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Appendices
In this part, we provide additional details, more results, potential limitations, and future directions of
the proposed Hallucinator-Basis factorization (HaBa) for dataset disllation (DD). First, we provide
more details on the pipeline of HaBa. Then, we conduct more experiments to demonstrate and
analyze performance of our method, including results on more benchmarks with larger resolutions, as
supplement to the quantitative study in the main paper. We also provide more qualitative results by
HaBa and additional ablation studies. Finally, we discuss some limitations and future works of our
method.

Algorithm 1 Hallucinator-Basis Factorization (HaBa) for Dataset Distillation.
Input: T : original dataset; |H|: total number of hallucinators; |B|: total number of bases; ηH :

learning rate of hallucinators; ηB : learning rate of bases; ηF : learning rate of feature extractor.
Output: H: a set of hallucinators; B: a set of bases;

1: Randomly initialize hallucinatorsH = {Hθj}
|H|
j=1, bases B = {(x̂i, ŷi)}|B|

i=1, and parameters ψ
of the feature extractor F ;

2: while not done do
3: H′ ← a random batch of hallucinators fromH;
4: B′ ← a random batch of bases from B;
5: for each 1 ≤ i ≤ |B′| do
6: for each 1 ≤ j ≤ |H′| do
7: x̃ij = Hθj (x̂i);
8: end for
9: end for

10: Compute LS using Eq. 6 of the main paper;
11: UpdateH: θi ← θi − ηH∇θiLS for 1 ≤ j ≤ |H′|;
12: Update B: x̂i ← x̂i − ηB∇x̂i

LS and ŷi ← ŷi − ηB∇ŷiLS (optional) for 1 ≤ i ≤ |B′|;
13: Compute LF using Eq. 4 of the main paper;
14: Update F : ψ ← ψ − ηF∇ψLF ;
15: end while

Appendix A Algorithm Details

To better elaborate the details of the proposed HaBa for DD, we provide an algorithmic illustration
for the whole pipeline in Alg. 1, as a supplement to Sec. 3 of the main paper. The overall algorithm
takes an original dataset as well as some hyper-parameters shown in Alg. 1 as input. The output is
the distilled result including a set of hallucinatorsH and a set of bases B, as defined in Eq. 1 of the
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Dataset MNIST FashionMNIST

IPC 1 10 50 1 10 50
Ratio % 0.017 0.17 0.83 0.017 0.17 0.83

Coreset

Random 64.9±3.5 95.1±0.9 97.9±0.2 51.4±3.8 73.8±0.7 82.5±0.7
Herding 89.2±1.6 93.7±0.3 94.8±0.2 67.0±1.9 71.1±0.7 71.9±0.8
K-Center 89.3±1.5 84.4±1.7 97.4±0.3 66.9±1.8 54.7±1.5 68.3±0.8
Forgetting 35.5±5.6 68.1±3.3 88.2±1.2 42.0±5.5 53.9±2.0 55.0±1.1

Distillation

DD [10] - 79.5±8.1 - - - -
LD [2] 60.9±3.2 87.3±0.7 93.3±0.3 - - -

DC [15] 91.7±0.5 97.4±0.2 98.8±0.2 70.5±0.6 82.3±0.4 83.6±0.4
DSA [13] 88.7±0.6 97.8±0.1 99.2±0.1 70.6±0.6 84.6±0.3 88.7±0.2
DM [14] 89.7±0.6 97.5±0.1 98.6±0.1 - - -
CAFE [9] 93.1±0.3 97.2±0.2 98.6±0.2 77.1±0.9 83.0±0.4 84.8±0.4

CAFE+DSA [9] 90.8±0.5 97.5±0.1 98.9±0.2 73.7±0.7 83.0±0.3 88.2±0.3
MTT [3] 88.7±1.0 96.6±0.4 98.1±0.1 75.7±1.5 88.4±0.4 90.0±0.1

Factorization
BPC 1 9 49 1 9 49

Ratio % 0.034 0.17 0.83 0.034 0.17 0.83
HaBa 92.4±0.4 97.4±0.2 98.1±0.1 80.9±0.7 88.6±0.2 90.3±0.1

Whole Dataset 99.6±0.0 93.5±0.1

Table 1: The performance (test accuracy %) comparison with state-of-the-art methods on MNIST
and FashionMNIST datasets. IPC: Number of Images Per Class; BPC: Number of Bases Per Class;
Ratio (%): the ratio of distilled images to the whole training set.

Depth 0 1 2 3

Accuracy (%) 68.43±0.37 70.27±0.63 71.17±0.29 71.55±0.27
Downstream Speed 144.54 140.11 125.04 115.62

# of Parameters 6,144 6,312 10,963 16,131

Table 3: Ablation studies on the depth (number
of nonlinear blocks) of hallucinator.

# of Channels 3 8 16

Accuracy 70.27±0.63 70.47±0.37 71.28±0.35
Downstream Speed 140.11 138.48 135.12

# of Parameters 6,312 16,827 33,651

Table 4: Ablation studies on the number of feature
channels in hallucinator.

main paper. The goal is to equip the distilled dataset with similar downstream performance to the
original one.

Appendix B More Results

Low-Resolution Data: We provide results on the more-common benchmark datasets in DD in Tab.
1: MNIST [7] and FashionMNIST [12]. Both datasets contain 60,000 images for training and 10,000
images for testing in 10 classes. The images are under 28× 28 resolution with 1 channel. We build
our HaBa on MTT [3] in this part. Although the performances of DD on these two dataset seem to be
saturated, our method may still yield consistent improvement over the baseline, especially when the
ratio of distilled images to the whole training set is small.

ImageNet Subsets: We also evaluate the proposed scheme on the more-challenging settings of
ImageNet [4] subsets. We follow the baseline MTT [3] for the divisions of subsets. The 6 subsets
include ImageFruit, ImageMeow, ImageNette, ImageSquawk, ImageWoof, and ImageYellow. Each
subset contains over 10,000 images, and we resize all the images to 128×128 resolution following the
original setting. We use ConvNet with 5 Conv-InstanceNorm-ReLU-AvgPool layers for training.
For testing, in addition to the same structure of ConvNet, we also evaluate the results under 3 other
architectures: ResNet, VGG, and AlexNet. To ensure the same number of parameters used for the
distilled datasets, we set the number of images per class used by the baseline as the number of bases
per class used by HaBa plus 1, i.e., 2 IPC v.s. 1 BPC and 11 IPC v.s. 10 BPC. Other settings follow
the same configuration in the main paper.

The test performances of models trained by the distilled datasets are shown in Tab. 2. We can
observe that HaBa outperforms the baseline in almost all cases except several experiments when
IPC and BPC are small and the architectures of training and testing are the same. Notably, in all the
cross-architecture generalization settings, HaBa achieves superior performance over the baseline,
which further demonstrates the improvement of data efficiency introduced by the factorization and
online pair-wise combination.
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Method ConvNet ResNet VGG AlexNet

IPC 2 11 2 11 2 11 2 11
BPC 1 10 1 10 1 10 1 10

ImageFruit
Baseline 31.76±1.64 40.12±1.87 24.36±2.20 31.24±1.71 30.20±1.43 42.52±1.16 27.92±1.84 29.88±1.60
w. HaBa 34.68±1.13 42.52±1.56 26.60±2.48 33.08±1.02 31.92±1.91 45.12±1.18 28.16±1.29 32.84±1.69

Gain +2.92 +2.40 +2.24 +1.84 +1.72 +2.60 +0.24 +2.96

ImageMeow
Baseline 35.28±2.23 41.00±1.45 17.64±1.51 19.64±0.93 31.52±1.27 39.44±1.23 21.04±1.64 22.04±1.72
w. HaBa 36.92±0.93 42.92±0.86 25.44±1.02 26.28±2.61 35.00±0.76 47.68±0.57 23.76±2.06 24.04±1.94

Gain +1.64 +1.92 +7.80 +6.64 +3.48 +8.24 +2.72 +2.00

ImageNette
Baseline 55.16±1.08 63.88±0.48 25.52±1.31 42.80±1.49 47.48±1.67 62.80±1.59 30.96±0.97 34.60±2.95
w. HaBa 51.92±1.65 64.72±1.60 28.88±2.61 46.84±1.25 47.80±1.21 63.76±1.05 33.28±1.98 40.84±1.80

Gain -3.24 +0.84 +3.36 +4.04 +0.32 +0.96 +2.68 +6.24

ImageSquawk
Baseline 43.92±0.63 54.64±0.96 30.64±1.47 46.40±1.85 39.36±1.83 52.00±1.91 22.04±1.80 34.20±2.08
w. HaBa 41.88±1.37 56.80±1.04 31.52±2.39 48.92±1.77 39.64±1.78 56.88±0.84 23.28±0.55 35.00±1.72

Gain -2.04 +2.16 +0.88 +2.52 +0.28 +4.88 +1.24 +0.80

ImageWoof
Baseline 30.92±1.26 36.56±0.75 16.24±1.48 18.12±0.47 25.60±0.69 29.36±1.23 22.68±1.42 23.68±1.37
w. HaBa 32.40±0.67 38.60±1.26 20.20±1.55 25.20±0.95 27.08±1.81 37.44±1.08 24.88±1.20 27.72±1.12

Gain +1.48 +2.04 +3.96 +7.08 +1.48 +8.08 +2.20 +4.04

ImageYellow
Baseline 49.72±1.38 60.40±1.46 29.08±1.99 42.72±1.24 44.04±1.46 50.84±0.56 28.60±1.48 35.60±2.03
w. HaBa 50.44±1.56 63.00±1.61 36.32±0.65 48.48±1.55 47.28±1.59 57.24±1.01 29.08±1.19 36.44±1.21

Gain +0.72 +2.60 +7.24 +5.76 +3.24 +6.40 +0.48 +0.84

Table 2: Cross-architecture performance (test accuracy %) comparison with the baseline on various
subsets of ImageNet dataset.

BPC 1 10 50

Ours 55.66±0.29 70.27±0.63 74.04±0.16
Share Enc. & Dec. 55.14±0.44 69.47±0.09 72.69±0.39

Baseline 49.89±0.95 65.92±0.62 70.73±0.52

Table 5: Impact on sharing encoder and decoder
across all hallucinators.

SPC Rand Herd DSA DM IDC IDC w. HaBa Whole Dataset

10 42.6 56.2 65.0 69.1 73.3 74.5 93.420 57.0 72.9 74.0 77.2 83.0 84.3

Table 6: Results of speech recognition on Mini
Speech Commands.
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（a). Small Storage Budget
10×2×32×32×3 Param.

Baseline Acc.: 49.9%

（b). Medium Storage Budget
10×11×32×32×3 Param.

Baseline Acc.: 65.9%

（c). Large Storage Budget
10×2×51×32×3 Param.

Baseline Acc.: 70.7%

Figure 1: Exploration on the configurations of different factors in hallucinators and bases.

More Ablations on Hallucinators: In the default setting, the encoder and decoder of hallucinators
have 1 Conv-ReLU block and the number of feature channels is 3. In this part, we provide more results
when we consider increasing the capacity of the hallucination networks. As shown in Tab. 3, we try
increasing the depth of the networks by adding more nonlinear blocks. Although the performance
can indeed be improved, it results in nonnegligible latency to downstream training speed, measured
by the number of epochs per second. Taking both training speed and performance into consideration,
we consider using only 1 nonlinear block by default, which yields best trade-off between the two
factors. Likewise, we also try increasing the number of feature channels in halluciantors as shown in
Tab. 4. The number of parameters is almost proportional to the number of channels. However, the
performance gain is very limited. Thus, we simply take the number of channels in images, which is 3
for RGB images, as the number of feature channels in hallucinators.

More Insights on the Configurations of Hallucinators and Bases: As shown in the ablation studies
in the main paper and the supplement, under the framework of hallucinator-basis factorization, there
are many factors that affect the performance. Given a fixed storage budget, how to scale the bases
and hallucinators is an important topic. Among all the factors, we empirically find that the depth of
hallucinators, the number of hallucinators, the number of channels in each basis, and the number
of bases are the most important ones, which will be studied in the following exploration. Here, we
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consider three types of storage budget: small, medium, and large, corresponding to the cost of IPC=2,
11, and 51 for the baseline method respectively. We consider cases of 1 and 2 convolution blocks
for the depth of hallucinators, 2 and 5 for the number of hallucinators, and 1 and 3 for the number
of channels in each basis. For each setting, we adjust the number of bases to fit the given budget.
Enumerating all the configurations, there are totally 8 settings for each kind of budget. Their results
are visualized in Fig. 1. Based on the results, we have the following observations:

• For all the three types of budget, the best performance is achieved by using deeper
hallucinators. Especially under small and medium budgets, using depth 2 can out-
perform using depth 1 almost consistently. This can be explained by the more complex
sample-wise relationship extracted by hallucinators.

• In our framework, bases are expected to store sample-independent information while hallu-
cinators are used to encode shared relationship across all the samples. When the budget
is small, using 1-channel bases can achieve significantly better results. This is because
small storage budget would more rely on increasing the number of independent data samples
for a better diversity. The informativeness of each basis appears less important.

• When the budget increases, the advantage of 1-channel bases mentioned before would
diminish gradually. Especially under the large budgets, 3-channel bases outperform
1-channel ones consistently. The reason is that when the number of bases is adequate,
focusing on the informativeness of each basis can produce more benefit than increasing the
number.

• When the budget is large, using more hallucinators can yield slightly better results,
which can probably be attributed to the further improvement on the diversity.

• The larger the budget is, the less insensitive the performance is, to different configura-
tions.

Note that the above exploration is conducted without taking the downstream training speed into
consideration, which is also an important metric in the task of dataset distillation. Our opinion on
the scalability is that, when downstream training overhead is not a issue, deeper hallucinators are
recommended for better performance; otherwise if downstream efficiency is desired, we find that 1
nonlinear block is sufficient, since heavier hallucination networks can result in nonnegligible latency,
especially when the total number of images is large.

Sharing Encoder and Decoder across all Hallucinators: As a variant of our default case which
uses different hallucination networks, it is also feasible for the halluciantors to share a common
group of encoder and decoder but use different parameters (σ, µ) for affine transformation, which is
potential to further boost the data efficiency. As shown in Tab. 5, the performance becomes slightly
worse. We conjecture that different convolution encoders and decoders may contribute to the diversity
of the extracted patterns, which increases the representation ability of the hallucinator set. Moreover,
since we only use 1 convolution block for encoders and decoders, the number of parameters is not
so significant compared with that of a basis. Therefore, we consider making the whole network
independent with each other for all hallucinators.

Results on Speech Domain: To validate the versatility of the proposed hallucinator-basis factorization
solution, we further conduct experiments on the speech domain using Mini Speech Commands [11],
which contains 8,000 audio clips for 8 command classes. We adopt IDC [6] as the baseline and all
the protocols for comparisons follow the official settings. We compare our method with the coreset
selection based Random and Herding, DSA [13], DM [14], and the IDC baseline [6]. The results in
Tab. 6 shows that our method can produce consistent improvement on the downstream test accuracy,
which further reflects the generality of our method for different modalities. Here, SPC denotes the
number of speech spectrograms per class.

Robustness to Corruption: We further examine the generalization performance of our method and
the baseline one on CIFAR10-C [5], the corrupted version of CIFAR10 dataset with 19 different
types of corruption. There are five corrupted levels from 1 (mildest) to 5 (severest) and we report the
mean test accuracy across 19 domains on different levels. Since the proposed method can increase
the accuracy and alleviate the under-fitting problem on the original domain, which is one dominant
component of cross-domain generalization [1], it can also demonstrate superior robustness in all
corrupted data as demonstrated in Fig. 2. Also, the gap between performance using distilled dataset
and original dataset becomes smaller with the increase of corrupted level, which suggests that our
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Figure 2: Generalization performance on im-
ages with different corrupted levels.

Hyper-Parameter Notation Value

Height of Basis h′ Height of Image h
Width of Basis w′ Width of Image w

Channel of Basis c′ Channel of Image c
Channel of Hallucinator c′′ Channel of Image c
Depth of Hallucinator - 1

Learning Rate of Feature Extractor ηF 0.001
Weight of Lcon. λcon. 0.1
Weight of Ltask λtask 1
Weight of LDD λDD 1
Weight of Lcos. λcos. 0.1

Table 7: List of hyper-parameters.

(a) MTT on CIFAR10 (b) HaBa on CIFAR10 (c) MTT on ImageSquawk (d) HaBa on ImageSquawk
Figure 3: TSNE visualization of results by our HaBa and baseline MTT on CIFAR10 and Im-
ageSquawk datasets. Markers with different colors in our results denote images generated by
different hallucinators. Gray dots denote real images.

method improves the domain generalization ability potentially, thanks to the diverse training data
composed of hallucinators and bases.

List of Hyper-Parameters: In Tab. 7, we provide a clear view of the hyper-parameters used in this
paper. All the experiments follows these settings if not specified. The performance of our method
is insensitive to the values of these hyper-parameters as analyzed in the ablation studies in both the
main paper and the appendix. Other hyper-parameters not listed come from the adopted baseline
methods and we follow their original settings.

TSNE Visualizations: To provide a better understanding on why the HaBa factorization can help on
data efficiency in dataset distillation, we adopt TSNE [8] to visualize the features before the last linear
layer of a teacher model trained on the original datasets. In Fig. 3, we plot features of both original
images and the distilled ones. The results reveal that datasets restored from our hallucinators and
bases can describe the original data distribution more finely, which means that the original datasets
can be represented with the distilled ones with less information loss. Given that the total numbers of
parameters used for storing distilled datasets are the same, our method can improve the data efficiency
significantly.

Visualizations of Factorized Results: We first provide the full results of HaBa factorization on
CIFAR10 dataset with 5 hallucinators and 10 BPC in Fig. 4, as a supplement to Fig. 4 in the
main paper. We also provide the distilled results on datasets with larger resolutions in Fig. 5 and
6 for the above 6 ImageNet subsets. Here, we use 1 BPC and 2 hallucinators for visualization.
Through these results, we can find that bases in our scheme mainly define the basic contents, while
different hallucinators may transform each basis to different appearances and styles. Such difference
is encouraged to be as large as possible to diversify the distilled data and thus improve data efficiency
during the end-to-end training pipeline of DD.
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(a) Bases on ImageFruit.

(b) Images by H1 on ImageFruit.

(c) Images by H2 on ImageFruit.

(d) Bases on ImageMeow.

(e) Images by H1 on ImageMeow.

(f) Images by H2 on ImageMeow.

(g) Bases on ImageNette.

(h) Images by H1 on ImageNette.

(i) Images by H2 on ImageNette.

Figure 5: Visualization of factorized results by our HaBa on ImageNet subsets.
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(a) Bases on ImageSquawk.

(b) Images by H1 on ImageSquawk.

(c) Images by H2 on ImageSquawk.

(d) Bases on ImageWoof.

(e) Images by H1 on ImageWoof.

(f) Images by H2 on ImageWoof.

(g) Bases on ImageYellow.

(h) Images by H1 on ImageYellow.

(i) Images by H2 on ImageYellow.

Figure 6: Visualization of factorized results by our HaBa on ImageNet subsets (Cont.).

8


	Appendices
	Appendix Algorithm Details
	Appendix More Results

