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DivBO: Diversity-aware CASH for Ensemble Learning

A Appendix

A.1 Ensemble Selection

We provide the pseudo-code in Algorithm[I] In our paper, the Per f metric is the classification error
based on the mean predictions of learners in the ensemble.

Algorithm 1: Procedure of ensemble selection.

Input: The ensemble size F, the configuration observations D, and the validation set D,,q;.
Initialize the ensemble as B = &;
fori=1,....,Fdo
a <+ argmin,cp Perf(BU{a}, Dyar);
B+ BU{a};
return the final ensemble B.

A.2 Dataset Details

In Table[I] we provide the details of the datasets used in our experiment. While all the datasets are
collected from OpenML [6], we provide the OpenML ID as the identification of the dataset.

Table 1: Basic dataset information.

Datasets OpenML ID Classes Samples Features
amazone_employee 43900 2 32769 9
bank32nh 833 2 8192 32
cpu_act 761 2 8192 21
cpu_small 735 2 8192 12
eeg 1471 2 14980 14
elevators 846 2 16599 18
house_8L 843 2 22784 8
pol 722 2 15000 48
pollen 871 2 3848 5
puma32H 752 2 8192 32
quake 772 2 2178 3
satimage 182 6 6430 36
spambase 44 2 4600 57
wind 847 2 6574 14
2dplanes 727 2 40768 10

A.3 Search Space

The search space for algorithms and feature engineering operators are presented in Tables [2]and [3]
respectively.
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Figure 1: Sensitivity analysis on spambase and house_8L.

. o Table 3: Search space of feature engineering
Table 2: Search space for algorithms. We distin-

N N operators.
guish categorical (cat) hyperparameters from nu-
merical (cont) ones. The numbers in the brackets Type of Operator #)_ cat (cond) cont (cond)
1t Minmax 0 -
are conditional hyperparameters. Nommax 5 i -
Quantile 2 1() 1()
B Robust 2 - 2(-)
Type of Classifier =~ #\ cat(cond) cont (cond) Standard o {
AdaBoost 4 1 (') 3 (') Cross features 1 - 1(-)
Random forest 5 2(-) 3(-) Fast ICA ) 4 3(1) 1(1)
Extra trees 5 2() 3() Feature agglomeration 4 3(2) 1(-)
. . K 1PCA 5 1(1) 4(3)
Gradient boosting 7 1) 6() Rand. Kitchen sinks 2 ( 2¢)
KNN 2 1(-) 1(-) LDA decomposer 1 1() -
LDA 4 1) 3(1) Nystroem sampler 5 1(1) 4(3)
PCA 2 10 1)
QDA . . L ) 1 (_) Polynomial 2 1(-) 1(-)
Logistic regression 4 2() 2() Random trees embed. 5 1() 4(-)
Liblinear SVC 5 2(2) 3() SVD ) 1 - 1()
LibSVM SVC 7 2(2) 5() Select percentile 2 10 1)
. Select generic univariate 3 2(-) 1(¢)
LightGBM 6 - 6(-) Extra trees preprocessing 5 2(-) 3()
Linear SVM preprocessing 5 3(3) 2(-)

A.4 Implementation Details

We implement the performance surrogate of Bayesian optimization based on OpenBox [4]], a toolkit
for black-box optimization. The other baselines are implemented following the open-source version
or original papers. For NES, the population is set to 30; for EO, the ensemble size is set to 12; for
RB, « and trial per action are set to 3 and 5; for BO and DivBO, we sample 4950 and 50 candidates
from global and local sampling, respectively; for all post-hoc designs, we set the ensemble size
of ensemble selection to 25; for DivBO, we set 5 and 7 to 0.05 and 0.2. All the experiments are
conducted on a machine with 64 ‘AMD EPYC 7702P° CPU cores.

A.5 Additional Results

Sensitivity Analysis. We first provide the hyperparameter sensitivity analysis on the dataset spambase.
The choices for § are {0.025,0.05,0.1,0.2}, and the choices for 7 are {0.05,0.1,0.2,0.4}. The
validation accuracy of 20 combinations of hyperparameters are shown in Figure[I] Remind that /3 is
the maximum of diversity importance and 7 controls the speed of approaching saturation. We observe
that a large 5 (0.2) leads to a clear accuracy drop, and we suggest using a 5 = 0.05. However, we
need to tune 7 to achieve the best results on different datasets. The reason may be that the difficulty
for different datasets to find good configurations are different. As DivBO builds on the intuition that
we need to focus on accuracy rather than diversity in early iterations, a smaller 7 is required if it’s
difficult to find accurate learners in early iterations. The suggested region for tuning 7 is [0.1,0.8]. In
our paper, we use 0.2 by default, but a tuned 7 may achieve better results.



Ablation Study. In this part, we compare DivBO without weight scheduling by setting w = 0.1. The
results on five datasets are shown in Table d The results show that DivBO with weight schedule
(Equation 5) performs much better than fixing the weight for diversity (not significant on quake,
but significant on other 4 datasets). It fits the intuition that motivates the weight schedule design in
Section 3.2.

Table 4: Ablation study on weight scheduling.

Method elevators house_8L pol quake wind
DivBO (fixed)  9.59+0.30 11.51+0.28 1.66 £0.19  45.63 +£1.45 14.27+£0.36
DivBO 9.40£0.28 10.80+0.22 1.34+0.17 45.55+1.37 13.93 1+ 0.42

Analysis on Ensemble Strategy. While previous study [1] claims that ensemble selection performs
well with CASH using Bayesian optimization, we also evaluate the influence of different strategies on
DivBO. We compare ensemble selection with weighted bagging and stacking. We pick 5 learners with
the best validation errors from observations to build ensemble for bagging and stacking following
EO [3]. The test results on 5 datasets are shown in Table [5] Among three compared strategies,
ensemble selection performs the best. In addition, the cost of bagging and ensemble selection can
almost be ignored, since the intermediate predictions are stored during optimization. However,
stacking is a time-consuming strategy, as the learners are re-trained multiple times after optimization.
For example, if we pick 5 base learners for stacking and 5-fold cross validation is used, the cost of
stacking equals to that of 25 configuration evaluations, while the budget for the entire CASH process
is only 250 evaluations. Therefore, we apply ensemble selection as the default post-hoc ensemble
strategy in our paper.

Table 5: Test error (%) of different ensemble strategies on different datasets.

Method elevators house_8L pol quake wind
Bagging 1098 +£1.70 11.12+0.33 1.85+0.31 47.22 £ 1.85 14.21 £2.82
Stacking 9.53+1.13 11.04 £0.23 1.54+£0.28 46.58 +1.13 14.02 £ 1.43

Ensemble selection 9.40 +0.28 10.80 £0.22 1.34+0.17 45.55+1.37 13.93 4+ 0.42

Analysis on Ensemble Size. We also provide the results if we set a larger ensemble size. As ensemble
selection directly optimizes the performance on the validation set, the validation performance is
definitely no worse than using a smaller ensemble size due to the greedy mechanism. However, as
pointed out by [2], if we optimize the validation set too much (i.e., setting a too large ensemble size
for ensemble selection), the test results may deteriorate, which is referred to as the overfitting issue in
AutoML. The results when setting the ensemble size to 100 for BO-ES are presented in Table [6]

Table 6: Test error (%) of different ensemble sizes on different datasets.

Method elevators house_8L pol quake wind

BO-ES (ens_size=100)  9.98 4 0.30 11.52 £ 0.26 1.45+0.33 4743 +1.62 14.04+0.47
BO-ES (ens_size=25) 9.61+0.36 11.06 £0.33 1.35+0.18 46.10+2.52 14.04 £0.53

In main paper, the ensemble size is set to 25 following VolcanoML [5]], which shows good empirical
results across different datasets. We observe that when we set the ensemble size to 100 for BO-ES,
the test results are generally worse than setting the ensemble size to 25 due to the overfitting issue (not
significant on wind but significant on the other four). We have also mentioned this risk of overfitting
in the limitation.

Comparison with Intuitive Designs. In this part, we evaluate another intuitive CASH design,
which tunes each algorithm for the same budget and then builds a post-hoc ensemble. In fact, it is a
simplified version of the baseline RB-ES, in which RB-ES eliminates some of the algorithms after
several iterations. We name it kBO-ES and present the results in Table |7} We observe that the results
of kBO-ES are quite similar to RS-ES (Random search with ensemble selection). The reason is that
the search space contains a lot of algorithms while the budget is quite limited (250 iterations). Each
algorithm can only be tuned about 22 times. For each algorithm, we also need to tune the feature



engineering operators (>50 HPs in auto-sklearn search space), and thus the BO surrogate for each
algorithm is under-fitted. Therefore, Bayesian optimization for each algorithm performs like random
search. kBO-ES is an intuitive method but seems to perform not competitively when the search space
is very large.

Table 7: Test error (%) compared with another intuitive design.

Method elevators house_8L pol quake wind

RS-ES 9.51 £0.28 11.21 +£0.38 1.39 £0.15 46.79 £ 1.57 14.34 + 0.47
kBO-ES  9.55+0.32 11.18 £ 0.34 1.39 £0.16 46.81 £1.48 14.29 +0.45
DivBO 9.40+0.28 10.80+0.22 1.34+0.17 45.554+1.37 13.93+£0.42

Comparison with AutoGluon. The search space plays a significant role in CASH optimization. As
DivBO is an algorithm framework rather than a system, we compare it with other baselines by using
the same search space (i.e., auto-sklearn space). However, AutoGluon applies a more compact space
than auto-sklearn, and it’s not fair to directly compare DivBO on auto-sklearn search space with
AutoGluon. To make a relatively fair comparison, we reproduce a similar search space of AutoGluon
except for the specified neural networks due to implementation difficulty. The results on five datasets
are in Table[8

Table 8: Test error (%) compared with AutoGluon.

Method elevators house_8L pol quake wind

AutoGluon Tabular ~ 9.10£0.00 9.98+0.00 1.23+0.00 44.724+0.00 14.37£0.00
DivBO (AutoGluon) 9.01 £0.11 10.06 £0.17 1.18 +0.07 44.75+0.60 14.24+0.18

Note that, the search space affects the results a lot. For example, AutoGluon’s results on wind are
worse than RS-ES using the auto-sklearn space. However, AutoGluon’s results on the other four
datasets are better than most of the results using the auto-sklearn space, which is consistent with
the observation that AutoGluon often outperforms auto-sklearn. The reason may be that AutoGluon
is equipped with a well-designed search space, which kicks out less reliable algorithms on modern
datasets (e.g., Naive Bayes) and adds strong ones (e.g., Catboost). The variance of AutoGluon’s
results is zero because it fixes the random seed in its inner design. In addition, we observe an
error decrease when using DivBO in this search space. Concretely, the improvement is statistically
significant on three datasets, not significant on one (quake), and slightly worse on the other one
(house_8L).

Further Analysis on Diversity. In this part, we analyze the influence of removing the most diverse
learners from the final ensemble. While DivBO is extended from naive BO, we evaluate the mean
influence of removing the top-3 diverse models from the final ensemble. As the ensemble is built on
the validation set, we present the validation error gaps on five datasets in Table[9] (A positive gap
means removing the models leads to an error increase.) We observe that generally, removing the most
diverse learners from DivBO leads to a larger error increase than BO-ES. As it’s easy to learn good
learners on the dataset pol (the accuracy of almost all the learners in the ensemble is above 98%),
removing learners affects quite little on the ensemble performance.

Table 9: Error gap (%) when removing the top-3 diverse models.

Gap elevators house_8L  pol quake wind

BO-ES +0.21 -0.04 +0.02 +0.98 +0.38
DivBO +0.38 +0.15 +0.01 +1.28 +0.61
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