
A Additional related works

The general problem of domain generalization has been studied since Blanchard et al. [8], Muandet
et al. [32]. For a domain generalization problem, it is crucial to make carefully reasoned assumptions
on what remains constant and what varies across environments, as different domain shift assumptions
call for different algorithms. Beyond invariance of the conditional signal feature distribution P (Φ(x) |
y) (shared by feature-matching algorithms) and invariance of the label distribution conditioned on the
signal features P (y | Φ(x)) (shared by IRM variants) already discussed in our paper, other types of
assumptions include invariant gradients [35], learnable domain transformation models [36], the test
domain being a convex combination of training domains [39], etc. Some works assume various causal
data models and the corresponding algorithms are inspired by causal inference, including Krueger
et al. [21], Chevalley et al. [9], Ahuja et al. [1]. Zhang et al. [47] seeks to quantify and improve the
transferability among domains. A related line of work is test-time training [48] or meta-learning [26]
where we are not limited to using a single model for all domains but can adapt at test time.

Relation to ICA Our data model bears some semblance to ICA since the invariant and spurious
features are assumed to be independent and the goal is to disentangle the two sources. However,
for identifiability in linear ICA, at most one source has to be non-Gaussian, which is different from
our data model. The algorithms being analyzed here are also distinct from ICA methods such as
minimization of mutual information or maximization of non-Gaussianity. A line of recent work
on nonlinear ICA [16, 17, 20] proves identifiability results for deep latent variable models but they
require additional conditions or auxiliary supervision.

B Additional proofs

B.1 Proof sketch of Lemma 5.2

This section gives a proof sketch of the main lemma 5.2. Our goal is to show that whenE = Ω(ds/k),
with high probability, no orthonormal Q ∈ Rk×ds satisfies Q∆eQ

⊤ = 0 for all e, where we define
the difference between the covariances of spurious features in two adjacent environments e, e+ 1 as
∆e

2 = Σe2 − Σe+1
2 = (Σe2 − Σe+1

2 ) + (GeG
⊤
e −Ge+1G

⊤
e+1).

Step 1: Discretization To show this, we discretize over the space of orthonormal matrices Q, and
show that for fixed Q, the probability that Q∆e

2Q
⊤ = 0 for all e is small. We then union bound over

the covering.

Step 2: Designing a testing statistic To show that for fixed Q, Q∆eQ
⊤ = 0k×k is unlikely, we

focus on showing that the sum of squares of all entries in Q∆eQ
⊤ is bounded away from 0. More

formally, let qi be the i-th row of Q. Define Zije = (q⊤i ∆
e
2qj)

2 so it is
[
Q∆eQ

⊤]2
i,j

.

Define the nonrandom part Aije = q⊤i (Σ
e
2 − Σe+1

2 )qj , and A =
∑
A2
ije, we write∑

e

∥Q∆eQ
⊤∥2F=

∑
Zije =

∑
(Aije + q⊤i GeG

⊤
e qj − q⊤i Ge+1G

⊤
e+1qj)

2.

We will eventually show that with high probability,
∑
Zije = Ω

(
A+ Ek2ds

)
.

Step 3: Decoupling One difficulty is that
∑
Zije is not a sum of independent random variables,

because q⊤i GeG
⊤
e qj and q⊤i GeG

⊤
e qj′ are dependent. The key insight is to use a decoupling tool

from de la Peña and Montgomery-Smith [10].

In more details, define Vi,e = Geqi. For fixedQ, Vi,e ∼ N (0, Ids) and the ensemble {Vi,e}i∈[k],e∈[E]

is independent. Therefore

q⊤i GeG
⊤
e qj − q⊤i Ge+1G

⊤
e+1qj = V ⊤

i,eVj,e − V ⊤
i,e+1Vj,e+1

For further simplification, we define Xi,e = [Vi,e;Vi,e+1] ∈ R2ds , and I∗ = [Ids ,0;0,−Ids ], so

V ⊤
i,eVj,e − V ⊤

i,e+1Vj,e+1 = X⊤
i,eI

∗Xj,e
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Note that X⊤
i,eI

∗Xj,e and X⊤
i,eI

∗Xj′,e are dependent for j′ ̸= j, j′ ̸= i, i ̸= j. To resolve this, We
apply Lemma B.4 to decouple them. Lemma B.4 says to show concentration of sum of Zije we just
need to show concentration of the sum of some other random variables Z ′

ije, where

Z ′
ije = A2

ije + 2AijeX
⊤
i,eI

∗Yj,e + (X⊤
i,eI

∗Yj,e)
2.

Here Yi,e and Xi,e are identically distributed.

We then turn {Z ′
ije} into their identically distributed counterparts {Z ′′

ije}, where

Z ′′
ije = A2

ije + 2AijeX
⊤
i,eYj,e + (X⊤

i,eYj,e)
2.

Step 4: High probability norm bounds for {Yi,e} We first consider the randomness in {Yi,e}, and
prove that with high probability {Yi,e} satisfies two norm bounds; we then show the concentration of∑
Z ′′
ije conditioned on the event that {Yi,e} satisfies these bounds. We pack {Yi,e} as rows of a matrix

Ye ∈ Rk×2d. We design event E1 so that conditioned on E1, for all Q ∈ Q and e, ∥Ye∥2= O(
√
ds).

Event E2 denotes the event that for all cover elements in Q̃, all e, ∥Ye∥2F= Θ(Ekds).

Step 5: Conditioned on Ye, proving that
∑
Z ′′
ije concentrates Once we fix Ye, the random

variables {Pei =
∑
j Z

′′
ije} are independent, so the concentration of their sum is immediate.

Pei =
∑

A2
ije + 2X⊤

i,e

∑
j ̸=i

AijeYj,e

+X⊤
i,eYeY

⊤
e Xi,e (B.1)

We show concentration of the second and the third terms of equation (B.1) using Hoeffding’s
inequality and Hanson-Wright inequality. Conditioned on good events E1 and E2, for fixed Q,

Pr

∑
e,i

Pei ≲ A+ Ek2ds

∣∣∣∣∣∣E1, E2
 ≤ exp

(
−min

{
(A+ Ek2ds)

2

Ads
, Ek2

})
.

In other words, with high probability all Q ∈ Q̃ satisfies
∑
e,i Pei = O

(
A+ Ek2ds

)
.

We choose ϵ to make the discretization error smaller thanO(Ek2ds). Therefore, with high probability,
for all Q ∈ Q,

∑
eij Zije = Ω

(
A+ Ek2ds

)
, i.e. the testing statistic is bounded away from zero.

B.2 Proof of Lemma 5.1

Proof of Lemma 5.1. We shall prove that for all t < T , if we write UtS = [At, Bt] where At, Bt
are the left r and right ds columns of UtS, then rank((I − PBt

)At) = r and kt = rank(Bt) =
rt − r < (rt−1 − r + 1)/c with probability 1−O(t exp(−ds)). Since T = O(ds), for t = T − 1,
the probability 1−O(T exp(−ds)) = 1− exp (−Ω(ds)).
Lemma B.1 in Appendix B.2 says that if rank((I−PBt

)At) < r, then we can construct orthonormal
U ′
t with higher dimension r′t > rt that still matches the covariances for environments Et. Hence IFM

always finds Ut with rank((I − PBt
)At) = r.

To show that the number of spurious dimension decreases, we prove by induction on t. For the base
case t = 1, Lemma 5.2 says r1 − r ≤ k1 < (ds − r + 1)/c with probability 1−O(exp(−ds)). For
t ≥ 2, suppose to the contrary that there is orthonormal Ut ∈ Rrt×rt−1 satisfying (4.1) such that
Ut . . . U1S = [At, Bt] where Bt ∈ Rrt×ds , and rank(Bt) = kt > (rt−1 − r + 1)/c. By induction
hypothesis, with probability 1−O((t− 1) exp (−ds)), we can write Ut−1 . . . U1S = [At−1, Bt−1]
where Bt−1 ∈ Rrt−1×ds has rank kt−1 ≥ rt−1 − r. Below we condition on this event.

Writing Bt−1 in terms of the compact SVD, we get Bt−1 = Pt−1Λt−1Qt−1, where Qt−1 ∈
Rkt−1×ds . Therefore

Ut[At−1, Bt−1]

[
Σ1 0
0 Σe2

]
[At−1, Bt−1]

⊤UTt = Ct

=⇒ UtBt−1Σ
e
2B

⊤
t−1U

⊤
t = C ′

t.
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Writing UtPt−1Λt−1 in terms of its compact SVD, we get UtPt−1Λt−1 = PtΛtQt where Λt has k∗

non-zero singular values and Qt ∈ Rk∗×kt−1 . Therefore

Bt = UtBt−1 = PtΛtQtQt−1. (B.2)

Note that Q = QtQt−1 ∈ Rk∗×ds satisfies QQ⊤ = I , since both Qt and Qt−1 satisfies this.
Therefore (B.2) forms an SVD decomposition of Bt, and due to the uniqueness of non-zero singular
values up to permutation, we have k∗ = kt.

Therefore Qt ∈ Rkt×kt−1 satisfies ∀e ∈ Et, QtQt−1Σ
e
2Q

⊤
t−1Q

⊤ = C ′′
t .

Applying Corollary 5.3 with P = Qt−1, Q = Qt, with probability 1−O(exp (−ds)), no Qt satisfies
∀e ∈ [E], QtQt−1Σ

e
2Q

⊤
t−1Q

⊤
t = Ct for some constant Ct ∈ Rrt×rt .

For the last iteration t = T , ET = 3. We assume without loss of generality rank(BT−1) = kT−1 ∈
{1, 2}, since we can always half the spurious dimensions rt − r ≤ (rt−1 − r)/2 until rt−1 − r = 2.

Lemma B.8 and Lemma B.9 in Appendix B.2 deal with the cases when kT−1 = 2 and kT−1 =
1, respectively. Suppose rank(BT−1) = 2, its associated orthonormal matrix QT−1 ∈ R2×ds .
Lemma B.8 says that with yields that, with probability 1, no vector on the unit circle qT ∈ S1 satisfies
q⊤T QT−1(Σ

e
2 − Σe+1

2 )Q⊤
T−1qT = 0 for e ∈ {1, 2}. Suppose rank(BT−1) = 1, its associated unit-

norm vector qT−1 ∈ Rds . Lemma B.9 says that with probability 1, no non-zero scalar qT satisfies
q2T q

⊤
T−1(Σ

1
2 − Σ2

2)qT−1 = 0. Combining the two cases, with probability 1−O((T − 1) exp(−ds)),
rank(BT ) = kT = 0.

The first lemma says IFM always finds Ut that uses all invariant dimensions.

Lemma B.1. Let A0 ∈ Rd×r, B0 ∈ Rd×ds be the left r and right ds columns of S. Define
projection matrix onto the column span of B, PB0

= B0(B
⊤
0 B0)

−1B⊤
0 . Suppose orthonormal

Ut ∈ Rrt×d satisfies that UtS = [At, Bt] where rank(Ut(I − PB0
)A0) < r, and for all e ∈

E , USΣeS⊤U = Ct ∈ Rrt×rt . Then there exist orthonormal U ′
t ∈ Rr′t×d such that r′t > rt,

rank(U ′
t(I−PB0)A0) > rank(Ut(I−PB0)A0), and for all e ∈ E , U ′

tSΣ
eS⊤U ′

t
⊤
= C ′

t ∈ Rr′t×r′t .

Proof. We construct U ′
t by adding one additional row u+ to Ut. Denote the columns of (I −PB0)A0

as a1, . . . , ar ∈ Rd. Since Ut(I − PB0
)A0 does not have full column rank, there is one column

that can be written as linear combination of others. Assume without loss of generality that Uta0 =∑r
j=1 αjUtaj , which implies thatUt(a0−

∑r
j=1 αjaj) = 0. Since (I−PB0

)A0 has full column rank
r, a+ := a0−

∑r
j=1 αjaj ̸= 0. Define u+ := a+/∥a+∥2. Since Uta+ = 0, we have that u⊤i u

+ = 0,
for all existing rows of Ut (i ∈ [rt]). Furthermore, since each aj is orthogonal to the column space of

B0, u+⊤
B0 = 0. Hence U ′

t =

[
Ut
u+

]
is orthonormal, r′t = rt + 1, and U ′

tB0 =

[
UtB0

01×ds

]
so

U ′
tSΣ

eS⊤U ′
t
⊤
= U ′

tA0Σ1A
⊤
0 U

′
t
⊤
+ U ′

tB0Σ
e
2B

⊤
0 U

′
t
⊤
= U ′

tA0Σ1A
⊤
0 U

′
t
⊤
+

[
UtB0Σ

e
2B

⊤
0 U

⊤
t 0ds×1

01×ds 0

]
which is constant for all e ∈ E .

We use the following lemma to discretize the space of orthonormal matrices Q = {Q : QQ⊤ =

Ik, Q ∈ Rk×ds}. For any Q,Q′ ∈ Q, we define the metric ρ(Q,Q′) = ∥Q⊤Q − Q′⊤Q′∥F . We
recall the following lemma about the existence of a cover of Q with respect to the metric ρ:

Lemma B.2 (Proposition 8 of Pajor [33]). For 1 ≤ k ≤ ds/2, there exists absolute constant c3 and
covering Q̃ ⊂ Q such that for all ϵ > 0, |Q̃|≤ (c3

√
k/ϵ)k(ds−k), and ∀Q∗ ∈ Q, ∃Q ∈ Q̃ such that

ρ(Q,Q∗) ≤ ϵ.

For any odd integer e < E, define ∆e
2 = Σe2 − Σe+1

2 = (Σe2 − Σe+1
2 ) + (GeG

⊤
e −Ge+1G

⊤
e+1).

For any Q ∈ Q, let qi be the i-th row of Q, for i ∈ [k]. Let Zije = (q⊤i ∆
e
2qj)

2. Define Aije =

q⊤i (Σ
e
2 − Σe+1

2 )qj , and A =
∑

odd e<E,i,j∈[k],i̸=j A
2
ije. The main lemma below shows that the sum

of Zije’s are bounded away from 0.
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Lemma B.3. There exists constants c1, c2, b1, b2 > 0 such that for any integer 2 ≤ k ≤ ds/2, for all
E satisfying

b1
ds − k
k − 1

max

{
1, log

(
D

(k − 1)ds

)
, log

(
ds

k − 1

)}
< E < b2ds,

where maxe ∥Σe2∥22 ≤ D for some constant D, with probability 1− c1 exp (−ds), for all Q ∈ Q,∑
odd e<E,i,j∈[k],i̸=j

Zije > c2(A+ Ek(k − 1)ds).

Proof. For any odd e < E and i ∈ [k], by definition∑
j ̸=i

Zije =
∑
j ̸=i

(Aije + q⊤i GeG
⊤
e qj − q⊤i Ge+1G

⊤
e+1qj)

2

Define Vi,e = Geqi for e ∈ [E], i ∈ [k]. For fixed orthonormalQ, Vi,e ∼ N (0, Ids) and the ensemble
{Vi,e}i∈[k],e∈[E]’s is independent. Therefore

q⊤i GeG
⊤
e qj − q⊤i Ge+1G

⊤
e+1qj = V ⊤

i,eVj,e − V ⊤
i,e+1Vj,e+1

For further simplification, we define Wi,e = [Vi,e;Vi,e+1] ∈ R2ds , and I∗ = [Ids ,0;0,−Ids ], so

V ⊤
i,eVj,e − V ⊤

i,e+1Vj,e+1 =W⊤
i,eI

∗Wj,e

We use the following lemma to decouple the correlations between W⊤
i,eI

∗Wj,e and W⊤
i,eI

∗Wj′,e for
j′ ̸= j, j′ ̸= i, i ̸= j:

Lemma B.4 (Theorem 1 of de la Peña and Montgomery-Smith [10]). Suppose {Xi} (i ∈ [k]) are
independent random variables, Xi and Yi have the same distribution. There exists some absolute
constant c4 such that

Pr

∣∣∣∣∣∣
∑

i,j∈[k],i̸=j

f(Xi, Xj)

∣∣∣∣∣∣ ≥ t
 ≤ c4 Pr

∣∣∣∣∣∣
∑

i,j∈[k],i̸=j

f(Xi, Yj)

∣∣∣∣∣∣ ≥ t/c4
 .

We apply Lemma B.4 with Xi =Wi,e and f(Xi, Xj) = Zije − E[Zije] to get

Pr

∣∣∣∣∣∣
∑

i,j∈[k],i̸=j

Zije − E[Zije]

∣∣∣∣∣∣ ≥ t
 ≤ c4 Pr

∣∣∣∣∣∣
∑

i,j∈[k],i̸=j

Z ′
ije − E[Z ′

ije]

∣∣∣∣∣∣ ≥ t/c4
 .

where Yi,e and Xi,e are identically distributed and

Z ′
ije = A2

ije + 2AijeX
⊤
i,eI

∗Yj,e + (X⊤
i,eI

∗Yj,e)
2.

Note that {Z ′
ije} and {Z ′′

ije} are identically distributed, where

Z ′′
ije = A2

ije + 2AijeX
⊤
i,eYj,e + (X⊤

i,eYj,e)
2.

Below we first consider the randomness in {Yi,e}, and prove that with high probability {Yi,e} satisfies
some good properties; we then show the concentration of

∑
i,j,e Z

′′
ije conditioned on the event that

{Yi,e} satisfies these properties.

First, for fixed Q, since Yi,e = [Gevi;Ge+1vi] ∼ N (0, I2ds), if we write Ye = [Y1,e; . . . ;Yk,e] ∈
Rk×2ds , it is a random matrix with iid standard normal entries. We show that the ∥Ye∥2F= Θ(kds)
with high probability. The following lemma is a standard concentration bound for chi-squared
variable:

Lemma B.5 (Corollary of Lemma 1 in Laurent and Massart [22]). Suppose Zi ∼ N (0, 1) for i ∈ [n].
For any t > 0,

Pr

[
n∑
i=1

Z2
i ≥ n+ 2

√
nt+ 2t

]
≤ exp(−t),

Pr

[
n∑
i=1

Z2
i ≤ n− 2

√
nt

]
≤ exp(−t).
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Applying Lemma B.5 to n = Ekds entries of {Ye}Ee=1 and setting t = Ekds/16 we get with
probability 1− 2 exp(−Ekds/16),

Ekds
2
≤
∑
e

∥Ye∥2F≤
13Ekds

8
. (B.3)

Second, we show that with high probability over the randomness of Ge, ∥Ye∥2 viewed as a function
of Q satisfies ∥Ye∥2= O(

√
ds) for all orthonormal Q. We use the following lemma to upper bound

∥Ge∥2:

Lemma B.6 (Corollary 5.35 of Vershynin [45]). Suppose G ∈ RD×d and [G]ij ∼ N (0, 1) for all
i ∈ [D], j ∈ [d]. For every t ≥ 0, with probability 1− 2 exp(−t2/2),

∥G∥2≤
√
D +

√
d+ t

Applying Lemma B.6 with G = [Ge;Ge+1], D = 2ds, d = ds, t =
√
ds, we get with probability

1− 2 exp(−ds/2), ∥G∥2≤ (2 +
√
2)
√
ds, and therefore for all orthonormal Q ∈ Rk×ds ,

∥Ye∥2= ∥QG⊤∥2≤ ∥Q∥2∥G∥2≤ (2 +
√
2)
√
ds. (B.4)

For any odd e < E, i ∈ [k], and fixed Ye, we prove Pei =
∑
j ̸=i Z

′′
ije concentrates. Once we fix Ye,

the Er/2 random variables {Pei} are independent, so the concentration of their sum is immediate.
Let Y−i,e be Ye without the i-th row,

Pei =
∑
j ̸=i

Z ′′
ije =

∑
j ̸=i

A2
ije + 2X⊤

i,e

∑
j ̸=i

AijeYj,e

+X⊤
i,eY−i,eY

⊤
−i,eXi,e (B.5)

Define Bi,e = Y−i,eY
⊤
−i,e. Let ai,e ∈ Rk−1 be the column vector consisting of Aije for j ̸= i.

Since Xi,e ∼ N (0, I2ds), X
⊤
i,e

(∑
j ̸=iAijeYj,e

)
is a Gaussian variable with mean 0 and variance

a⊤i,eBi,eai,e ≤ ∥ai,e∥22∥Bi,e∥2, so by Hoeffding’s inequality, for all t ≥ 0,

Pr

2X⊤
i,e

∑
j ̸=i

AijeYj,e

 > t | Ye

 ≤ exp

(
− t2

8∥ai,e∥2∥Bi,e∥2

)
. (B.6)

By Hanson-Wright Inequality (e.g. Theorem 1.1 of Rudelson and Vershynin [38]), there exists
constant c5 such that

Pr
[
E[X⊤

i,eBi,eXi,e]−X⊤
i,eBi,eXi,e > t | Ye

]
≤ exp

(
−c5 min

{
t2

∥Bi,e∥2F
,

t

∥Bi,e∥2

})
. (B.7)

Combining equations (B.5), (B.6), (B.7), we get

Pr [E[Pei]− Pei > t | Ye] ≤ exp

(
− t2

32∥ai,e∥22∥Bi,e∥2

)
+ exp

(
−c5 min{ t2

4∥Bi,e∥2F
,

t

2∥Bi,e∥2
}
)
.

Summing over all e ∈ [E] and i ∈ [k] we get

Pr

E
∑
e,i

Pei

−∑
e,i

Pei > t | Y1, . . . , YE

 ≤ exp

(
− t2

32
∑
e,i∥ai,e∥22∥Bi,e∥2

)

+exp

(
−c5 min

{
t2

4
∑
e,i∥Bi,e∥2F

,
t

2maxe,i∥Bi,e∥2

})
.

Note that E[X⊤
i,eBXi,e] = E

∑
j ̸=i(X

⊤
i,eYj,e)

2 = ∥Y−i,e∥2F so

E

∑
e,i

Pei

 =
∑
e,i

∥ai,e∥22+
∑
e,i

∥Y−i,e∥2F= A+ (k − 1)
∑
e

∥Ye∥2F .
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Since ∥Bi,e∥2≤ ∥Ye∥22, ∥Bi,e∥2F≤ ∥Y−i,e∥2F ∥Ye∥22, taking t = 1
2E[

∑
e,i Pei],

Pr

∑
e,i

Pei <
1

2

(
A+ (k − 1)

∑
e

∥Ye∥2F

)
| Y1, . . . , YE

 ≤ exp

(
−
(A+ (k − 1)

∑
e∥Ye∥2F )2

128
∑
e,i∥ai,e∥22∥Ye∥22

)

+exp

(
−c5 min

{
(k − 1)2(

∑
e∥Ye∥2F )2

16(k − 1)
∑
e∥Ye∥2F ∥Ye∥22

,
(k − 1)

∑
e∥Ye∥2F

2maxe∥Ye∥22

})
.

Let E1 denote the event that for all odd e < E, [Ge;Ge+1] ∈ R2ds×ds denote the matrix with
Ge, Ge+1 ∈ Rds×ds in its first and last ds rows, respectively, we have

∥[Ge;Ge+1]∥2≤ (2 +
√
2)
√
ds.

Due to equation (B.4) and the union bound, Pr[E1] ≥ 1−E exp(−ds/2). Conditioned on E1, for all
Q ∈ Q and odd e < E,

∥Ye∥2≤ (2 +
√
2)
√
ds.

Let E2 denote the event that for all cover elements Q ∈ Q̃,
Ekds
2
≤
∑
e

∥Ye∥2F≤
13Ekds

8
.

Due to equation (B.3) and the union bound, Pr [E2] ≥ 1− 2|Q̃|exp (−Ekds/16).

Conditioned on E1 and E2, for fixed Q ∈ Q̃, there exists constants c6, c7 such that

Pr

∑
e,i

Pei <
1

2
A+

1

4
Ek(k − 1)ds

 ≤ exp

(
−c6

(A+ Ek(k − 1)ds)
2

Ads

)

+exp

(
−c7 min

{
(k − 1)2E2k2d2s
Ek(k − 1)d2s

,
Ek(k − 1)ds

ds

})
,

which implies there exists constants c8 such that

Pr

∑
e,i

Pei <
1

2
A+

1

4
Ek(k − 1)ds

 ≤ exp

(
−c8 min

{
(A+ Ek(k − 1)ds)

2

Ads
, Ek(k − 1)

})
.

Note that we always have (A+Ek(k−1)ds)
2

Ads
≥ Ek(k − 1). To see this, for A > Ek(k − 1)ds,

(A+Ek(k−1)ds)
2

Ads
> A

ds
> Ek(k − 1). For A ≤ Ek(k − 1)ds,

(A+Ek(k−1)ds)
2

Ads
≥ (Ek(k−1)ds)

2

Ek(k−1)d2s
=

Ek(k − 1).

In other words, with probability 1− δ, where

δ = E exp(−ds/2) + 2|Q̃|exp (−Ekds/16) + |Q̃|exp (−c8Ek(k − 1)),

all Q ∈ Q̃ satisfies
∑
e,i Pei ≥

1
4 (A+Ek(k − 1)ds). Combined with Lemma B.4, with probability

1− c9δ, all Q ∈ Q̃ satisfies
∑
e,i,j Zije < c10(A+ Ek(k − 1)ds) for some constants c9, c10.

For any Q∗ ∈ Q, let Q be the element in the cover closest to it, so that ρ(Q,Q∗) = ∥Q⊤Q −
Q∗⊤Q∗∥F≤ ϵ. Let q∗i be the i-th row of Q∗, and Z∗

ije = (q∗i
⊤∆e

2q
∗
j ). Then∑

eij

Z∗
ije =

∑
e

∥Q∗∆e
2Q

∗⊤∥2F

=
∑
e

∥∆e
2Q

∗⊤Q∗∥2F

≥ 1

2

∑
e

∥∆e
2Q

⊤Q∥2F−∥∆e
2

(
Q⊤Q−Q∗⊤Q∗

)
∥2F

≥ 1

2

∑
eij

Zije − ∥∆e
2∥22ρ(Q,Q∗)2.
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Since ∥∆e
2∥22≤ 2∥Σe2∥22+2∥GeG⊤

e ∥22, and conditioned on E1, ∥GeG⊤
e ∥22≤ c11d

2
s for all e, if

maxe ∥Σe2∥22 ≤ D for some constant D, we have with probability 1− δ,∑
eij

Z∗
ije ≥

c10
2

(A+ Ek(k − 1)ds)− 2E(D + c11d
2
s)ϵ

2. (B.8)

We choose ϵ2 < c10k(k−1)ds
8(D+c11d2s)

so that 2E(D + c11d
2
s)ϵ

2 < c10
4 Ek(k − 1)ds.

With this choice of ϵ, by equation (B.8) we have∑
eij

Z∗
ije ≥

c10
4

(A+ Ek(k − 1)ds).

By Lemma B.2, log(|Q̃|) ≤ k(ds − k) log(c3
√
k/ϵ) ≤ c12k(ds − k) log

(
D

(k−1)ds
+ ds

k−1

)
.

Therefore there exists b1, b2 > 0 such that for E satisfying

b2ds > E > b1
ds − k
k − 1

max

{
1, log

(
D

(k − 1)ds

)
, log

(
ds

k − 1

)}
,

we have

δ ≤ exp(−ds/2 + log (b2ds)) + 2 exp

(
c12k(ds − k) log

(
D

(k − 1)ds
+

ds
k − 1

)
− Ekds/16

)
+ exp

(
c12k(ds − k) log

(
D

(k − 1)ds
+

ds
k − 1

)
− c8Ek(k − 1)

)
≤ c1 exp (−ds)

for some constant c1. Therefore with probability 1− c1 exp (−ds), for all Q∗ ∈ Q, and c2 = c10/4,∑
eij

Z∗
ije ≥ c2(A+ Ek(k − 1)ds).

Corollary B.7 (Corollary of Lemma B.3). Suppose 2 ≤ k ≤ r/2 ≤ ds/2. Let P = {P ∈
Rr×ds : PP⊤ = Ir}, Q = {Q ∈ Rk×r : QQ⊤ = Ik}. For fixed P ∈ P , there exists constants
c1, c2, b1, b2 > 0 such that for all E satisfying

b1
r − k
k − 1

max

{
1, log

(
D

(k − 1)ds

)
, log

(
ds

k − 1

)}
< E < b2ds,

where maxe ∥Σe2∥22 ≤ D for some constant D, with probability 1− c1 exp (−ds), for all Q ∈ Q,∑
odd e<E

∥QP∆e
2P

⊤Q⊤∥2F> c2Ek(k − 1)ds.

Proof. The proof mostly follows that of Lemma B.3, with a few modifications below. We discretize
over Q and get a ϵ-covering Q̃ of size (c3

√
k/ϵ)r(r−k).

For any Q ∈ Q, let vi be the i-th row of QP and define Zije, Aije accordingly. For any Q∗ ∈ Q, let
Q be its cover element, so ρ(Q,Q∗) = ∥Q⊤Q−Q∗⊤Q∗∥F≤ ϵ. Let q∗i be the i-th row of Q∗P , and
Z∗
ije = (q∗i

⊤∆e
2q

∗
j ). Then∑

eij

Z∗
ije =

∑
e

∥Q∗P∆e
2P

⊤Q∗⊤∥2F

=
∑
e

∥P∆e
2P

⊤Q∗⊤Q∗∥2F

≥ 1

2

∑
e

∥P∆e
2P

⊤Q⊤Q∥2F−∥P∆e
2P

⊤
(
Q⊤Q−Q∗⊤Q∗

)
∥2F

≥ 1

2

∑
eij

Zije − ∥P∆e
2P

⊤∥22ρ(Q,Q∗)2

≥ 1

2

∑
eij

Zije − ∥∆e
2∥22ρ(Q,Q∗)2
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Thus with the same choice of ϵ as Lemma B.3, log(|Q̃|) ≤ k(r − k) log(c3
√
k/ϵ) ≤ c12k(r −

k) log
(

D
(k−1)ds

+ ds
k−1

)
. The rest of the argument is identical.

Lemma B.8. Let P = {P ∈ R2×ds : PP⊤ = I2}. Suppose Σ2 = Σ1
2 − Σ2

2 + G1G
⊤
1 − G2G

⊤
2

and Σ′
2 = Σ1

2 − Σ3
2 + G1G

⊤
1 − G3G

⊤
3 , where Ge ∈ Rds×ds and [Ge]ij ∼ N (0, 1) for all e ∈ [3],

i, j ∈ [ds]. For fixed P ∈ P , with probability 1, no vector q ∈ R2 satisfies ∥q∥2= 1 and

q⊤Σ2q = 0, q⊤Σ′
2q = 0.

Proof. For any fixed G1, G2, consider the system of quadratic equations over two variables,

{q⊤Σ2q = 0, ∥q∥2= 1}.
With probability 1, it has at most 4 real solutions. Conditioned onG1, G2, consider the third quadratic
equation where the randomness is in G3.

{q⊤Σ′
2q = 0}.

With probability 1, any fixed solution from the first system does not satisfy this.

The following lemma is trivial so proof is omitted:

Lemma B.9. Suppose p ∈ Rds and ∥p∥2= 1. Suppose Σ2 = Σ1
2 − Σ2

2 +G1G
⊤
1 −G2G

⊤
2 , where

Ge ∈ Rds×ds and [Ge]ij ∼ N (0, 1) for e ∈ [2], i, j ∈ [ds]. With probability 1, no scalar q ̸= 0
satisfies

q2p⊤Σ2p = 0.

B.3 Proof of Theorem 4.2

Proof. Denote the unit-norm classifier β. For any environment with mean (µ1, µ
i
2) and covariance

Σ1,Σ
i
2, the accuracy of β can be written

E[1(sgn(β⊤x) = y] = p(y = 1)p(β⊤x ≥ 0 | y = 1) + p(y = −1)p(β⊤x < 0 | y = −1)

=
1

2

[
1− Φ

(
− β⊤

1 µ1 + β⊤
2 µ

i
2√

β⊤
1 Σ1β1 + β⊤

2 Σi2β2

)]
+

1

2
Φ

(
β⊤
1 µ1 + β⊤

2 µ
i
2√

β⊤
1 Σ1β1 + β⊤

2 Σi2β2

)

= Φ

(
β⊤
1 µ1 + β⊤

2 µ
i
2√

β⊤
1 Σ1β1 + β⊤

2 Σi2β2

)
,

where Φ is the standard normal CDF. Observe that Φ is monotone and that σ2
2I ⪯ Σi2. Therefore, a

training accuracy of at least γ on each environment implies that for each environment,

γ ≤ Φ

(
β⊤
1 µ1 + β⊤

2 µ
i
2√

β⊤
1 Σ1β1 + β⊤

2 Σi2β2

)

≤ Φ

(
β⊤
1 µ1 + β⊤

2 µ
i
2√

σ2
1∥β1∥2+σ2

2∥β2∥2

)
.

For brevity, moving forward we will denote ψ :=
√
σ2
1∥β1∥2+σ2

2∥β2∥2. Applying the inverse CDF
(which is also monotone) and rearranging, we have

β⊤
2 µ

i
2 ≥ ψΦ−1(γ)− β⊤

1 µ1,

which implies

β⊤
1 µ1 − β⊤

2 µ
i
2 ≤ 2β⊤

1 µ1 − ψΦ−1(γ).

If γ ≥ Φ
(

2∥µ1∥
min(σ1,σ2)

)
≥ Φ

(
2β⊤

1 µ1

ψ

)
then we have β⊤

1 µ1 − β⊤
2 µ

i
2 ≤ 0 for all environments and

therefore the classifier has accuracy < 1
2 on all test environments.
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B.4 Proof of Theorem 4.3

Definition B.10. For a positive definite matrix A ∈Matd×d(R) and vector b ∈ Rd, the associated
ellipsoid EA,b ⊆ Rd is given by

EA,b = {x ∈ Rd : x⊤Ax− b⊤x = 0}.

Observe that the origin is contained in any such ellipsoid EA,b. Therefore, any collection of ellipsoids
EAi,bi has the origin as a trivial point in its intersection. Our main result ensures the existence
of another (non-trivial) intersection of any d such ellipses whenever the vectors bi are linearly
independent.
Theorem B.11. If b1, . . . , bd ∈ Rd are linearly independent and A1, . . . , Ad are positive-definite
matrices, then ∣∣∣∣∣

d⋂
i=1

EAi,bi

∣∣∣∣∣ ≥ 2.

To prove this result we use technical tools from differential topology. The most central tool, Propo-
sition B.15, ensures that the total number of intersection points between two manifolds of com-
plementary dimensions k, d− k is even when certain generic tranversality conditions hold. Using
these techniques, we show that

∣∣∣⋂di=1EAi,bi

∣∣∣ ≥ 2 for almost all matrices A1, . . . , Ad, as long as
b1, . . . , bd are linearly independent. Then we use a continuity argument to extend the result to all
positive definite matrices A1, . . . , Ad.

Throughout we say a function is smooth to mean it is infinitely differentiable, i.e. C∞. All manifolds
considered are smooth, i.e. they have a smooth structure. When F (x, y) has two arguments we
denote by Fx the function Fx(y) = F (x, y) of y given by fixing x, and similarly define Fy . If x ∈ X
is a point in the smooth manifold X , we denote by Tx(X) its tangent space, which is intuitively the
vector space of all tangent vectors to X at x. The derivative of a smooth map f : X → Y at x ∈ X
is a linear map dfx : Tx(X)→ Tf(x)(Y ).
Definition B.12. [14, Chapter 1.5]

Let X,Y, Z be smooth manifolds (without boundary) such that Z ⊆ Y . The smooth map f : X → Y
is tranverse to Z if for each x ∈ X with f(x) ∈ Z, it holds that

Image(dfx) + Tf(x)(Z) = Tf(x)(Y ).

If X,Z ⊆ Y are both submanifolds of Y , we say they are transverse if the inclusion ιX : X ↪→ Y is
transverse to Z. Equivalently, this means that for any x ∈ X ∩ Z,

Tx(X) + Tx(Z) = Tx(Y ).

Roughly speaking, smooth two manifolds X,Z are transversal if all intersection points are “typical".
For example, if dim(X) + dim(Z) < dim(Y ), then X,Z being transverse is equivalent to their
intersection being empty. This corresponds to the intuition that their total dimension is too small for
them to generically intersect. If dim(X) + dim(Z) = dim(Y ), transversality rules out “unstable"
intersections such as a line tangent to a circle.
Proposition B.13. [14, Chapter 1.5]

The intersection W = X ∩ Z of two transversal submanifolds X,Z ⊆ Y is itself a submanifold of
Y , and dim(W ) = dim(X) + dim(Z)− dim(Y ).
Proposition B.14. [14, Chapter 2.3]

Suppose that F : X × S → Y is a smooth map of manifolds, and let Z be a sub-manifold of Y . If F
is transversal to Z, then for almost every s ∈ S, the map fs = F (·, s) : X → Y is also transversal
to Z.
Proposition B.15. [14, Chapter 2.4, Exercise 5]

Suppose the smooth, compact manifoldsX,Y ⊆ Rd are transversal, and that dim(X)+dim(Y ) = d.
Then |X ∩ Y | is finite and even.
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Remark B.16. Proposition B.15 follows from the methods of [14, Chapter 2.4], which shows that
the parity of |X ∩ Y | is invariant under homotopy as long as transversality is enforced. One simply
argues that by a homotopy X → X ′, Y → Y ′, we can arrange that |X ′ ∩ Y ′|= 0 by translating X
far away and invoking compactness.
Lemma B.17. The tangent space T0EA,b is exactly the orthogonal complement b⊥.

Proof. Since EA,b is an ellipsoid, it is a smooth manifold of dimension d− 1. If γ : [0, 1]→ EA,b is
a smooth curve with γ(0) = 0, then we claim ⟨b, γ′(t)⟩ = 0. This suffices to prove the desired result
since γ′(t) can be any vector in T0EA,b. Indeed, differentiating the equation for EA,b gives

0 = 2
d

dt
⟨0, Aγ(t)⟩

=
d

dt
⟨γ(t), Aγ(t)⟩|t=0

=
d

dt
⟨b, γ(t)⟩|t=0

= ⟨b, γ′(t)⟩|t=0.

Set A◦ to be the set of all d× d strictly positive-definite matrices with distinct eigenvalues. Note that
A◦ is open in the space of all positive definite matrices, and its complement has Lebesgue measure 0.
Denote by Sd−1 ⊆ Rd the unit sphere so that (c1, . . . , cd) ∈ Sd−1 if and only if

∑d
i=1 c

2
i = 1.

Proposition B.18. [40, Theorem 5.3]

For any A0 ∈ A◦, there is an open neighborhood UA0 ⊆ A◦ of A0 such that the eigenvalues
λ1(A) > · · · > λd(A) and associated orthonormal eigenvectors v1, . . . , vd can be chosen to depend
smoothly on the entries of A ∈ UA0

.

We remark that is it impossible to make a globally smooth choice of the eigenvectors and eigenvalues
as above. This is because of problems caused by higher multiplicity eigenvalues, and also by the need
to choose a sign for the eigenvectors.
Lemma B.19. For A ∈ A◦ and non-zero b ∈ Rd, let λ1 > · · · > λd be the eigenvalues of A, with
associated orthonormal eigenvectors v1, . . . , vd. Then x ∈ EA,b if and only if x = x0 + x1 where
x0 = A−1b

2 and

x1 =

√
b⊤A−1b

2

d∑
i=1

civi√
λi

for (c1, . . . , cd) ∈ Sd−1.

Proof. Writing x = x0 + x1, we derive

x⊤1 Ax1 + x⊤1 b+
b⊤A−1b

4
= x⊤1 Ax1 + 2x⊤1 Ax0 + x0Ax0

= x⊤Ax

= b⊤(x1 + x0) (B.9)

= b⊤x1 +
b⊤A−1b

2
.

Since we used the condition x ∈ EA,b only in reaching line (B.9), the initial and final expressions are
equal if and only if x ∈ EA,b. It follows that x = x0 + x1 ∈ EA,b if and only if

x⊤1 Ax1 =
b⊤A−1b

4
.
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This easily leads to the parametrization given and concludes the proof.

Lemma B.20. Let Mk ⊆ Rd be a compact manifold of dimension k ≥ 1 passing through the origin,
and such that T0(Mk) ⊊ b⊥. Then for all but a measure-zero set of positive-definite matrices A, the
ellipsoid EA,b is transversal to Mk.

Proof of Lemma B.20. Fixing A0 ∈ A◦, Proposotion B.18 ensures the existence of an open neigh-
borhood UA0 ⊆ A◦ of A0 on which the eigenvalues λ1(A) > λ2(A) > · · · > λd(A) and asso-
ciated orthonormal eigenvectors v1(A), . . . , vd(A) are defined smoothly on all A ∈ UA0 . Define
F : UA × Sd−1 → Rd by:

F (A, (c1, . . . , cd)) =
A−1b

2
+

√
b⊤A−1b

2

d∑
i=1

civi(A)√
λi(A)

.

Lemma B.19 implies that for each fixedAwe obtain a diffeomorphism FA : Sn−1 → EA,b.Moreover,
F is smooth by construction. We claim that F and Mk are transversal. To check this, we must verify
that for any z = F (A, c) ∈Mk, it holds that

Image
(
dF ◦ TF−1(z)(UA0

× SN−1)
)
+ Tz(M

k) = Rd.

First, recall that fixing A = A0, the map FA0
: Sn−1 → EA0,b is a diffeomorphism. Therefore

Image
(
dF ◦ TF−1(z)(UA0

× SN−1)
)

contains the tangent space Tz(EA,b) = b⊥ of EA,b at z. When z = 0 is the origin, the assumption
T0(M

k) ⊊ b⊥ implies

dim
(
Image

(
dF ◦ TF−1(z)(UA0

× SN−1)
)
+ Tz(M

k)
)
≥ dim(b⊥) + 1 = d

and the claim follows. Supposing for the remainder of the proof that z ̸= 0 is not the zero vector, we
claim that in fact

Image
(
dF ◦ TF−1(z)(UA0

× SN−1)
)
+ Tz(M

k) = Rd,

i.e. the tangent space of Mk is unnecessary. Indeed fixing c ∈ SN−1, we may vary A ∈ UA along
the path γA(t) = A

t for t ∈ (1− ε, 1 + ε). It is not difficult to see directly that

F (tA, c) = tF (A, c).

Therefore differentiating F along γ gives

d

dt
F (γA(t), (c1, . . . , cd))|t=1= F (A, c).

This means z ∈ Image
(
dF ◦ TF−1(z)(UA0

× SN−1)
)
+ Tz(M

k). Because EA,b is strictly convex
and passes through the origin, it follows that the tangent hyperplane toEA,b at z does not pass through
the origin, hence z /∈ Tz(EA,b). We have establish that Image

(
dF ◦ TF−1(z)(UA0

× SN−1)
)
+

Tz(M
k) contains both Tz(EA,b) and z /∈ Tz(EA,b). Since dim (Tz(EA,b)) = d− 1 it follows that

Image
(
dF ◦ TF−1(z)(UA0

× SN−1)
)
+Tz(M

k) = Rd for z ̸= 0 as claimed. This shows the desired
transversality for almost all A ∈ UA0

.

To extend the transversality to all of A◦
Mk , we use the fact that A◦

Mk is σ-compact, i.e. is the union
of countably many compact sets. In fact, any open subset of Rd is σ-compact. As a consequence,
A◦
Mk is contained the union of countably many of open neighborhoods UA0 as constructed above.

Since the set of matrices A inside each UA0 violating the transversality statement has measure 0, we
conclude by countable additivity that the set of A ∈ A◦

Mk violating transversality has measure 0 as
well. This concludes the proof.

23



Lemma B.21. Fix linearly independent vectors b1, . . . , bd ∈ Rd and let A1, . . . , Ad be positive-
definite matrices sampled independently from probability distributions on R(

d+1
2 ) which are absolutely

continuous with respect to Lebesgue measure (i.e. which have a density). Then

∣∣∣∣∣
d⋂
i=1

EAi,bi

∣∣∣∣∣ ≥ 2

holds almost surely.

Proof. We proceed iteratively. For k = d− 1, . . . , 1 set

Mk = EA1,b1 ∩ . . . ∩ EAd−k,bd−k
.

We show by induction that Mk is almost surely a smooth compact manifold of dimension k. The
base case k = d− 1 is obvious, and for smaller k, we have

Mk =Mk+1 ∩ EA,b.

Lemma B.20 combined with Lemma B.13 now implies that Mk is a smooth compact manifold of
dimension k almost surely, completing the inductive step.

Finally Proposition B.15 implies that assuming M1 and EAd,bd are transverse (which holds with
probability 1), the number of intersection points |M1 ∩ EAd,bd | is finite and even. Of course
|M1 ∩ EAd,bd |=

∣∣∩di=1EAi,bi

∣∣. Since ∩di=1EAi,bi trivially contains the origin, it must also contain
another point. This completes the proof.

Proof of Theorem B.11. Given A1, . . . , Ad, consider a sequence of d-tuples
(
A

(k)
1 , . . . , A

(k)
d

)
k≥1

converging to (A1, . . . , Ad), i.e. satisfying

lim
k→∞

A
(k)
i = Ai

for each i ∈ [d]. Moreover assume that
∣∣∣⋂i∈[d]EA(k)

i ,bi

∣∣∣ ≥ 2 for each k; such a sequence certainly
exists by Lemma B.21. We also assume that the estimates

ℓ ≤ λd(A(k)
i ) ≤ λ1(A(k)

i ) ≤ L (B.10)

hold for some positive constants ℓ, L where λd, λ1 are the minimum and maximum eigenvalues. This
last assumption is without loss of generality by restricting the values of k to k ≥ k0 for suitably large
k0. For each k, choose a non-zero point

xk ∈
⋂
i∈[d]

E
A

(k)
i ,bi
\{0}.

Such points exist because |
⋂
i∈[d]EA(k)

i ,bi
|≥ 2. We claim the norms |xk| are bounded away from

infinity, bounded away from zero, and that any sub-sequential limit x∗ satisfies

x∗ ∈
⋂
i∈[d]

EAi,bi .

It follows from the above claims that at least one sub-sequential limit x∗ exists (using the Bolzano-
Weierstrass theorem) and that |x∗|≠ 0. Therefore the above claims suffice to finish the proof, and we
now turn to their individual proofs.
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First, since x⊤k A
(k)
i xk ≥ λd(A

(k)
i )|xk|2≥ ℓ|xk|2 and |b⊤i xk|≤ |b⊤i |·|xk|, it follows that |xk|≤ |b1|

ℓ
for all k, so in particular these norms are bounded above. Next we show the values |xk| are bounded
away from 0. Suppose for sake of contradiction that |xaj |→ 0 along some subsequence (aj)j≥1.
Then

⟨bi, xaj ⟩ = x⊤ajA
(aj)
i xaj ≤ L|xaj |2= o(|xaj |).

Defining the rescaled unit vectors x̂aj =
xaj

|xaj
| , it follows that

lim
j→∞
⟨bi, x̂aj ⟩ = 0

for each i. As the x̂aj are unit vectors, the Bolzano-Weierstrass theorem guarantees existence of a
subsequential limit x̂∗ which is also a unit vector. It follows ⟨bi, x̂∗⟩ = 0 for all i ∈ [d]. However
because the vectors bi are linearly independent, this implies |x̂∗|= 0 which is a contradiction. We
conclude that |xk| is bounded away from 0.

Finally we show that any subsequential limit satisfies x∗ ∈ EA,b. With b fixed, observe that the
functions gA,b(x) = x⊤Ax−b⊤x are uniformly Lipschitz forA obeying the eigenvalue bound (B.10)
and |x|≤ |b1|

ℓ . It follows that

lim
k→∞

g
A

(k)
i ,bi

(x∗) = lim
k→∞

g
A

(k)
i ,bi

(xk) = 0.

Having established the three claims we conclude the proof of Theorem B.11.

C Additional experimental details

Gaussian dataset is a binary classification task that closely reflects our assumptions in section 3. We
take r = 3, ds = 32, µ1 = 1r, Σ1 = Ir, µe2 ∼ N (0, 10Ids), and Σe2 = GeG

⊤
e . We use 1k samples

per environment and vary the number of training / test environments from E = 3 to E = 15.

Noised MNIST is a 10-way semi-synthetic classification task modified from LeCun and Cortes
[23] to test generalization of our theory to multi-class classification and different neural network
architectures. The construction is inspired by the situation where certain background features
spuriously correlate with labels (“most cows appear in grass and most camels appear in sand") [5, 3, 4],
but the covariance of the background features changes across environments. Concretely, we divide the
60k images into E = 12 groups. Each group is further divided into a training and a test environment
with ratio 9:1. We add an additional row of noise (28 pixels) to the original grayscale digits of
dimension 28× 28. In training environments, the added noise is the spurious feature that, conditioned
on the label, has identical mean but changing covariances across environments. In test environments,
the noise is uncorrelated with the label.

For Noised MNIST dataset, for each class c ∈ {0, . . . , 9}, we first generative a class signature
xc ∈ R28 ∼ N(0, 2.5I28). For each of the E = 12 groups, we generate a training spurious
covariance Σe2 = GeG

⊤
e and a test spurious covariance Σe2

′ = G′
eG

′
e
⊤. The noise code for digit c

in training environment e is drawn from N (xc,Σ
e
2). In test environment, the noise is drawn from

N (xc′ ,Σ
e
2
′) for random label c′ ∼ unif{0, . . . , 9}).

We use SGD optimizer for both datasets. The hyperparameters are the coefficients for coral
penalty, orthonormal penalty, and irm penalty λcoral, λon, λirm, and learning rate lr. For each
algorithm in Figures 1 and 2, we select penalization strengths from {0.1, 1, 10, 100} and lr from
{0.1, 0.01, 0.001, 0.0001} that achieves highest average test accuracy within 500 epochs (for Gaus-
sian dataset) and 400 epochs (for Noised MNIST). Gaussian dataset has batch size 100 and Noised
MNIST has batch size 1000 from each training environment.

The average test accuracies for each algorithm with error bars are shown in Figures 1 and 2. We fix
the datasets and use different random seeds for algorithmic randomness. Error bar indicates mean
and standard deviation across 5 runs.

25



Table 1: MLP network architectures for Noised MNIST
Number of layers 1 2 3 4 6

Layer widths 24 96, 24 128, 50, 24 192, 96, 48, 24 400, 300, 200, 100, 50, 24

Table 2: Matching features at 3 layers with identical widths does not have significant advantage over
matching only at the last layer (CORAL).

Layer widths 24 128, 50, 24 24, 24, 24
ERM 58.6± 0.4 56.0± 0.6 62.1± 0.6
IRM 59.0± 0.2 56.1± 0.6 62.3± 1.0

CORAL (only match last layer) 69.1± 1.0 65.2± 1.0 67.2± 0.4
CORAL (match-disjoint) 69.1± 1.0 75.5± 1.0 70.6± 0.9

CORAL (match-all) 69.1± 1.0 77.9± 0.4 70.4± 0.9

The MLP architecture in Figure 2 is in Table 1:

To answer (Q5), we compare performances of algorithms on a 3-layer MLP that does not shrink
feature dimensions (right column) with those on a 3-layer MLP that does (middle column) and
a 1-layer MLP (left column) in Table 2. Results show that without shrinking feature dimensions,
matching at multiple layers does not improve over naive CORAL on a smaller architecture.

No run in any of our experiments take more than 10 minutes on a single GPU. MNIST dataset [23] is
made available under the terms of the Creative Commons Attribution-Share Alike 3.0 license.

D A simple algorithm achieves O(1) environment complexity under
Assumption 3.2

Intuitively, subtracting the label-conditional covariances of any two environments yields the subspace
of spurious coordinates (the column subspace of B ∈ Rd×ds , the right ds columns of S). Once we
obtain the projection matrix onto this subspace denoted as PB , we can transform all observations
(Xe

i , Y
e
i ) to (Xe

i
′, Y ei ) where Xe

i
′ = (I − PB)X

e
i is the projection of Xe

i onto the orthogonal
subspace of B. The transformed inputs have no signal in any spurious dimension, so the optimal
classifier on (Xe

i
′, Y ei )

∞
i=1 from any environment e is the invariant predictor w∗.

This is formalized as Algorithm 2, and the following theorem provides formal guarantees for the
environment complexity of this algorithm:
Theorem D.1. Under Assumption 3.2, Algorithm 2 satisfies ŵ = w∗.

Proof. Define A,B as the left r and right ds columns of S. The optimal output is characterized by[
A⊤

B⊤

]
w∗ =

[
Σ−1

1 µ1

0

]
⇐⇒ A⊤w∗ = Σ−1

1 µ1, B
⊤w∗ = 0 ⇐⇒ Σ1A

⊤w∗ = µ1, PBw
∗ = 0.

The algorithmic output ŵ satisfies

(I − PB)AΣ1A
⊤(I − PB)ŵ = (I − PB)Aµ1, PBŵ = 0

=⇒ (I − PB)AΣ1A
⊤ŵ = (I − PB)Aµ1, PBŵ = 0

Multiplying the first equation on the RHS by its pseudo-inverse, we get:

(A⊤(I − PB)A)−1A⊤(I − PB)AΣ1A
⊤ŵ = (A⊤(I − PB)A)−1A⊤(I − PB)Aµ1

=⇒ Σ1A
⊤ŵ = µ1.

Therefore ŵ = w∗.

E Limitations and potential negative impact

We study a restricted data model and linear hypothesis class, so our results may not apply to realistic
datasets with finite samples, or other hypotheses families. Our work aims to improve robustness
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Algorithm 2 A simple algorithm under Assumption 3.2

Require: Invariant feature dimension r, spurious feature dimensions ds, 2 training environments
with infinite samples {(Xe

i , Y
e
i )}∞i=1 ∼ Pe, {(Xe′

i , Y
e′

i )}∞i=1 ∼ Pe′ .
1: Subtract the covariances of class 1 examples between the two environments

B ← Cove[X|Y = 1]− Cove′ [X|Y = 1].
2: Perform SVD on B = QΓQ⊤ to get orthonormal Q ∈ Rd×ds and diagonal Γ ∈ Rds×ds .
3: Project the mean of class 1 examples E[X|Y = 1] to the orthogonal subspace of B,

µ′ = (I −QQ⊤)E[X|Y = 1].
4: Project the covariance of class 1 examples Σ′ = (I −QQ⊤)Cove[X|Y = 1](I −QQ⊤).
5: Return classifier ŵ = Σ′†µ′.

of machine learning models; however, we only provide a sufficient set of conditions for certain
algorithm to be robust to distributional shifts; the set of conditions may not be necessary, and may
not be satisfied in the real world. Misapplying the proposed algorithm to realistic datasets may lead
to negative impacts.
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