HBJT—% (& [r

2r
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For further ease of notations let

Ry (1) = sup ‘VE(ZI)(:U)]lAl

)

‘Zl,...,Zn,Zl]
2

Ryg) =E [Su_p ’Vﬁ(zl)(m)ﬂm

Note that
Ry = Ry, 1) — Ry (2

Then also by triangle inequality and Jensen’s inequality

B CIEED)

\/E 2r
Coyr ) 1/2 Coy ) 1/2
< . .
<75 H(E [Rl,(l)‘Z(l)]) L VB (]E {RL(2)’Z(Z):|> N
2CYy, 9 1/2
< .
=~ VB (E [RL(U‘Z(“D o
1/2
205, _— ?
= IE [(s Z 1 Z
= ( (suw vz, ) |20 2
20y, ( { PN L D/
- A(E |su ‘th xH~]llZ
75 |(E e [Tz, 1ufzo]) |
Further, we rewrite this term as
20y, o 9 1/2
N E|s Z -1a,|Z
A E—— |
20, - o 5 1/2
=75 . <IP(A1‘Z(Z)) -E -Slip ’Vh(Z )(a?)H2‘Z(z)7A1_) N
since Vh(Z')(x) = 0 for all z on A$
20, o 9 1/2
-z (]P(Al)-E[Slip Vi(Z )(””)Hz’Z”)’AlD i
since A, is independent of Z ;)
/2
2Cy, 1/2 ( { 2l 2 '
- (P(A E |su ’VhZ xHZ,A
= (P(A) wp | VA(ZY) @), |20, 4 i
By Jensen’s inequality and tower law, we have
2C5, 1/2 Sl 2 1/2
() E |sup ’Vh(Z )(x)HQ‘Z(l),Al §
2075, 1/2 e
< - (P(A su ’VhZ x ‘
< g ) s Vi) |
1/2
< 2% (M) 5
Vs \w
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Similarly, by replacing the powers of 2 and 1/2 with 27 and 1/2r, we can show that

1/2r
o TN "
\/2§ 2r
1/2r
<205, -BE 7 (2) 7 20
n

Altogether, we have

max sup|g(x) — ¢ (@)[2| = [sup l9(x) — 5 (@)]l2
s z 2r x 2r
2C5, my 1/2 1, /m 1/2r m
< N . . B3r - . L
<= (n) 2C + 20y, - B> (n) 20+20- =
Assuming
m = o(v/n)
and

r—1

1
B >>m?2—-1 .n2r T,

this upper bound is of order o(n~'/?):

= o(n_1/2).

max
I<n 2
r

sup [[§(z) — 3V (@)

F Proof of Lemma 6l

Proof. Lemma [6]follows from Theorem 3 of [35]] by taking 1/(Z;6) := Y — 6(z).

O

G Establishing 7?"- and Mean-Squared-Continuity for Examples and

Recall that
m(Z;0,9) = a(Z;9)0 +v(Z; g).

We will establish L2"-continuity and mean-squared-continuity for Examples and |3| in this

section.

G.1 Establishing for Example ]|

For this example, we have
a(Z;g) = (T — p(X))(T - p(X))’
v(Z;9) = (Y — a(X))(T — p(X))".

Let v > 1 be the constant such that 1 = 11 + % Denote T;,7 € [p] as the i-th coordinate of T'.
Denote Y;, ¢ € [p] as the i-th coordinate of Y. For any function p denote p;(X),¢ € [p] as the i-th

coordinate of p(X'). We will show that subject to
||T’Z||2v ? ||ﬁZ(X)||2v ’ ”ﬁL(Xl)”?u ’ HYHQU ) ||qA(X)H2v

being finite for all i € [p] then L*"-continuity conditions hold.

Moreover, we will show that if further

1Tl oo > 1P: (XD o 5 1106 (X oo > 1Y Tl » N2 ()

are finite for all ¢ € [p] then mean-squared-continuity conditions hold with ¢ = 2.
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We will illustrate for function a and for function v separately.

For function a:
We first verify L2"-continuity for function a. We have that for any 4, j € [p]

ai§(Z:9) = a13(Z:§Y)

() = (X)) T+ T (570 (%) = 55(X)
(60 X) = (%)) (85 7(X) + 55(X))

+5 (A7) +5:(X)) (B (X) = ().

Then by triangle inequality and Holder’s inequality, we obtain

0i3(2:9) = ai3(Z:50)]|

< [lsup 50 @) = put@)| Tl + sup 5" (@) — pya)| - 1T
T 2 x 2
1 (= . (= R
+ 5 [[sup B @) = hula)| - (570() + py(X))
T 2
1 (= . (— .
+ 5 [[sup 50 @) = s(@)] - (570 +5iX)
T 2
~(=1 ~ (=1 ~
< |lsup | @) = pu@)|| T, + Jsup [ @)~ p @) || 1Tl
z 2r z 2r
1 (= . (= A
+ 5 [sup [0 @) = p@)||| - [[2S) + 5500
T o 2v
1 (= R (= A
+ 5 [sup |5 @) = pi(@)| | |50 00 + 50|
x 2r v
(@) N .
< Li-||sup |90 (@) - ()
T 2|lor
where
I Lilse=n L Lils=v L
L= 1T, + 1T, + 5 [B0CO| )+ 5 18:(X) e, + 5 [0 + 516 (X1,

®) ) A
= Tl + [ Till2y + 19:(X) [l + 1125 (X) I, -

Here for (a) we have used the triangle inequality, and for (b) we have used the fact that Z; and Zl
have the same distribution.

By replacing Z with Z;, we can similarly show that

a;;(Z159) — am(Zz;Q(_l))HQ

< L,-

sup |30 (@) - g(a)
z 2|2y

where
1. 1. 1. 1.
Ly i= 1T, + 1 Tlla, + 5 195N, + 5 190D, + 5 185X Iz, + 5 155X,
Hence, the L?"-continuity conditions hold for function a provided that all the aforementioned L2V-

norm quantities are finite.

Now we check the mean-squared-continuity conditions for function a.
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For any g, ¢’, any 7, j € [p], we have

aij(Z;9) = aij(Z;9")

= (Pi(X) = pi(X)) Tj + T; (p;(X) — pi(X))
1 @) = (X)) (7 (X) + 5 (X))

2

1

+ 5 (Pi(X) + pi(X) (P5(X) = p; (X)) -

Then by triangle inequality and Holder’s inequality, we obtain
lai;(Z;9) — ai;(Z; 9l
< Pi(X) = pi(X)ly - 1 Tjlloo + [|P5(X) = i (X)][, - [ Tilloo
1 1
5 100 = 5iC) 18X + 5 (Ol + 5 19500 = 23X [, - 1840 + i)l
<Ls-llg—dl2
where
1., 1 1., 1
Ls = || Tjlloo + 1 Tilloo + 5 15(X)lloc + 5125 (X)lloo + 511 (X)lloc + S 1Pi(X) oo
Provided all these L°°-norm quantities are finite, mean-squared-continuity conditions hold for func-
tion a with ¢ = 2.

For function v:
‘We have

vi(Z:4) = (2390 = (§7(X) =400 T+ (57X = pu(X)
= (§7X) = (X)) i) = D) (7000 = i)

Hence, by triangle inequality and Holder’s inequality, we similarly obtain that

vi(Z:9) = vi(Z:3 )|

< [sup ¢V @) = 4@)]| ATl + 15,
z 2r
#fsuw 50w - @)+ a0 00, )
o 2v
< |lsup a0 @) = @) || Tl + 15 g+ ¥l + 12O}
2r

By replacing Z with Z;, we can similarly show that

vilZ:9) - Vz'(Zz;ﬁH))H

i (@ {”TiHQv 12 (XDl + 1Y 1l + 14(X) 5.} -

Therefore, the L2"-continuity conditions hold for function v provided that all these L?"-norm quan-
tities are finite.

As for mean-squared-continuity, note that we have that
vi(Z:9) = vi(Z;g')
= (¢'(X) — (X)) T; + Y (pi(X) — pi(X))
= (¢'(X) = ¢(X)) pi(X) = ¢'(X) (pi(X) — pi(X)).

31



Hence, by triangle inequality and Holder’s inequality, we derive that
1vi(Z; 9) —vi(Z; ') |2
< 1¢'(X) = a(X)lz - [ Tilloo + 1P (X) = pi(X) |2+ [[Y ]loc
+11¢'(X) = a(X)l2 - [Ipi(X) o + IP5(X) = pi(X) |12 - lg' (X))l oo
<llg = g'll2 - {IITilloc + 1Y lloo + [IPs(X)lloc + 14" (X)lloc } -

Provided all these L°°-norm quantities are finite, mean-squared-continuity conditions hold for func-
tion v with ¢ = 2.

G.2 Establishing for Example 2]

For this example, we have
a(Z;9) = (Z —r(X))T - p(X))

v(Z;g) = (Y — q¢(X))(Z - r(X))".
Denote Z;,i € [p] as the i-th coordinate of Z. Denote 7;(X),i € [p] as the i-th coordinate of
r(X). Analogously to Example |1} replacing all functions p; and their estimates with r; and their

corresponding estimates, replacing all T; with Z; in the analysis of a; ; and v;, we can show that
subject to

I Tillo s [1Z6ll g0 » 10 (XD 20 5 156 (X0 g 176 (XD 2 5 176 (X024 5 1Y 14, » 19X ],

being finite for all i € [p] then L*"-continuity conditions hold. Moreover, if further

I Tilloo > 1Zill oo > 1126 () o 122 (KD s 5 s (KDl » 1175 (KD e 1Y 5 10 (XD

are finite for all ¢ € [p] then mean-squared-continuity conditions hold with g = 2.

G.3 Establishing for Example[3]

For this example, we have
a(Z;9) =1

v(Z;9) = —my(Z;q) — (T, X)(Y — q(T, X)).

The L?"-continuity and mean-squared-continuity conditions trivially hold for function a. For func-
tion v, we have

v(Z; ) —v(Z;3Y) = (me(Z;47Y) — mu(Z;9))
+ (T, X)((T, X) — g7, X)) — (Y — (T, X)) (T, X) — f (T, X)).

Hence, by triangle inequality and Holder’s inequality we obtain
1(Z;9) = v(Z;67D)]2
< [lms(Z:40) = mp(Z: ) s
+ DT, X)@(T, X) = d DT, X))l + (Y — 6T, X)) (T, X) — @D (T, X))l
< ma(Z;:45) = mu(Z;.9)ll2
+ AT, X |20 - 14(T, X) = 4T, X)ar
Y = (T, X) 20 - |A(T, X) = p50(T, X) 2
< ma(Z;45Y) = mu(Z;.9)l2
(T X) 2 | sup a(t, ) = 4t )

+ (¥ ll2o + 1G(T, X)ll20)l sup |/(t, 2) A0 )| 20
£, x
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Since my is a linear functional, there exists L,,, > 0 such that

Ims(Z;G) = my(Z;@)ll2 < L - || sup|q(t, ) — ¢t ) |2

Hence, we have
1v(Z;9) = v(Z;679)l2
< Isup lg(t, ) — 3V (& @) ll2r - { Lo + 12(T, X) |20 + 1Y |20 + 1G(T, X)l20} -

t,a
Analogously, by replacing Z with Z;, we can show that

1(Z05.9) = v(Z1369) Iz

< llsup [3(t.2) = 30 () llar - { Eon + 18T Xl + 1Y oo + (T2 X0 20}

for some constant I~/m > 0.

Therefore, subject to

L?na f/ma H,a(Ta X) HQU? ||Y||2’U7 H‘j(Ta X)HQ’U) ||Cj(1}7 Xl) HQU

being finite for all i € [p] then L*"-continuity conditions also hold for function v.
Moreover, we have

1v(Z;9) = v(Z:9')|2

< |mp(Z;q") —mp(Z; )2

<llg—g'll2- {Lp + 11 (T, X)[loo + 1Y [loo + lg(T, X)|[oo }
where since my, is a linear functional, there exists L; > 0 such that

Ims(Z;d') —mu(Z;9)ll2 < Ly - [la(t, 2) — ¢'(t,2) |2
Provided that
L, [16(T, X) loos Y [loos 19(T, X) [loo

are finite, mean-squared-continuity conditions hold for function v with ¢ = 2.

H Extension to Nonlinear Moments

In this section, we extend our results to the case where the moment function m(Z; 6, g) is not
necessarily linear in the target parameter 6. For simplicity, we assume that the nuisance estimator
g is symmetric in each of the training data points Z1, ..., Z,. Moreover, we will denote with Z a
fresh random draw from the distribution.

We introduce some notation. We denote with || - ||2,2 the norm of a random vector defined as:
1 Z]|l2,2 = \/E[>_, Z?], which can also be thought as taking the Ly norm of each coordinate and

and then taking the /5 vector norm of this vector, or equivalently taking the L, norm of the random
variable defined as the ¢5 norm of the random vector. For clarity, for any random vector Z we will
denote with || Z||,, 2 the random variable that corresponds to the ¢ vector norm of the random vector,

ie. |Z||v2 = /.; Z7. For any random variable V, denote with ||V||2 its £2 norm /E[V2]. Note
that for any random vector Z, we have || Z||22 = [|[|Z]|v,2]|,-

Firstly, we establish a consistency lemma for 6. We note that in the linear moment case, such a
separate proof of consistency was not required and a single step proof of asymptotic normality was
feasible due to linearity. In the non-linear case, as is typical for moment based estimators, we first
need to show that the estimate will eventually lie in a small ball around 6y, and then argue normality.
This is what the consistency lemma achieves.

Lemma 10 (Consistency). Assume that
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1. The parameter space © C RP for target parameter 0 is compact.
2. Oy is the unique solution of 0 to the equation M (0, go) = 0.

3. The moment function m(z; 0, g) is uniformly continuous in 0 over all © and a syﬁclciently
small {2 ball Bs(go) C G around go. That is, Ve > 0, 36 > 0 such that for any 0,05 € ©
with ||01 — 02||2 < 6, Vg € Ba(go), Yz, we have

Im(z; 61, 9) — m(z; 02, 9)|2 < €.
4. The moment function m(Z;0,g) is mean-squared-continuous in g, uniformly in 0, i.e.
3L > 0 and q > 0 such that:

max [[m(Z: 6, 91) —m(Z:6, g2) 22 < L - [191(2) = 92(2) 132

5. Estimator § of the nuisance function is consistent: as n. — o0

19(Z) = 90(Z)l4,2 = o(1).

6. The moment function m and estimator § satisfies the following o(1) leave-one-out stability
condition:

0.8) — 0. DY o —
max[[m(Z136, ) — m(Z1;0,5" )22 = o(1)

as n — o0Q.

Then any estimator 0 that satisfies that ]\4,1(197 §) = op(1), also satisfies that 0L 0,

Proof. Fix any € > 0. Since m(z;6, g) is uniformly continuous in 6 € O for a sufficiently small

¢y-ball By(go) around gg, we have that, 3§ > 0 such that for any 9~1, 0 € O with H§1 — égHg < 4,
Vg € Ba(go), Vz, we have

Im(z; 01, ) — m(z; 62, 9)|l2 < /6.
Then
1381, 9) = M8, )2 < E [[m(Z:01,9) = m(Z:02,9)2) < €/6.

(that is, M (-, go) is uniformly continuous) and

)

180 (01,9) = M2, ) o2 < = [ m(Zisbr,9) = m(Zis )|, < /6,
i=1

Since the parameter space © is compact, there exist §;,j = 1,..., J such that

© C UL, B(0;,5).

By Law of Large Numbers, we have Vj, as n — oo

Hence, Vi > 0, for every j there exists n; such that ¥n > n;

€
v,2>*) <i.

B (110, (05:.90) = MOy 90) .2 > 5

Then Vn > max; n;, we have

€
P (M 65.00) ~ M@0l > § ) < 3
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Moreover, for any j € J, we have that:

”M ( ) ( J?gO)HQQ

< maXHM (0,9) — Mn(0, 90)”22

1 n
= max |\~ > {m(Z:0,9) — m(Zi; 0, g0)}

i3 2,2

n
< lz:mame(Z”H G) —m(Z;; 0, go)|| (triangle inequality)
= - 5 iUy g ;7590 2,2 g q y
= max Im(Z1;6,G) —m(Z1;0, 90) |52 (symmetry of estimator)
< mac|[m(Z1:0.9) ~ m(Z::0.5) ||+ mae|[m(21:0.9) = m(Zus6.00)]
< meame(Zl;H,g) m(Zy;6,5Y) H —l—mame (2;6,5V) — (Z;H,gO)H22
q

glngmaw@wwmawg“”Hm+pr“lwaame

= o(1).

Thus we have that M,,(6;,G) — M,,(0;,90) = 0p(1). Which means that ¥n > 0, there exists n;
such that for every n > n;:

~ € 77
P (IMa(05,9) = Ma05,90) 2 > 5) < 35

Then ¥Yn > max;c s n;:

1
ig M, — M, (0 -
(yel?XII (05, 9) (5, 90)ll,, 2 > 3) 3"

Now V6 € ©, since © C UJ_, B(0;,0), there exists k € {1,...,J} such that ||§ — ||2 < 4. Then
for n sufficiently large, such that § € Bs(go):

M,(0,9) — M (0, go)llv,2
| M, 0k, G) — M (Ox, go) n(0,9) — My 0k, 3)|lv2 + [[M (0, g0) — MOk, go)lv,2
max [ Mn(05,9) — M(05, go)|lv,2 + 2€/6.

INIA

Hence, we obtain

. R 2e
P (g [M,(6.9) ~ M0, g0) 2> €) < P (max |04,(65,) ~ MOyl > 5 ).

Moreover, note that by the triangle inequality:
max [ Mo (65, 9) — M(6;, 90) 0.2

( ngO) M(Qj,go)

< max | M, (05,9) — Mn (05, 90)

Thus
N 2e
PQ@xthpm—Aﬂ@gwmg>3)
€
< P (mx1002(05:6) — Mo 03,90 > ) + (s [Mol05.90) = M0y 0}z > §)
2n
< — <.
=73 =N

And we conclude that:

P (g ,(6.9) ~ Mgz > <) <
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This shows that

. P
raneaé(HMn(@,g) M0, go)llv,2 = 0
asn — oo.

In particular, this implies that
1M3,(0, 3) = M (8, 90) w2 0
asn — oo.

Hence, by triangle inequality and the fact that M,, (6, §) = op(1), we obtain

1M (8, go)llo,2 < M0 (8, 8)llu.2 + M (6, §) — M (B, go)l|u.2 = 0p(1).

Hence, M (6, go) = 0,(1).

It remains to show that A
650,
as n — oo.

To achieve this, again fix any € > 0. Then since © is compact, B(fp,€)¢ is also compact as a
closed subset of ©. By continuity of § — ||M (6, go)||2 and the fact that 6, is the unique solution to
M (6o, go) = 0, we must have that || M (6, go)||v,2 is bounded away from zero on B(fy, €)°. That is,
3n > 0 such that for any 6 with |0 — 0g],2 > €,

1M (6, go)lv.2 > 7-

Then since M (6, go) = 0,(1), there exists N € N such that ¥n > N
P (IM(@,90) o2 > 1) < e.

Then Vn > N
P (10— 0ol > €) <P (I1M(B, 90)]

v,2 >77) < €.

This establishes consistency of 0. O

Now we extend Theorem 1 to nonlinear moments.

Theorem 11. Ler A(0, g) := 0y M (0, g) denote the Jacobian of the moment vector, with respect to 0
and H;(0, g) := 03 M;(0, g) denote the Hessian of the i-th moment coordinate. Suppose that the mo-
ment m is twice differentiable with a(z; 0, g) := dgm(2;0, g) and h;(z;0, g) := 93m;(z;0, g). Let
An(0,9) == 13" a(Z;;0,9) and H; , := 2 377 | h(Z;;0, g) denote the empirical counterparts
OfA, I‘Iz

Suppose that the nuisance estimate § € G satisfies:
1= 90l13 2 Ex [I3(X) = 90(X)I13] = 0 (n7/2). (Consistency Rate)

Suppose that the moment satisfies the Neyman orthogonality condition: for all g € G
0 .
DyM (00, 90)[g — go] = §M(907 go+t(g— go))’t:O =0 (Neyman Orthogonality)
and a second-order smoothness condition: for all g € G

82
DyggM (00, 90)lg — 90l £ 5M (00,90 +1(9—90))],_, = O(lg—g0ll3)  (Smoothness)

ot
Assume that A(0y, go) ™! exists and that for any g, g’ € G:
1A(60,9) = A(0o, ') llop = O (llg — ¢'ll2) - (Lipschitz)

36



Suppose that the moment m and estimator § satisfy the stochastic equicontinuity conditions:
[A(0o, G) — A(bo, go) — (An(bo, 9) — An(bo, 90))ll,, = 0p(1)
Vnl[M (0o, 9) — M (0o, go) — (Mn(00,9) — Mn(00,90)) 20 = 0p(1)

Suppose that the conditions in Lemma are true. Moreover, assume that for any i,j € [p] X [p],
the random variable a; ;(Z; 6y, go) has bounded variance and that ||6y||2 = O(1). Suppose that 3
open neighborhood W of go such that

sup 1H: (0, 9)lop - |1 Hiin (6, 9) ], < 00 (Bounded Hessian)
0€0,geW,i€[p]

(NonLin. Stoc. Equi.)

Let 0 denote any approximate solution to the plug-in empirical moment equation that satisfies
M, (0,q) = op(n*1/2). Then 0 is asymptotically normal:

A n—o0,d —

\/ﬁ (9 - 90) 1NN (0 A(0o, g0)~ 'E [m(Z;amgo) m(Z;e()ag(])T] A(0o, g0) 1) .
Proof. Let A;(0, g) denote the i-th column of the Jacobian matrix. By Taylor’s expansion, we have
Vg and i € [p]

M;(0, 9) — Mi(00,9) = Ai(60,9)' (6 — 00) + (6 — 60) Hi(65, 9)(6 — o)

for some 9} between 6 and 0.

By Lemma([I0] we know that
16— boll2 = 0p(1).

Further, by the bounded Hessian condition and consistency of 0, we know that uniformly for g € W

(6= 60)' Hi(8:, 9)(0 — 00) = O, (110 — 80ll3) = 0,110 — bo]l2)-

Moreover, for any g with ||g — go|l2 = 0,(1) we have

(
A(bo, g) - (0 —80) = A(o, go) - (0 — 60) + (A(60, 9) — A6, 90)) - (6 — o)
= (90»90)( —00) + O(llg — goll2 ||9 toll2)
A(Bo,90) - (6 — 60) + 0, (1|6 — bol2),

where the second to last equality uses the Lipschitz condition.

By consistency, we have ||§ — gol|2 = 0,(1) and that § € W for n large enough.

Hence, we obtain that for large enough n,

A(00, 90) - (0 — 60) = M(8,9) — M (600, 9) + 0p(/10 — o)
= M(8,9) — Mu(0,9) + M(60. 90) — M(60,§) + M (6,3) + 0,(]|6 — 6o]l2)
= M(0,9) = My (6, 3) + M (00, 90) — M(60,9) + 0p(n”~ "/ + |6 — o),

where the last line follows because by definition M,, (6, §) = 0p(n=1/2).

\.Qb>
Nt

By Neyman orthogonality and the boundness condition on the second derivative of M with respect
to g, for any g we have

M (6. go) — M (00, 9) = Dg M (00, 90)[90 — 91 + O (g — 90l13) = O (llg — 9oll3) -
Plugging in g = g, noting that ||g — go||3 = 0,(n~'/2) we obtain

M (6, go) — M(8o,§) = op(n/?).
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Let G,,(0,9) := M(0,9) — M, (8, g). Thus we have that
A0, 90) - (0 = 00) = G (8,9) + 0p(n~ "> + (10 — bo]|2)-

We decompose G, (0, §) into the following sum:
Gn(0.9) = Gu(0,9) = Gu(00,9) + (Gn(60,9) — Gn(00, 90)) + G (00, 90)-
By Taylor’s expansion, we have
C(0.9) = Gulbo.5) = M(8,9) = M(60,5) — (M0(0.9) — Ma(60.9))
= (A(00,9) — An(60,9))" (6 — b0) + 0, (1|6 — bo]|2)

Now

14(60,9) = An (00, 9)llop

[ A(60, 90) — An(bo, g0)llop + [1A(60, 3) — Ao, go) — (An(bo,3) — An (b0, 90))l,,
1460, 90) = An (b0, go)llop + 0p(1),

where the last equality follows from the stochastic equicontinuity condition on the Jacobian. Since

A(bo, g0) — An (0o, go) is a mean zero empirical process with dpm(Z; 0y, go) having bounded vari-

ance, we have
[ A(6o, g0) — An (0o, g0)llop = 0p(1).

IN

Hence,
Gn(0,9) — Gn(00,9) = 0p([10 — bo]l2)-

Moreover,

Gr(00,9) — Gu(80,90) = M(6o,9) — Ma(80,3) — (M (80, 90) — My (60, 90)) = 0p(n~"/?)
by stochastic equicontinuity.

In summary, we have

Gn(0:3) = Gu(B0,90) + 0p(10 = Bollz +n ™72,

and thus ) )
A(0o,90) - (6 — 00) = Gr(60, 90) + 0p([10 — Boll2 +n~1/?).

That is, we have

(0 — 60) = A(6o,90) " G (b0, g0) + 0, (|0 — Oo||2 + n~1/?).

Since G',(6o, go) is a mean-zero empirical process, we have that |G, (6o, go)||2 = Op(n~"'/2).
By consistency of 6, above implies that

0 — 6y = 0,(n"1?).

Thus we get X
(6 —00) = A(f0, 90) " Gn(b0, 90) + 0p(n~"/?).

By Slutsky’s Theorem, we conclude that

Vn(h —60) & N (0, A(6o, go) " E[m(Z; b0, go)m(Z; b0, go)'| A(b0, 90) ) -

We can also directly extend Lemma 2 to general nonlinear moments.
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Lemma 12 (Non-Linear Main Lemma). Ifthe estimation algorithm satisfies the stability conditions:
Soralli,j € [p]

%2‘?5](’ a;i j(Z1500,9) — ai;(Zy; 00,6Y) = o(n~'?)
e ai j(Z;00,9) — ai.j(Z;60,5") , = o(n~'/?)
ma |mi(Zi00,9) — mi(Z1; 00,91 | = o(n™V%)
max mi(Z;00,9) = mi(Z;60,9")|| = o(n~17?)

and the moment satisfies the mean-squared-continuity condition:

Vg, g : El(ai;(Z;00,9) — ai j(Z;00,9)* < Llg — g'l|3
Vg,9" : E[(mi(Z;00,9) — mi(Z;00,9'))*] < Lllg— 4|3

for some 0 < q < oo and some L > 0, then the Condition (NonLin. Stoc. Equi.) is satisfied.

Proof. The proof follows by replacing all functions a(z, g), v(z, g) in the proof of Lemma 2] corre-
spondingly with the functions a(z; 6y, g) and m(z; 6o, g).

Application to bagging estimators. We finally note that if the moment satisfies Lipschitz condi-
tions of the form:

2
E [(ai,j(ZZEGOag) - ai,j(Zl;GOag(il))) }

IN

R e . 1/r
L. ]E{sup 19(2) — g9 (2)|3 }

IN

R e 2 R e , 1/r
maxnz[(mle;e,g)—mi(zl;e,g( ") } L-E[sup[3(z) — 9 D)

)
Then Theoremcan be applied to upper bound the right hand side of these inequalities by o, (n~ 1/2)
for bagging estimators. This would then imply the stability conditions invoked in both the consis-
tency and the normality theorem. Thus the main application for bagging estimators carries over to
non-linear moments.
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