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List of Notations

Table 1: List of Notations

M the episodic and confounded POMDP
St ∈ S observed state at t and observed state space
Ut ∈ U unobserved state at t and unobserved state space
At ∈ A action at t and discrete action space
T length of horizon

r = {rt}Tt=1 reward functions over S × U ×A
Rt reward at t

Wt ∈ W reward-proxy variable at t and corresponding space
Zt ∈ W action-proxy variable at t and corresponding space
Xt,i variable X at t from sample trajectory i

π = {πt}Tt=1 target policy depending on St
π̃bt behavior policy at t depending on St, Ut

V πt (s, u) state value function
V(π) (V̂(π)) (estimated) policy value of a target policy π
vπt (v̂πt ) (estimated) V-bridge function (or V-bridge for short) at t
qπt (q̂πt ) (estimated) Q-bridge function (or Q-bridge for short) at t
P̃t operator [P̃t](Zt, St, At) = E[g(Rt,Wt+1, St+1) | Zt, St, At]
Pt operator [Pt](Zt, St, At) = E[h(Wt, St, At) | Zt, St, At]
Pt (P̂t) operator Ptg = Pt

−1P̃tg (estimator of Pt defined in (7))
Pπt (P̂πt ) operator Pπt g = 〈πt,Ptg〉 (estimator of Pπt : P̂πt g =

〈
πt, P̂tg

〉
)

H(t) user-defined function space onW ×S ×A
F (t) user-defined function space on Z × S ×A
G(t) user-defined function space on Z × S

Rn(F , δ) local Rademacher complexity for function class F and radius δ > 0

R̂n(F , δ) local empirical Rademacher complexity for function class F and radius δ > 0
Nn(ε,G) the smallest empirical ε-covering number of G
αF αF = {αf : f ∈ F} for some α ∈ R
FB FB = {f ∈ F : ‖f‖2F ≤ B} for any B > 0

‖projtf‖2 ‖projtf‖2 =
√
E{f(X) | Zt, St, At}2

τ̄1 ill-posedness τ̄1 = supg∈G(1) ‖g(W1, S1)‖2/‖E[g(W1, S1) | Z1, S1]‖2
τt ill-posedness τt = suph∈H(t) ‖h(Wt, St, At)‖2/‖projth(Wt, St, At)‖2

C
(t)
t′,t′−1 one-step transition ill-posedness defined after Corollary 6.2
V(F) VC dimension of F
ζ(α) Riemann Zeta function ζ(α) =

∑∞
n=1(1/n)α

Ker(K) Ker(K) = {g : Kg = 0} null space of linear operator K
A⊥ orthogonal complement of space A
|Z| cardinality of class Z
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A Additional Identification Assumptions

In this section, we list Assumptions 3-7 which are needed for Theorem 4.1.

A.1 Basic assumptions on the confounded POMDP structure

For the confounded POMDP with trajectory (Ut, St,Wt, Zt, At, Rt)
T
t=1, we list three basic assump-

tions below. Let |= and��|= denote statistical independence and dependence respectively.

Assumption 3 (Markovian). For all 1 ≤ t ≤ T , the time-variant transition kernel Pt satisfies that for
any (s, u) ∈ S × U , a ∈ A and set F ∈ B(S × U),

Pr((St+1, Ut+1) ∈ F | St = s, Ut = u,At = a, {Sj , Uj , Aj}1≤j<t)
= Pt((St+1, Ut+1) ∈ F | St = s, Ut = u,At = a),

where B(S × U) is the family of Borel subsets of S × U and {Sj , Uj , Aj}1≤j<t 6= ∅ if t = 1.

Assumption 4 (Reward proxy). Wt |= (At, Ut−1, St−1) | Ut, St and Wt��|= Ut | St for 1 ≤ t ≤ T .

Assumption 5 (Action proxy). Zt |= Wt | (Ut, St, At), Zt |= Rt | (Ut, St, At) and
Zt |= (St+1,Wt+1) | (Ut, St, At), 1 ≤ t ≤ T .

It can be easily verified that the DAG in Figure 1 satisfies Assumptions 3-5. Assumption 3 requires
that given the current full state and action (Ut, St, At), the future are independent of the past.

Assumption 4 requires that the reward proxy Wt is associated with the hidden state Ut after adjusting
observed state St but Wt is not causally affected by action At and past state (Ut−1, St−1) after
adjusting the full current state (Ut, St). This assumption does not restrict the association between
Wt and Rt. Assumption 5 requires that upon conditioning on the current full state and action tuple
(Ut, St, At), the action proxy Zt does not affect the reward proxy Wt and outcomes Rt, St+1,Wt+1

after the action At. Again, this assumption does not restrict the association between Zt and At.

However, based on above three assumptions, we cannot directly identify the value of target policy
π by adjusting (Ut, St) since Ut is unobserved. In addition to Assumptions 4 and 5, we also need
Assumption 6 to be stated in Section A.2 below to get around the hidden state Ut.

A.2 Assumptions on the existence of bridge functions

Assumption 6 (Completeness). For any (s, a) ∈ S ×A, t = 1, . . . , T ,

(a) For any square-integrable function g, E{g(Ut) | Zt, St = s,At = a} = 0 a.s. if and only if
g = 0 a.s;

(b) For any square-integrable function g, E{g(Zt) |Wt, St = s,At = a} = 0 a.s. if and only
if g = 0 a.s.

Completeness is a commonly made technical assumption in value identification problems, e.g.,
instrumental variable identification [Newey and Powell, 2003, D’Haultfoeuille, 2011, Chen et al.,
2014], and proximal causal inference [Miao et al., 2018a,b, Tchetgen Tchetgen et al., 2020]. Together
with the regularity conditions in Assumption 7, we can ensure the existence of Q-bridges qπt and
V -bridges vπt , 1 ≤ t ≤ T .

For a probability measure function µ, let L2{µ(x)} denote the space of all squared integrable
functions of x with respect to measure µ(x), which is a Hilbert space endowed with the inner product
〈g1, g2〉 =

∫
g1(x)g2(x)dµ(x). For all s, a, t, define the following operator

Ks,a;t : L2
{
µWt|St,At(w | s, a)

}
→ L2

{
µZt|St,At(z | s, a)

}
h 7→ E {h(Wt) | Zt = z, St = s,At = a} ,

and its adjoint operator

K∗s,a;t : L2
{
µZt|St,At(z | s, a)

}
→ L2

{
µWt|St,At(w | s, a)

}
g 7→ E {g(Zt) |Wt = w, St = s,At = a} .
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Assumption 7 (Regularity Conditions). For any Zt = z, St = s,Wt = w,At = a and 1 ≤ t ≤ T ,

(a)
∫∫
W×Z fWt|Zt,St,At(w | z, s, a)fZt|Wt,St,At(z | w, s, a)dwdz < ∞, where fWt|Zt,St,At

and fZt|Wt,St,At are conditional density functions.

(b) For any g ∈ G(t+1),∫
Z

[E {Rt + g(Wt+1, St+1) | Zt = z, St = s,At = a}]2 fZt|St,At(z | s, a)dz <∞.

(c) There exists a singular decomposition (λs,a;t;ν , φs,a;t;ν , ψs,a;t;ν)
∞
ν=1 of Ks,a;t such that for

all g ∈ G(t+1),
∞∑
ν=1

λ−2
s,a;t;ν |〈E {Rt + g(Wt+1, St+1) | Zt = z, St = s,At = a} , ψs,a;t;ν〉|2 <∞.

(d) For all 1 ≤ t ≤ T , vπt ∈ G(t) where G(t) satisfies the regularity conditions (b) and (c) above.

Note that the existence of the singular decomposition of Ks,a,;t in Assumption 7 (c) can be ensured
by Assumption 7 (a), which is a sufficient condition for the compactness of Ks,a;t by Lemma D.1.

For tabular (U ,W,Z), Corollary A.1 provides a sufficient condition for Assumptions 6 and 7 [Shi
et al., 2020].
Corollary A.1. [Shi et al., 2020] Suppose that all U , W , and Z are tabular. If both Zt and Wt

have at least as many categories as Ut for 1 ≤ t ≤ T , i.e., |Z|, |W| ≥ |U| (where |X | is the
cardinality of set X ), and transition probability matrices Pt(W | U, s) , [Pt(wi | uj , s)]wi∈W,uj∈U
and Pt(U | Z, a, s) , [Pt(ui | zj , a, s)]ui∈U,zj∈Z are of full rank with rank |U| for all a, s, t, then
Assumptions 6 and 7 hold.

A.3 Assumptions on the uniqueness of bridge functions

In general, we do not need to impose restrictions on the uniqueness of V -bridges {vπt }Tt=1 for policy
value identification. To simplify our theoretical analysis on the estimation error of V -bridges, we
need the uniqueness of V -bridges {vπt }Tt=1 and Q-bridges {qπt }Tt=1, which can be ensured by the
following Assumption 8.
Assumption 8. For any square-integrable function g and for any (s, a) ∈ S×A, E{g(Wt) | Zt, St =
s,At = a} = 0 a.s. if and only g = 0 a.s.

Corollary A.2. Under Assumption 8 and all conditions in Theorem 4.1, the V -bridges {vπt }
T
t=1

that satisfy (3) and Q-bridges {qπt }Tt=1 that satisfy (5) are both unique. Moreover, they can be
non-parametrically identified by (4).

Proof. Apparently it suffices to prove the uniqueness of Q-bridges {qπt }Tt=1. If there is another set of
{q̃πt }Tt=1 that is also a solution to (4), then

E {q̃πt (Wt, St, At)− qπt (Wt, St, At) | Zt, St = s,At = a} = 0, a.s.

By Assumption 8, q̃πt (Wt, s, a) = qπt (Wt, s, a) a.s. for all (s, a) ∈ S ×A.

For the tabular case, we have the following corollary for the uniqueness of V -bridges and Q-bridges.
Corollary A.3. [Shi et al., 2020] Under the conditions in Corollary A.1, if |Z| = |W| = |U|, then
Assumptions 6–8 are satisfied.

B Additional Results

In this section, we derive finite-sample error bounds for V -bridge estimation and OPE when hypoth-
esis spacesH(t), G(t) and testing space F (t) are VC-subgraph classes or RKHSs with exponential
eigen-decay. Then we discuss possible choices of proximal variables Wt and Zt.
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B.1 Additional Finite-sample error bounds for V -bridge estimation and OPE

B.1.1 VC-subgraph class

Theorem B.1. Under Assumptions 1 and 2, and the assumptions in Theorem 6.2 and Corollary 6.1,
with probability at least 1− ζ, we have

‖vπ1 − v̂π1 ‖2 . illmax × trans-ill

× T 7/2


√

max1≤t≤T
{
V(F (t)),V(H(t)),V(G(t+1))

}
n

+

√
log(T/ζ)

n

 , and

|V(π)− V̂(π)| . illmax × trans-ill

× T 7/2


√

max1≤t≤T
{
V(F (t)),V(H(t)),V(G(t+1))

}
n

+

√
log(T/ζ)

n

 ,

where trans-ill = max1≤t≤T exp{atζ(αt)} with ζ(α) =
∑∞
t=1 t

−α, and illmax =
τπ1

max1≤t≤T τt‖πt/πbt‖2∞.

The proof of Theorem B.1 is given in Appendix C.5.

B.1.2 RKHS with exponential eigen-decay

Theorem B.2. Under Assumptions 1 and 2, and the assumptions in Theorem 6.2 and Corollary 6.2
(2), with probability at least 1− ζ, we have

‖vπ1 − v̂π1 ‖2 . illmax × trans-ill× T 7/2

{√
(log n)1/min{βH,βG ,βF}

n
+

√
log(T/ζ)

n

}
, and

|V(π)− V̂(π)| . illmax × trans-ill× T 7/2

{√
(log n)1/min{βH,βG ,βF}

n
+

√
log(T/ζ)

n

}
.

where trans-ill = max1≤t≤T exp{atζ(αt)} with ζ(α) =
∑∞
t=1 t

−α, and illmax =
τπ1

max1≤t≤T τt‖πt/πbt‖2∞.

The proof of Theorem B.2 is given in Appendix C.5.

B.2 Different choices of proxy variables

Here we first provide several options on how to choose proxy variables Wt and Zt satisfying basic
assumptions 3 –5. Then we discuss their effect on the ill-posedness and one step estimation errors.
Finally, we comment on some practical issues.

Choice of Wt. In our confounded POMDP setting, typically we need a reward-inducing proxy Wt

to be separated from the current observations at time t and satisfy the basic assumptions listed in
Appendix A.1. In practice, Wt can be some environmental variables that are correlated with the
outcome Rt but At cannot affect Wt (see Figure 3). It is worth mentioning that Bennett and Kallus
[2021] and Shi et al. [2021] use (part of) the current observed state, i.e., St in our paper, as the
reward-inducing proxy. In their settings, given the current action At, only the hidden state Ut can
affect the next hidden state Ut+1 (Their Ut is the full state variables in our setting). This requires
that the proximal variables Zt and Wt are able to capture the whole information of their hidden state
Ut. In this case, Assumption 6 becomes harder to hold. In our setting, however, we allow part of
their Ut to be observable. We denote this part by St in our paper. This can alleviate the burden on
proximal variables Zt and Wt to capture the whole information of their hidden Ut. Therefore, our
completeness assumption 6 is relatively weaker. Moreover, Bennett and Kallus [2021] only consider
the evaluation for deterministic target policies, while in our setting, a separate Wt (other than St)
allows us to evaluate random target policies.

We list some possible causal relationship among Wt, (Ut, St) and Rt in Figure 3. We require the
causal relationship between Ut and Wt. But the effect of Wt on Rt is optional. In practice, one can
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use the observed variables that have no direct effect on the action, for example, measurement of
action independent disturbance which may not may not affect the current reward.

Ut
St

Wt

At

Rt

Figure 3: Causal relationship about Wt. Dashed arrows: optional causal effect. Wt may or may not
affect Rt.

Ut
St

Zt

At

Rt

Ut
St

Zt

At

Rt

Ut
St

Zt

At

Rt

(a) Zt is an IV for At. (b) (Ut, St)→ Zt (c) (Ut, St)← Zt

Figure 4: Causal relationship about Zt. Dashed arrows: optional causal effect Zt → At or Zt ← At
or no causal effect. (c) is incompatible with Figure 3 (b).

Ut−1

St−1

Wt−1

At−1

Rt−1

Ut
St

Wt

At

Rt

Ut+1

St+1

Wt+1

At+1

Rt+1

Figure 5: An example of Zt as the observed history.

Choice of Zt. Once we determine Wt, there are several proper choices of Zt that are compatible
with Wt (see Figure 4). One choice of Zt is the observed history up to step t − 1, e.g., Zt =
(Zt−1;St−1,Wt−1, At−1, Rt−1) with some pre-observed history before (U1, S1) as Z1. See Figure
5 for a valid example. In this caseZt+1 contains information ofZt so that we expect thatC(t)

t′,t′+1 tends

to be smaller. However, this can enlarge the one-step errorsMH(T−t+1)2

(
δ̄

(t)
n + c0

√
log(c1T/ζ)

n

)
,

where the upper bound of critical radii δ̄(t)
n becomes larger because the dimension of testing space

F (t)(Z ×A× S) is now O(t). Fortunately, these one-step errors only contribute to the final error
bound for V(π) linearly.
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In practice, to reduce the dimension of Zt, one may use the most recent k-step observed history, or
try to learn a low dimensional representation φ(Zt) of Zt and then replace F (t)(Z × A × S) by
F̃ (t)(φ(Z)×A× S) in (7). Similar ideas have been used in kernel IV regression [Singh, 2020].

C Technical Proofs

In this section, we provide the proofs of identification result in Section 3 and the finite sample bounds
for V -bridges and OPE in Section 6.

C.1 Proof of Theorem 4.1

Part I. We suppose there exists qπt satisfying (4), 1 ≤ t ≤ T . Define vπT+1 = 0. Then

E
{
Rt + vπt+1(Wt+1, St+1) | Zt, St, At

}
=E

[
E
{
Rt + vπt+1(Wt+1, St+1) | Ut, Zt, St, At

}
| Zt, St, At

]
=E

[
E
{
Rt + vπt+1(Wt+1, St+1) | Ut, St, At

}
| Zt, St, At

]
by Assumption 5,

and

E {qπt (Wt, St, At) | Zt, St, At}
=E [E {qπt (Wt, St, At) | Ut, Zt, St, At} | Zt, St, At]
=E [E {qπt (Wt, St, At) | Ut, St, At} | Zt, St, At] by Assumption 5.

Therefore, by Assumption 6 (a), we have

E
{
Rt + vπt+1(Wt+1, St+1) | Ut, St, At

}
= E {qπt (Wt, St, At) | Ut, St, At} a.s. (10)

We will use this Bellman-like equation (10) to verify (3) and (5).

Next, we prove that such these {qπt , vπt }Tt=1 obtained by Algorithm 1 can be used as Q-bridges (5)
and V -bridges (3).

First, at time T ,

Eπ (RT | UT , ST ) =
∑
aT∈A

E (RT | UT , ST , AT = aT )πT (aT | ST )

=
∑
aT∈A

E {qπT (WT , ST , aT ) | UT , ST , AT = aT }πT (aT | ST ) by (10)

=
∑
aT∈A

E {qπT (WT , ST , aT ) | UT , ST }πT (aT | ST ) by Assumption 4

=E

{ ∑
aT∈A

π(aT | ST )qπT (WT , ST , aT )
∣∣∣UT , ST}

=E {vπT (WT , ST ) | UT , ST } by definition of vπT .
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By induction, suppose that at time t + 1, Eπ
[∑T

t′=t+1Rt′ | St+1, Ut+1

]
=

E
{
vπt+1(Wt+1, St+1) | St+1, Ut+1

}
. Then at time t,

Eπ
(

T∑
t′=t

Rt′
∣∣∣Ut, St)

=Eπ
{
Rt + Eπ

(
T∑

t′=t+1

Rt′
∣∣∣Ut+1, St+1, Ut, St

) ∣∣∣Ut, St}

=Eπ
{
Rt + Eπ

(
T∑

t′=t+1

Rt′
∣∣∣Ut+1, St+1

) ∣∣∣Ut, St} by Assumption 3

=Eπ
{
Rt + E

(
vπt+1(Wt+1, St+1)

∣∣∣Ut+1, St+1

) ∣∣∣Ut, St}
=Eπ

{
Rt + E

(
vπt+1(Wt+1, St+1)

∣∣∣Ut+1, St+1, Ut, St

) ∣∣∣Ut, St} by Assumption 4

=Eπ
{
Rt + vπt+1(Wt+1, St+1) | Ut, St

}
by the law of total expectation and Assumption 4

=
∑
at∈A

E
{
Rt + vπt+1(Wt+1, St+1) | Ut, St, At = at

}
πt(at | St)

=
∑
at∈A

E {qπt (Wt, St, at) | Ut, St, At = at}πt(at | St) by (10)

=
∑
at∈A

E {qπt (Wt, St, at) | Ut, St}πt(at | St) by Assumption 4

=E

{∑
at∈A

π(at | St)qπt (Wt, St, at)
∣∣∣Ut, St}

=E {vπt (Wt, St) | Ut, St} by definition of vπt .

Therefore (3) hold for all 1 ≤ t ≤ T . The validity of Q-bridge (5) can be similarly verified by
restricting on At = a, for each a ∈ A.

Part II. Now we prove the existence of the solution to (4).

For t = T, . . . , 1, by Assumption 7 (a), Ks,a;t is a compact operator for each (s, a) ∈ S × A
[Carrasco et al., 2007, Example 2.3], so there exists a singular value system stated in Assumption 7 (c)
by Lemma D.1. Then by Assumption 6 (b), we have Ker(K∗s,a;t) = 0, since for any g ∈ Ker(K∗s,a;t),
we have, by the definition of Ker, K∗s,a;tg = E [g(Zt) |Wt, St = s,At = a] = 0, which implies that
g = 0 a.s. Therefore Ker(K∗s,a;t) = 0 and Ker(K∗s,a;t)

⊥ = L2(µZt|St,At(z | s, a)). By Assumption
7 (b), E {Rt + g(Wt+1, St+1) | Zt = ·, St = s,At = a} ∈ Ker(K∗s,a,;t) for given (s, a) ∈ St ×A
and any g ∈ G(t+1). Now we have verified the condition (a) in Lemma D.1. The condition (b) is
satisfied given Assumption 7 (c). Recursively applying the above argument from t = T to t = 1
yields the existence of the solution to (4).

C.2 Proof of Theorem 6.1

By definition and Assumptions 6–8, Pπt , t = 1, . . . , T , are linear operators, i.e., Pπt (α1g1 +α2g2) =
α1Pπt g1 + α2Pπt g2, for any α1, α2 ∈ R and g1, g2 ∈ L2(R×W × S).

We first decompose v̂πt − vπt into a summation of projections of one-step error. Then we bound each
one-step error by the projected errors times a product of transition ill-posedness.

C.2.1 Decomposition of L2-error of vπ1
Following the identification procedure in Algorithm 3, we can decompose vπ1 by

vπ1 = Pπ1 (R1 + vπ2 ) = Pπ1 (R1 + Pπ2 (R2 + vπ3 )) = · · · = Pπ1 (R1 + Pπ2 (R2 + Pπ3 (· · ·+ PπTRT ))).
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Similarly, according to Section 5, we have the empirical version

v̂π1 = P̂π1 (R1 + v̂π2 ) = P̂π1 (R1 + P̂π2 (R2 + v̂π3 )) = · · · = P̂π1 (R1 + P̂π2 (R2 + P̂π3 (· · ·+ P̂πTRT ))).

Then for each t = 1, . . . , T , we can decompose v̂πt − vπt as

v̂πt − vπt = P̂πt (Rt + v̂πt+1)− Pπt (Rt + vπt+1)

= [P̂πt (Rt + v̂πt+1)− Pπt (Rt + v̂πt+1)] + [Pπt (Rt + v̂πt+1)− Pπt (Rt + vπt+1)]

, gt + [Pπt (Rt + v̂πt+1)− Pπt (Rt + vπt+1)]

= gt + Pπt [v̂πt+1 − vπt+1], (11)

where the last equality is due the the linearity of Pπt , and vπT+1 = v̂πT+1 , 0. Recursively we have

v̂π1 − vπ1 = g1 + Pπ1 g2 + Pπ1:2g3 + · · ·+ Pπ1:T−1gT , (12)

where Pπt′:t , Pπt′ . . .Pπt . If t < t′, Pπt′:t , I, the identity operator.

By the definition of the ill-posedness and combining the above decomposition, we can obtain the
discrepancy between v̂π1 and vπ1 :

‖vπ1 − v̂π1 ‖2 ≤ τ̄1‖E(vπ1 − v̂π1 | Z1, S1)‖2

≤ τ̄1
T∑
t=1

‖E(Pπ1:t−1gt | Z1, S1)‖2 by the triangular inequality,

where τ̄
1

= supg1∈G(1)
‖g1‖2

‖E[g1(W1,S1)|Z1,S1]‖2 . This indicates that we only need to separately bound
the L2 norm of the projected one-step error defined as

‖E[Pπ1:t−1gt | Z1, S1]‖2 = ‖E[Pπ1:t−1(P̂πt − Pπt )(Rt + v̂πt+1) | Z1, S1]‖2, (13)

for each t = 1, . . . , T .

C.2.2 Error bounds for projected one-step error

To study the one-step L2 projected error of (13), for each t = 1, . . . , T , motivated by (13), we
sequentially define the following functions:

gt , (P̂πt − Pπt )(v̂πt+1 +Rt),

gt,t−1 , Pπt−1gt,

gt,t−2 , Pπt−2gt,t−1 = Pπt−2:t−1gt,

...

gt,1 , Pπ1 gt,2 = Pπ1:t−1gt.

For each 1 ≤ t′ < t,

‖E[gt,t′(Wt′ , St′) | Zt′ , St′ ]‖2 = ‖E{[Pπt′gt,t′+1](Wt′ , St′) | Zt′ , St′}‖2
= ‖Eπt′ [gt,t′+1(Wt′+1, St′+1) | Zt′ , St′ ]‖2
≤ C(t)

t′+1,t′‖E[gt,t′+1(Wt′+1, St′+1) | Zt′+1, St′+1]‖2,
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where the local transition ill-posedness C(t)
t′+1,t′ will be defined later in (17), and the second equality

is due to

E{[Pπt′gt,t′+1](Wt′ , St′) | Zt′ , St′}

= E

{∑
a∈A

πt′(a | St′)[Pt′gt,t′+1](Wt′ , St′ , At′ = a) | Zt′ , St′
}

=
∑
a∈A

πt′(a | St′)E {[Pt′gt,t′+1](Wt′ , St′ , At′ = a) | Zt′ , St′}

=
∑
a∈A

πt′(a | St′)E {[Pt′gt,t′+1](Wt′ , St′ , At′) | Zt′ , St′ , At′ = a}

=
∑
a∈A

πt′(a | St′)E {gt,t′+1(Wt′+1, St′+1) | Zt′ , St′ , At′ = a} by Q-bridge

= Eπt′ {gt,t′+1(Wt′+1, St′+1) | Zt′ , St′} .

Then by induction, we can show that

‖E[Pπ1:t−1gt | Z1, S1]‖2 ≤ C(t)
2,1 . . . C

(t)
t,t−1‖E[gt | Zt, St]‖2

Therefore,

‖vπ1 − v̂π1 ‖2 ≤ τ̄1
T∑
t=1

‖E[Pπ1:t−1gt | Z1, S1]‖2

≤ τ̄1
T∑
t=1

C
(t)
2,1 . . . C

(t)
t,t−1‖E[gt | Zt, St]‖2

Then for each t = 1, . . . , T , we need to bound

‖E[(P̂πt − Pπt )(Rt + v̂πt+1) | Zt, St]‖2 ≤ ‖(P̂πt − Pπt )(Rt + v̂πt+1)‖2
≤ ‖(P̂t − Pt)(Rt + v̂πt+1)‖2‖πt/πbt‖∞
≤ τt‖projt(P̂t − Pt)(Rt + v̂πt+1)‖2‖πt/πbt‖∞, (14)

where τt is the local ill-posedness constant at step t, defined in (15).

Finally, we have

‖vπ1 − v̂π1 ‖2 ≤ τ̄1
T∑
t=1

{
t∏

t′=1

C
(t)
t′,t′−1

}
τt‖πt/πbt‖∞‖projt(P̂t − Pt)(Rt + v̂πt+1)‖2.

C.3 Proof of Theorem 6.2

For t = T, . . . , 1, we iteratively bound ‖projt(P̂t − Pt)(Rt + v̂πt+1)‖2 by applying Lemma D.2,
which depends on the critical radius of the space that contains v̂πt+1 from the last step t+ 1. Then we
give the bound of ‖v̂πt ‖2G(t) , which will be used to calculate critical radii in next step.

C.3.1 One-step error bound

Start from t = T , v̂πT+1 = vπT+1 , 0. By Lemma D.3, we have with probability at least 1− 3ζ,

‖projT (P̂T − PT )RT ‖2 . δ(T )
n [1 + ‖qπT ‖2H(T ) ]

≤ δ(T )
n [1 +MH],

and

‖q̂πT ‖2H(T ) = ‖P̂TRT ‖2H(T ) ≤ ‖PTRT ‖2H(T ) + C = ‖qπT ‖2H(T ) + C ≤ 2MH,

by Assumption 1 (4) and we let MH ≥ C.
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Iteratively, at time 1 ≤ t < T , by Lemma D.2, we have with probability at least 1− 4ζ,

‖projt(P̂t − Pt)[Rt + v̂πt+1]‖2 . (T − t+ 1)δ(t)
n [1 + ‖Pt

(
Rt + v̂πt+1

T − t+ 1

)
‖2H(t) ]

≤ (T − t+ 1)δ(t)
n [1 + (T − t+ 1)MH],

.MH(T − t+ 1)2δ(t)
n ,

where the second inequality is due to Assumption 1 (2), ‖Pt
(
Rt+v̂

π
t+1

T−t+1

)
‖2H(t) ≤ ‖

q̂πt+1

T−t‖
2
H(t+1) ≤

(T − t+ 1)MH.

Also,

‖ q̂πt
T − t+ 1

‖2H(t) = ‖P̂t
(
Rt + v̂πt+1

T − t+ 1

)
‖2H(t) ≤ ‖Pt

(
Rt + v̂πt+1

T − t+ 1

)
‖2H(t) +MH

≤ (T − t+ 2)MH,

where δ(t)
n = δ̄

(t)
n + c0

√
log(c1/ζ)/n, c0, c1 > 0, δ(t)

n upper bounds the critical radii of F (t)
3M (Zt ×

St ×At), Ω(t) and Ξ(t).

Since ‖ v̂πt
T−t+1‖

2
G(t) ≤ CG‖ q̂πt

T−t+1‖
2
H(t) by Assumption 1 (3), we have that ‖ v̂πt

T−t+1‖
2
G(t) ≤

CG‖ q̂πt
T−t+1‖

2
H(t) ≤ CG‖

q̂πt+1

T−t‖
2
H(t+1) ≤ CG(T − t+ 2)MH. Therefore v̂πt

T−t+1 ∈ G
(t)
CG(T−t+2)MH

.

C.3.2 Combined Result

Finally, we replace ζ by ζ/(4T ) and redefine δ(t)
n = δ̄

(t)
n + c0

√
log(c1T/ζ)/n for t = 1, . . . , T , and

consider the intersection of above events, we have with probability at least 1− ζ,

‖projt(P̂t − Pt)(v̂πt+1 +Rt)‖2 .MH(T − t+ 1)2δ(t)
n ,

uniformly for all 1 ≤ t ≤ T .

C.4 Localized ill-posedness τt and one-step transition ill-posedness C(t)
t′,t′−1

Localized ill-posedness. By Theorem 6.2 and (14), we have that with probability at least 1− ζ,

‖E[(P̂πt − Pπt )(Rt + v̂πt+1) | Zt, St]‖2 . τt(T − t+ 1)2MHδ
(t)
n ‖πt/πbt‖∞,

uniformly for all 1 ≤ t ≤ T , where we define the local ill-posedness [Chen and Reiss, 2011]

τt , sup
h∈H(t)

‖h‖2
‖projth‖2

subject to ‖projth‖2 . (T − t+ 1)2MHδ
(t)
n ,

‖h‖2H(t) . (T − t+ 1)3MH, (15)

where the bounds for ‖projth‖2 and ‖h‖2H(t) are adapted from above results in Appendix C.3.1.

We show that under further assumption on the joint distribution of (St, At,Wt, Zt), for RKHSH(t)

with kernel KH(t) , the local ill-posedness can be properly controlled. By Mercer’s theorem with
some regularity conditions, for any h ∈ H(t), we have

h =

∞∑
j=1

ajej ,

where {ej :W×S×A → R} are the eigenfunctions of kernelKH(t) corresponding to nonincreasing
eigenvalues {λj , λ↓j (KH(t))}. Then we have ‖h‖22 =

∑
j a

2
j and ‖h‖2H =

∑
j a

2
j/λj .

‖projth‖22 =
∑
i,j

aiajE {E[ei(Wt, St, At) | Zt, St, At]E[ej(Wt, St, At) | Zt, St, At]} .

For m ∈ N+, let I = {1, . . . ,m}, eI = (e1, . . . , em) and aI = (a1, . . . , am) and define

Γm , E
{
E[eI(Wt, St, At) | Zt, St, At]E[eI(Wt, St, At) | Zt, St, At]>

}
.
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With same argument as Dikkala et al. [2020], we impose the assumption that λmin(Γm) ≥ νm for all
m almost surely, which means that the projected eigenfunctions are not strongly dependent. And we
further assume that for all i ≤ m < j,

|E {E[ei(Wt, St, At) | Zt, St, At]E[ej(Wt, St, At) | Zt, St, At]}| ≤ cνm, (16)
for some constant c > 0. This implies that the projection does not destroy the orthogonality for the
first m eigenfunctions and eigenfunctions with indices larger than m too much. Then we can bound
the local measure of ill-posedness as follow.
Lemma C.1 (Dikkala et al. [2020], Lemma 11). Suppose that λmin(Γm) ≥ νm and (16) holds for
all i ≤ m < j and some constant c > 0. Then

[τ∗(δ,B)]2 , min
m∈N+

δ2/νm +B

2c

√√√√ ∞∑
i=1

λi

√∑
j>m

λj + λm+1

 .

The optimal m∗ is such that δ2/νm � B
(

2c
√∑∞

i=1 λi
√∑

j>m λj + λm+1

)
.

• For a mild ill-posed case, if λm ≤ m−2αH for αH > 1/2 and νm > m−2b for b > 0, then

m∗ ∼
[
δ2/B

]− 1
2(αH−1/2+b) and thus

‖(P̂t − Pt)(v̂πt+1 +Rt)‖2
. τ∗t (‖projt(P̂t − Pt)(v̂πt+1 +Rt)‖2, ‖(P̂t − Pt)(v̂πt+1 +Rt)‖2H(t))

. τ∗t

[
(T − t+ 1)2MHδ

(t)
n , (T − t+ 1)3MH

]
. (T − t+ 1)

2(αH−1/2)+3b

(αH−1/2)+2b [δ(t)
n ]

αH−1/2

αH−1/2+b .

• For a severe ill-posed case, if λm ≤ m−2αH for αH > 1/2 and νm ∼ e−m
b

for b > 0, then

m∗ ∼
[
log
(
B
δ2

)] 1
b , by the same argument above,

‖(P̂t − Pt)(v̂πt+1 +Rt)‖2 .

[
log

(
1

(T − t+ 1)[δ
(t)
n ]2

)]αH−1/2

2b

(T − t+ 1)3/2.

One-step transition ill-posedness. For each t, from t′ = t− 1 to t′ = 1, we can recursively define
a sequence of local transition ill-posedness as the following:

C
(t)
t′+1,t′ , sup

g∈G(Wt′+1×St′+1)

‖Eπt′ [g(Wt′+1, St′+1) | Zt′ , St′ ]‖2
‖E[g(Wt′+1, St′+1) | Zt′+1, St′+1]‖2

subject to ‖E[g(Wt′+1, St′+1) | Zt′+1, St′+1]‖2

. τt(T − t+ 1)2MHδ
(t)
n ‖πt′/πbt′‖∞

t−1∏
s=t′+1

C
(t)
s+1,s. (17)

Then we have with probability at least 1− ζ,

‖E[Pπ1:t−1(P̂πt − Pπt )(Rt + v̂πt+1) | Zt, St]‖2

≤

{
t∏

t′=1

C
(t)
t′,t′−1

}
τt(T − t+ 1)2MHδ

(t)
n τt‖πt/πbt‖∞,

uniformly for all 1 ≤ t ≤ T .

C.5 Proofs of Theorems 6.3, B.1 and B.2

C.5.1 Decomposition of Off-Policy Value Estimation Error

Our objective is to give an upper bound of
|Evπ1 (W1, S1)− Env̂π1 (W1, S1)| ≤ |Evπ1 − Envπ1 |+ |E(vπ1 − v̂π1 )|

+ |En(vπ1 − v̂π1 )− E(vπ1 − v̂π1 )|
= (I) + (II) + (III),
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For (I), by applying Hoeffding’s inequality, we have with probability at least 1− ζ/T ,

(I) = |Evπ1 − Envπ1 | . ‖vπ1 ‖∞

√
log(c1T/ζ)

n
. T

√
log(c1T/ζ)

n
.

For (II), obviously (II) = |E(vπ1 − v̂π1 )| ≤ E|vπ1 − v̂π1 | ≤ ‖vπ1 − v̂π1 ‖2.

For (III), by applying Theorem 14.20 of Wainwright [2019], we have with probability at least 1− ζ,

(III) = |En(vπ1 − v̂π1 )− E(vπ1 − v̂π1 )| . δ(0)
n (‖vπ1 − v̂π1 ‖2 + Tδ(0)

n ),

where δ(0)
n = δ̄

(0)
n + c0

√
log(c1T/ζ)

n , and δ̄(0)
n is the critical radius of GCG(T+1)MH .

The L2-error ‖vπ1 − v̂π‖2 in the upper bounds of (II) and (III) can be bound by combining Theorems
6.1 and 6.2.

C.5.2 Applying decomposition of OPE error

By Assumption 2, we can define trans-ill = max1≤t≤T exp {atζ(αt)} since
∏t
t′=1 C

(t)
t′,t′−1 ≤

exp {atζ(αt)}, 1 ≤ t ≤ T are bounded by Corollary 6.3. Define illmax =
τ̄1 max1≤t≤T τt‖πt/πbt‖∞.

By applying Theorems 6.1 and 6.2, and crtical radii results in Example 1 – 3 in Appendix D.3, we
have the following results:

For Theorem 6.3. With probability at least 1− ζ,

‖vπ1 − v̂π1 ‖2 . illmax × trans-ill× T 7/2
√

log(c1T/ζ)n
− 1

2+max{1/αH,1/αG ,1/αF} log(n),

by Corollary 6.2 (1). Then by above decomposition, with probability at least 1− ζ,

|V(π)− V̂(π)| . illmax × trans-ill× T 7/2
√

log(c1T/ζ)n
− 1

2+max{1/αH,1/αG ,1/αF} log(n).

For Theorem B.1. With probability at least 1− ζ, with probability at least 1− ζ,

‖vπ1 − v̂π1 ‖2 . illmax × trans-ill

× T 7/2


√

max1≤t≤T
{
V(F (t)),V(H(t)),V(G(t+1))

}
n

+

√
log(T/ζ)

n

 ,

by Corollary 6.1. Then by above decomposition, with probability at least 1− ζ,

|V(π)− V̂(π)| . illmax × trans-ill

× T 7/2


√

max1≤t≤T
{
V(F (t)),V(H(t)),V(G(t+1))

}
n

+

√
log(T/ζ)

n

 .

For Theorem B.2. With probability at least 1− ζ,

‖vπ1 − v̂π1 ‖2 . illmax × trans-ill× T 7/2

{√
(log n)1/min{βH,βG ,βF}

n
+

√
log(T/ζ)

n

}
,

by Corollary 6.2 (1). Then by above decomposition,

|V(π)− V̂(π)| . illmax × trans-ill× T 7/2

{√
(log n)1/min{βH,βG ,βF}

n
+

√
log(T/ζ)

n

}
.
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For Corollary under mild and severe ill-posed cases. Under assumptions in main Theorem 6.3,
by directly applying Lemma C.1, we have that

‖vπ1 − v̂π1 ‖2 . τ̄1 max
1≤t≤T

‖πt/πbt‖∞ × trans-ill× η(n, T, ζ, αH, αF , αG , b),

|V(π)− V̂(π)| . τ̄1 max
1≤t≤T

‖πt/πbt‖∞ × trans-ill× η(n, T, ζ, αH, αF , αG , b),

where, for mild ill-posed case that νm ∼ m−2b for b > 0:

η(n, T, ζ, αH, αF , αG , b) = T
7(αH−1/2)+10b

2(αH−1/2)+4b

(√
log(c1T/ζ)n

− 1
2+max{1/αH,1/αG ,1/αF} log(n)

) (αH−1/2)

(αH−1/2)+2b

.

for severe ill-posed case that νm ∼ e−m
b

for b > 0:

η(n, T, ζ, αH, αF , αG , b) =

T∑
t=1

(T − t+ 1)3/2

{
log

n
2

2+max{1/αH,1/αG ,1/αF}

(log n)2(T − t+ 1)2 log(T/ζ)2

}−αH−1/2

2b

.

D Auxiliary Lemmas

In this section, we provide some auxiliary lemmas which are needed to prove Theorem 4.1 – 6.3 and
their proofs.

D.1 Lemmas For Identification

Lemma D.1 (Picard’s Theorem, Theorem 15.16 of Kress [1989]). Given Hilbert spacesH1 andH2,
a compact operator K : H1 → H2 and its adjoint operator K∗ : H2 → H1, there exists a singular
system (λν , φν , ψν)∞ν=1 of K, with singular values {λν} and orthogonal sequences {φν} ⊂ H1 and
{ψν} ⊂ H2 such that Kφν = λνψν and K∗ψν = λνφν .

Given g ∈ H2, the Fredholm integral equation of the first kind Kh = g is solvable if and only if

(a) g ∈ Ker(K∗)⊥ and

(b)
∑∞
ν=1 λ

−2
ν | 〈g, ψν〉 |2 <∞,

where Ker(K∗) = {h : K∗h = 0} is the null space ofK∗, and ⊥ denotes the orthogonal complement
to a set.

D.2 One-step estimation error

Consider the problem of estimating a function h that satisfying the conditional moment restriction

E {g(W )− h(X) | Z} = 0, (18)

where Z ∈ Z , X ∈ X , W ∈ W , h ∈ H ⊂ {h ∈ RX : ‖h‖∞ ≤ 1}, g ∈ G ⊂ {g ∈ RW : ‖g‖∞ ≤
1}. Suppose that h∗g ∈ H is the true h that satisfies the conditional moment restriction (18).

Suppose that we observe an i.i.d. sample {(Wi, Xi, Zi)}ni=1 of sample size n drawn from an unknown
distribution. Consider the minimax estimator

ĥg = arg min
h∈H

sup
f∈F

Ψn(h, f, g)− λ
(
‖f‖2F +

U

δ2
‖f‖2n

)
+ λµ‖h‖2H, (19)

where Ψn(h, f, g) = n−1
∑n
i=1{g(Wi) − h(Xi)}f(Zi) with the population version Ψ(h, f, g) =

E{g(W )− h(X)}f(Z) and λ, δ, µ, U > 0 are tuning parameters.
Lemma D.2 (L2-error rate for minimax estimator). Let F ⊂ {f ∈ RZ : ‖f‖∞ ≤ 1} be a symmetric

and star-convex set of test functions. Define δ = δn + c0

√
log(c1/ζ)

n for some univeral constants
c0, c1 > 0 and δn the upper bound of critical radii of F3U ,

Ω =
{

(x,w, z) 7→ r(h∗g(x)− g(w))f(z) : g ∈ G, f ∈ F3U , r ∈ [0, 1]
}
,
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and

Ξ =
{

(x, z) 7→ r[h− h∗g](x)fL
2B

∆ (z);h ∈ H, (h− h∗g) ∈ HB , g ∈ G, r ∈ [0, 1]
}
,

where fL
2B

∆ = arg minf∈FL2B
‖f − projZ(h − h∗g)‖2. Moreover, suppose that ∀h ∈ H, g ∈ G,

‖f∆ − projZ(h − h∗g)‖2 ≤ ηn . δn, where f∆ ∈ arg inff∈F
L2‖h−h∗g‖

2
H
‖f − projZ(h − h∗g)‖2. If

the tuning parameters satisfy 324Cλδ
2/U ≤ λ ≤ 324C ′λδ

2/U and µ ≥ 4
3L

2 +
18(Cf+1)

B
δ2

λ , then
with probability 1− 4ζ,

sup
g∈G
‖projZ(ĥg − h∗g)‖2 . (1 + sup

g∈G
‖h∗g‖2H)δ,

and for all g ∈ G uniformly,
‖ĥg‖2H ≤ C + ‖h∗g‖2H.

The proof of Lemma D.2 is given in Appendix D.4.2.
Lemma D.3 (Dikkala et al. [2020], Theorem 1). Consider the problem of estimating a function h
that satisfies

E {Y − h(X) | Z} = 0,

where Z ∈ Z , X ∈ X , W ∈ W , h ∈ H ⊂ {h ∈ RX : ‖h‖∞ ≤ 1}, |Y | ≤ 1. Suppose that
there exists h∗ ∈ H that satisfies the conditional moment equation. Suppose that we observed an
i.i.d. sample {(Yi, Xi, Zi)}ni=1 of sample size n drawn from an unknown distribution. Consider the
minimax estimator

ĥ = arg min
h∈H

sup
f∈F

Φn(h, f)− λ
(
‖f‖2F +

U

δ2
‖f‖2n

)
+ λµ‖h‖2H, (20)

where Φn(h, f) = n−1
∑n
i=1{Yi − h(Xi)}f(Zi) with the population version Φ(h, f) = E{Y −

h(X)}f(Z) and λ, δ, µ, U > 0 are tuning parameters.

Let F ⊂ {f ∈ RZ : ‖f‖∞ ≤ 1} be a symmetric and star-convex set of test functions. Define

δ = δn + c0

√
log(c1/ζ)

n for some univeral constants c0, c1 > 0 and δn the upper bound of critical
radii of F3U and

Ξ̄ =
{

(x, z) 7→ r[h− h∗](x)fL
2B

∆ (z);h ∈ H, (h− h∗) ∈ HB , r ∈ [0, 1]
}
,

where fL
2B

∆ = arg minf∈FL2B
‖f − projZ(h − h∗)‖2. Moreover, suppose that ∀h ∈ H, ‖f∆ −

projZ(h − h∗)‖2 ≤ ηn . δn, where f∆ ∈ arg inff∈F
L2‖h−h∗‖2H

‖f − projZ(h − h∗)‖2. Suppose

tuning parameters satistying 324Cλδ
2/U ≤ λ ≤ 324C ′λδ

2/U and µ ≥ 4
3L

2 +
18(Cf+1)

B
δ2

λ . Then
with probability 1− 3ζ,

‖projZ(ĥ− h∗)‖2 . (1 + ‖h∗‖2H)δ,

and
‖ĥ‖2H ≤ C + ‖h∗‖2H.

D.3 Critical radii and local Rademacher complexity

In this section we list several ways to bound the critical radii of F3U , Ω and Ξ for Lemmas in
Appendix D.2. We restrict G = GD = {g ∈ G : ‖g‖2G ≤ D} for some D > 0 in this section.

D.3.1 Local Rademacher complexity bound by entropy integral

In this subsection, we introduce an entropy integral based approach to bound the local Rademacher
complexity and critical radii. Similar to local Rademacher complexity, for a star-shaped and b-
uniformly bounded function class F , the local empirical Rademacher complexity, a data-dependent
quantity, is defined by

R̂n(δ;F) , E

[
sup

f∈F,‖f‖n≤δ
| 1
n
εif(Xi)|

∣∣∣ {Xi}ni=1

]
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where {εi}ni=1 are i.i.d. Rademacher variables. The empirical critical radius δ̂n is the smallest
positive solution to

R̂n(δ) ≤ δ2

b
. (21)

Wainwright [2019, Proposition 14.25] gives the relationship that with probability at least 1− ζ,

δn ≤ O(δ̂n +

√
log(1/ζ)

n
).

Therefore, we can study the critical radius δn by empirical critical radius δ̂n.

Given a space G, an empirical ε-covering of G is defined as any function class Gε such that for all
g ∈ G, infgε∈Gε ‖gε − g‖n ≤ ε. Denote the smallest empirical ε-covering of G by Nn(ε,G). Let
Bn(δ;G) , {g ∈ G : ‖g‖n ≤ δ}. Then we have the following Lemma to bound the empirical critical
radius by Dudley’s entropy integral.
Lemma D.4. [Wainwright, 2019, Corollary 14.3] The empirical critical inequality (21) is satisfied
for any δ > 0 such that

64√
n

∫ δ

δ2

2b

√
logNn(t,Bn(δ,G))dt ≤ δ2

b
.

Lemma D.5. Suppose that ‖h∗g‖2H ≤ A‖g‖2G for all g ∈ G, so that ‖h∗g‖2H ≤ AD. Let δ̂n > 0 satisfy
the inequality

64√
n

∫ 4δ

δ2

2

√
logNn(t, star{F3U∨L2B}) + logNn(t, star{HAD∨B}) + logNn(t, star{GD})dt ≤ δ2.

Then with probability 1− ζ, we have δn ≤ O(δ̂n +
√

log(1/ζ)
n ), where δn is the maximum critical

radii of F3U , Ω and Ξ, with

Ω =
{

(x,w, z) 7→ r(h∗g(x)− g(w))f(z) : g ∈ GD, f ∈ F3U , r ∈ [0, 1]
}
.

The proof of Lemma D.5 is given in Appendix D.4.3.
Example 1 (Critical radii for VC subspaces). If star shaped F ,H and G are VC subspaces with VC
dimensions V(F), V(H) and V(G), respectively, then logNn(t,F)+logNn(t,H)+logNn(t,G) .
[V(F)+V(H)+V(G)] log(1/t) . max{V(F),V(H),V(G)} log(1/t). By Lemma D.4 and Lemma

D.5, we have with probability at least 1− ζ, δn .
√

max{V(F),V(H),V(G)}
n +

√
log(1/ζ)

n , where the
δn is defined in Lemma D.5.

D.3.2 Local Rademacher complexity bound for RKHSs

Lemma D.6 (Critical radii for RKHSs, Corollary 14.5 of Wainwright [2019]). Let FB ={
f ∈ F | ‖f‖2F ≤ B

}
be the B-ball of a RKHS F . Suppose that KF is the reproducing kernel

of F with eigenvalues {λ↓j (KF )}∞j=1 sorted in a decreasing order. Then the localized population
Rademacher complexity is upper bounded by

Rn(FB , δ) ≤
√

2B

n

√√√√ ∞∑
j=1

min
{
λ↓j (KF ), δ2

}
.

Lemma D.7 (Critical radii for Ω and Ξ whenH, F , G are RKHSs). Suppose that F ,H, and G are
RKHSs endowed with reproducing kernels KF , KH, and KG with decreasingly sorted eigenvalues{
λ↓j (KF )

}∞
j=1

,
{
λ↓j (KH)

}∞
j=1

, and
{
λ↓j (KG)

}∞
j=1

, respectively. Then

Rn(Ξ, δ) ≤ LB
√

2

n

√√√√ ∞∑
i,j=1

min
{
λ↓i (KH)λ↓j (KF ), δ2

}
, and
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Rn(Ω, δ) ≤
√
D(1 +

√
A)

√
12U

n

√√√√ ∞∑
i,j=1

min
{

[(λ↓i (KH) + λ↓i (KG)]λ↓j (KF ), δ2
}
.

The proof of Lemma D.7 is given in Appendix D.4.4.

We give the following two examples as directly applications of Lemma D.6 and D.7.

Example 2 (Critical radii for RKHSs endowed with kernels with polynomial decay). With the same
conditions in Lemma D.7, when λ↓j (KF ) ≤ cj−2αF , λ↓j (KG) ≤ cj−2αG , λ↓j (KH) ≤ cj−2αH , where
constant αH, αG , αF > 1/2, c > 0, then by Krieg [2018] we have the upper bound of critical radii of
F3U , Ω and Ξ satisfies

δn . max{
√
B,LB,

√
6DU(1 +

√
A)}n−

1
2+max{1/αF ,1/αG ,1/αH} log(n).

Example 3 (Critical radii for RKHSs endowed with kernels with exponential decay). With the same
conditions in Lemma D.7, when λ↓j (KH) ≤ a1e

−a2j
βH , λ↓j (KG) ≤ a1e

−a2j
βG and λ↓j (KF ) ≤

a1e
−a2j

βF , for constants a1, a2, βH, βG , βF > 0, then we have the upper bound of critical radii of
F3U , Ω and Ξ satisfies

δn . max{
√
B,LB,

√
6DU(1 +

√
A)}

√
(log n)1/min{βF ,βG ,βH}

n
.

D.4 Proof of Lemmas

D.4.1 Proof of Lemma C.1

Proof. For any m ∈ N+,

‖projth‖22 = a>I ΓmaI + 2
∑

i≤m<j

aiajE {E[ei(Wt, St, At) | Zt, St, At]E[ej(Wt, St, At) | Zt, St, At]}

+ E

∑
j>m

ajE[ej(Wt, St, At) | Zt, St, At]


≥ a>I ΓmaI − 2

∑
i≤m<j

|aiaj |E {E[ei(Wt, St, At) | Zt, St, At]E[ej(Wt, St, At) | Zt, St, At]}

≥ a>I ΓmaI − 2
∑

i≤m<j

|aiaj |cνm

≥ νm‖aI‖22 − 2cνm
∑
i≤m

|ai|
∑
j>m

|aj |

≥ νm‖aI‖22 − 2cνm

√∑
i≤m

λi

√√√√∑
i≤m

|ai|2
λi

√∑
j>m

λj

√√√√∑
j>m

|aj |2
λj

≥ νm‖aI‖22 − 2cνmB

√√√√ ∞∑
i=1

λi

√∑
j>m

λj , since
∞∑
j=1

|aj |2

λj
≤ B.

Therefore, ‖h‖22 ≤ ‖aI‖2 + Bλm+1 ≤ ‖projth‖22/νm + 2cB
√∑∞

i=1 λi
√∑

j>m λj + Bλm+1.

Because ‖projth‖2 ≤ δ, by taking minimum over m ∈ N+, we have that

[τ∗(δ,B)]2 ≤ min
m∈N+

δ2/νm +B

2c

√√√√ ∞∑
i=1

λi

√∑
j>m

λj + λm+1

 .
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D.4.2 Proof of Lemma D.2

Proof. LetHB =
{
h ∈ H : ‖h‖2H ≤ B

}
and FU =

{
f ∈ F : ‖f‖2F ≤ U

}
. Moreover, let

Ψλ(f, g, h) = Ψ(h, f, g)− λ
(

2

3
‖f‖2F +

U

2δ2
‖f‖22

)
, and

Ψλ
n(f, g, h) = Ψn(h, f, g)− λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
.

We first study the relationship between the empirical penalty λ
(
‖f‖2F + U

δ2 ‖f‖2n
)

and population

penalty λ
(

2
3‖f‖

2
F + U

2δ2 ‖f‖22
)
. Let δ = δn + c0

√
log(c1/ζ)

n , where δn upper bounds the critical
radius of F3U and c0, c1 are universal constants, by Theorem 14.1 of Wainwright [2019], with
probablity 1− ζ, uniformly for any f ∈ F , we have∣∣‖f‖2n − ‖f‖22∣∣ ≤ 1

2
‖f‖22 + δ2 max

{
1,
‖f‖2F
3U

}
, and thus (22)

‖f‖2F +
U

δ2
‖f‖2n ≥ ‖f‖2F +

U

δ2

[
1

2
‖f‖22 − δ2 max

{
1,
‖f‖2F
3U

}]
≥ ‖f‖2F +

U

2δ2
‖f‖22 −max

{
U,

1

3
‖f‖2F

}
≥ 2

3
‖f‖2F +

U

2δ2
‖f‖22 − U. (23)

In the following proof, we obtain the error rate of the uniform projected RMSE supg∈G ‖projZ(ĥg −
h∗g)‖2 by combinding upper and lower bounds of the sup-loss

sup
f∈F

Ψn(ĥg, f, g)−Ψn(h∗g, f, g)− 2λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
. (24)

Upper bound of sup-loss (24). By a simple decomposition of Ψλ
n(h, f, g), we have

Ψλ
n(h, f, g) = Ψn(h, f, g)−Ψn(h∗g, f, g) + Ψn(h∗g, f, g)− λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
≥ Ψn(h, f, g)−Ψn(h∗g, f, g)− 2λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
+ inf
f∈F

{
Ψn(h∗g, f, g) + λ

(
‖f‖2F +

U

δ2
‖f‖2n

)}
= Ψn(h, f, g)−Ψn(h∗g, f, g)− 2λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
− sup
f∈F

Ψλ
n(h∗g, f, g), since F is symmetric about 0.

Taking supf∈F on both sides and picking h← ĥg yields the basic inequality:

sup
f∈F

Ψn(ĥg, f, g)−Ψn(h∗g, f, g)− 2λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
≤ sup
f∈F

Ψλ
n(h∗g, f, g) + sup

f∈F
Ψλ
n(ĥg, f, g)

≤2 sup
f∈F

Ψλ
n(h∗g, f, g) + λµ(‖h∗g‖2H − ‖ĥg‖2H), (25)

where the last inequality is given by the definition of ĥg in (19). Now it suffices to obtain the upper
bound of supf∈F Ψλ

n(h∗g, f, g) uniformly over g ∈ G.
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For upper bound of supf∈F Ψλ
n(h∗g, f, g). By the assumption that ‖g‖∞ ≤ 1, ‖h‖∞ ≤ 1 and

‖f‖∞ ≤ 1, we have ‖ 1
2 {g(W )− h(X)} f(Z)‖∞ ≤ 1. Then we apply Lemma 11 of Foster and

Syrgkanis [2019], with L 1
2 (g−h∗g)f = 1

2 (g − h∗g)f . Let δn be the upper bound of critical radii of Ω.

By choosing δ = δn + c0

√
log(c1/ζ)

n , we have with probability 1− ζ, uniformly for any f ∈ F3U

and g ∈ G:

1

2

∣∣{Ψn(h∗g, f, g)−Ψn(h∗g, 0, g)
}
−
{

Ψ(h∗g, f, g)−Ψ(h∗g, 0, g)
}∣∣

≤ 18δ

(
‖1

2
(g − h∗g)f‖2 + δ

)
≤ 18δ (‖f‖2 + δ) ,

where, by definition, Ψn(h∗g, 0, g) = Ψ(h∗g, 0, g) = 0. If ‖f‖2F ≥ 3U , applying the above inequality
with f ← f

√
3U/‖f‖F , we have with probability 1− ζ, for all f ∈ F and g ∈ G:∣∣Ψn(h∗g, f, g)−Ψ(h∗g, f, g)

∣∣ ≤ 36δ

{
‖f‖2 + max

{
1,
‖f‖F√

3U

}
δ

}
≤ 36δ

{
‖f‖2 +

(
1 +
‖f‖F√

3U

)
δ

}
. (26)

By using (26) and (23) sequentially, we have with probability 1− 2ζ, for all f ∈ F and g ∈ G:

Ψλ
n(h∗g, f, g) = Ψn(h∗g, f, g)− λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
≤Ψ(h∗g, f, g) + 36δ

{
‖f‖2 +

(
1 +
‖f‖F√

3U

)
δ

}
− λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
≤Ψ(h∗g, f, g) + 36δ

{
‖f‖2 +

(
1 +
‖f‖F√

3U

)
δ

}
− λ

(
2

3
‖f‖2F +

U

2δ2
‖f‖22

)
+ λU

=Ψλ/2(h∗g, f, g) + 36δ2 + λU +

(
36δ‖f‖2 −

λU

4δ2
‖f‖22

)
+

(
36δ√
3U

δ‖f‖F −
λ

3
‖f‖2F

)
.

With the assumption that λ ≥ 324Cλδ
2/U , by completing squares, we have

36δ‖f‖2 −
λU

4δ2
‖f‖22 ≤

(36δ)2

4 λU4δ2

≤ 4δ2

Cλ
, and

36δ2

√
3U
‖f‖F −

λ

3
‖f‖2F ≤

324δ4

λU
≤ δ2

Cλ
.

Therefore, with probability 1− 2ζ, for all f ∈ F and g ∈ G:

Ψλ
n(h∗g, f, g) ≤ Ψλ/2(h∗g, f, g) + λU +

(
36 +

5

Cλ

)
δ2. (27)

Now we go back to (25). By applying two upper bounds above, we have with probability 1 − 2ζ,
uniformly for all g ∈ G:

sup
f∈F

Ψn(ĥg, f, g)−Ψn(h∗g, f, g)− 2λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
≤2 sup

f∈F
Ψλ
n(h∗g, f, g) + λµ(‖h∗g‖2H − ‖ĥg‖2H)

≤2 sup
f∈F

Ψλ/2(h∗g, f, g) + 2λU + (72 + 10/Cλ)δ2 + λµ(‖h∗g‖2H − ‖ĥg‖2H)

=2λU + (72 + 10/Cλ)δ2 + λµ(‖h∗g‖2H − ‖ĥg‖2H), (28)

where supf∈F Ψλ/2(h∗g, f, g
∗) = 0 since E

{
g(W )− h∗g(X)

}
f(Z) = 0.
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We can also obtain the upper bound of ‖ĥg‖H by (28). By choosing f = 0, the LHS of (28) is 0, so
the supremum of LHS is nonnegative. Then with probability 1− 2ζ,

‖ĥg‖2H ≤
1

λµ

{
2λU + (72 + 10/Cλ)δ2

}
+ ‖h∗g‖2H

≤
36Cλ + 3 + 5

9Cλ
24CλL2

U +
Cf+1
B

+ ‖h∗g‖2H. (29)

Lower bound of sup-loss (24). For any h and g, by our assumption that ‖f∆−projZ(h−h∗g)‖2 ≤
ηn, where f∆ = arg minf∈F

L2‖h−h∗g‖
2
H
‖f − projZ(h − h∗g)‖2. Let ∆̂g = ĥg − h∗g, and f∆̂g

=

arg minf∈FL2‖ĥg−h∗g‖H
‖f − projZ(h− h∗g)‖2.

If ‖f∆̂g
‖2 < Cfδ, then by the triangle inequality, we have

‖projZ(ĥg − h∗g)‖2 ≤ ‖f∆̂g
‖2 + ‖f∆̂g

− projZ(ĥg − h∗g)‖2 ≤ Cfδ + ηn.

If ‖f∆̂g
‖2 ≥ Cfδ, let r =

Cf δ
2‖f∆̂g

‖2 ∈ [0, 1/2]. By star-convexity, rf∆̂g
∈ FL2‖ĥg−h∗g‖2H

. Therefore,

for any g ∈ G,

sup
f∈F

Ψn(ĥg, f, g)−Ψn(h∗g, f, g)− 2λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
≥ r

{
Ψn(ĥg, f∆̂g

, g)−Ψn(h∗g, f∆̂g
, g)
}

︸ ︷︷ ︸
(I)

−2λ r2

(
‖f∆̂g

‖2F +
U

δ2
‖f∆̂g

‖2n
)

︸ ︷︷ ︸
(II)

.

For (II): We have

(II) = r2

(
‖f∆̂g

‖2F +
U

δ2
‖f∆̂g

‖2n
)
≤ 1

4
‖f∆̂g

‖2F +
U

δ2
r2‖f∆̂g

‖2n

≤ 1

4
‖f∆̂g

‖2F +
U

δ2
r2

(
3

2
‖f∆̂g

‖22 + δ2 + δ2
‖f∆̂g

‖2F
3U

)
with probability 1− ζ by (22)

≤ 1

3
‖f∆̂g

‖2F +
1

4
U +

3

8
C2
fU by definition of r

≤ 1

3
L2‖ĥg − h∗g‖2H + (

1

4
+

3

8
C2
f )U since f∆̂g

∈ FL2‖ĥg−h∗g‖2H
.

For (I): Note that Ψn(h, f, g)−Ψn(h∗g, f, g) = 1
n

∑n
i=1[h− h∗g](Xi)f(Zi). We apply Lemma 11

of Foster and Syrgkanis [2019], with L(h−h∗g)f = (h− h∗g)f . Recall that

Ξ =
{

(x, z) 7→ r[h− h∗g](x)fL
2B

∆ (z) : h ∈ H, (h− h∗g) ∈ HB , g ∈ G, r ∈ [0, 1]
}
,

where fL
2B

∆ = arg minf∈FL2B
‖f − projZ(h− h∗g)‖2. Since δn upper bounds critical radius of Ξ,

we have with probability 1− ζ, uniformly for all g ∈ G, and h ∈ H such that ∆ = h− h∗g ∈ HB ,∣∣{Ψn(h, f∆, g)−Ψn(h∗g, f∆, g)
}
−
{

Ψ(h, f∆, g)−Ψ(h∗g, f∆, g)
}∣∣

≤ 18δ
(
‖(h− h∗g)f∆‖2 + δ

)
≤ 18δ(‖f∆‖2 + δ),

where in the second inequality, we use the fact that h− h∗g ∈ HB , so that ‖h− h∗g‖∞ ≤ 1. When
‖∆‖2H = ‖h− h∗g‖2H > B, by replacing h− h∗g by (h− h∗g)

√
B/‖h− h∗g‖H and multiplying both

sides by ‖h− h∗g‖2H/B, we have with probability 1− ζ, uniformly for all h ∈ H, g ∈ G,∣∣{Ψn(h, f∆, g)−Ψn(h∗g, f∆, g)
}
−
{

Ψ(h, f∆, g)−Ψ(h∗g, f∆, g)
}∣∣

≤ 18δ(‖f∆‖2 + δ) max

{
1,
‖h− h∗g‖2H

B

}
.
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When ‖f∆̂g
‖2 ≥ Cfδ, with probability 1− ζ, uniformly for all g ∈ G,

(I) ≥r
{

Ψ(ĥg, f∆̂g
, g)−Ψ(h∗g, f∆̂g

, g)
}
− 18δr

[
‖f∆̂g

‖2 + δ
]

max

{
1,
‖ĥg − h∗g‖2H

B

}

≥ r
{

Ψ(ĥg, f∆̂g
, g)−Ψ(h∗g, f∆̂g

, g)
}

︸ ︷︷ ︸
(I.1)

−9δ [Cfδ + δ] max

{
1,
‖ĥg − h∗g‖2H

B

}
,

where the second inequality is due to the definition of r =
Cfδ

2‖f∆̂g
‖2 ≤

1
2 , and

(I.1) =
Cfδ

2‖f∆̂g
‖2

{
Ψ(ĥg, f∆̂g

, g)−Ψ(h∗g, f∆̂g
, g)
}

=
Cfδ

2‖f∆̂g
‖2

E
{
ĥg(X)− h∗g(X)

}
f∆̂g

(Z)

=
Cfδ

2‖f∆̂g
‖2

E
(
f∆̂g

(Z)E
[
ĥg(X)− h∗g(X) | Z

])
=

Cfδ

2‖f∆̂g
‖2

E
(
f∆̂g

(Z)
{

projZ(ĥg − h∗g)(Z)
})

=
Cfδ

2‖f∆̂g
‖2

E
[
f∆̂g

(Z)2 −
{
f∆̂g

(Z)− projZ(ĥg − h∗g)(Z)
}
f∆̂g

(Z)
]

≥ Cfδ

2

(
‖f∆̂g

‖2 − ‖f∆̂g
− projZ(ĥg − h∗g)‖2

)
by Cauchy-Schwartz inequality

≥ Cfδ

2

(
‖f∆̂g

‖2 − ηn
)

since ‖f∆̂g
− projZ(h∗g − ĥg)‖2 ≤ ηn

≥ Cfδ

2

(
‖projZ(ĥg − h∗g)‖2 − 2ηn

)
by triangle inequality.

Finally, we have either ‖f∆̂g
‖2 < Cfδ or with probability 1− 2ζ, uniformly for all g ∈ G:

sup
f∈F

Ψn(ĥg, f, g)−Ψn(h∗g, f, g)− 2λ

(
‖f‖2F +

U

δ2
‖f‖2n

)
≥ (I)− 2λ(II)

≥Cfδ
2

(
‖projZ(ĥg − h∗g)‖2 − 2ηn

)
− 9(Cf + 1)δ2 max

{
1,
‖ĥg − h∗g‖2H

B

}

− 2λ

3
L2‖ĥg − h∗g‖2H − 2λ(

1

4
+

3

8
C2
f )U. (30)

Combine upper and lower bounds of (24). Combining the upper bound (28) and lower bound
(30), we have either ‖fĥg‖2 < Cfδ or with probability 1− 4ζ, uniformly for all g ∈ G:

Cfδ

2
‖projZ(ĥg − h∗g)‖2 ≤2λU +

(
72 +

10

Cλ

)
δ2 + λµ(‖h∗g‖2H − ‖ĥg‖2H)

+ Cfδηn + 9(Cf + 1)δ2 max

{
1,
‖ĥg − h∗g‖2H

B

}

+
2λ

3
L2‖ĥg − h∗g‖2H +

(
1

2
+

3

4
C2
f

)
λU

= λµ(‖h∗g‖2H − ‖ĥg‖2H) +

(
2λ

3
L2 +

9(Cf + 1)δ2

B

)
‖ĥg − h∗g‖2H

+

(
5

2
+

3

4
C2
f

)
λU + Cfδηn +

(
72 +

10

Cλ
+ 9(Cf + 1)

)
δ2.
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Then, with the assumption that µ ≥ 4
3L

2 +
18(Cf+1)

B
δ2

λ , we have

λµ(‖h∗g‖2H − ‖ĥg‖2H) +

(
2λ

3
L2 +

9(Cf + 1)δ2

B

)
‖ĥg − h∗g‖2H

≤λµ(‖h∗g‖2H − ‖ĥg‖2H) + 2

(
2λ

3
L2 +

9(Cf + 1)δ2

B

)(
‖ĥg‖2H + ‖h∗g‖2H

)
≤2λµ‖h∗g‖2H ≤ 2λµ sup

g∈G
‖h∗g‖2H.

Finally, with probability 1− 4ζ, uniformly for all g ∈ G:

sup
g∈G
‖projZ(ĥg − h∗g)‖2

≤

(
4µ supg∈G ‖h∗g‖2H + 5U

Cf
+

3U

2
Cf

)
λ

δ
+ 2ηn +

(
162 + 20/Cλ

Cf
+ 18

)
δ

.

[
324C ′λ

(
4µ supg∈G ‖h∗g‖2H/U + 5

Cf
+

3

2
Cf

)
+

162 + 20/Cλ
Cf

+ 18

]
δ + 2ηn

. (1 + sup
g∈G
‖h∗g‖2H)δ,

where the second inequality is due to the assumption that 324Cλδ
2/U ≤ λ ≤ 324C ′λδ

2/U , and the
last inequality is due to the assumption that ηn . δn.

D.4.3 Proof of Lemma D.5

Proof. Step 1. Critical radius of F3U . Directly applying Lemma D.4, we only require that δ̂n
satisfies the inequality

64√
n

∫ δ

δ2

2

√
logNn(t, star{F3U})dt ≤ δ2.

Then with probability 1− ζ, we have δn ≤ O(δ̂n +
√

log(1/ζ)
n ), where δn is the maximum critical

radii of Ω.

Step 2. Critical radius of Ξ.

Since Ξ ⊂ {(x, z) 7→ rh(x)f(z) : h ∈ HB , f ∈ FL2B , r ∈ [0, 1]} , Ξ̃, we only need to consider a
conservative critical radius for Ξ̃.

Suppose that HεB is an empirical ε-covering of star{HB} and FεL2B is an empirical ε-covering of
star{FL2B}. Then for any rhf ∈ Ξ̃, r ∈ [0, 1],

inf
hε∈HεB ,fε∈FεL2B

‖hεfε − rhf‖n ≤ inf
hε∈HεB

‖(hε − h)fε‖n + inf
fε∈Fε

L2B

‖h(rf − fε)‖n

≤ inf
hε∈HεB

‖hε − h‖n + inf
fε∈Fε

L2B

‖rf − fε‖n

≤ 2ε.

Therefore,Hε/2B ×Fε/2L2B is an empirical ε-covering of Ξ. Since

logNn(t,Bn(δ,G∆)) ≤ logNn(t,Bn(δ, G̃Ψ)) ≤ logNn(t, G̃Ψ)

≤ logNn(t/2, star{HB}) + logNn(t/2, star{FL2B}),

by Lemma D.4, we only require that δ̂n satisfies the inequality

64√
n

∫ δ

δ2

2

√
logNn(t/2, star{HB}) + logNn(t/2, star{FL2B})dt ≤ δ2.
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Then with probability 1− ζ, we have δn ≤ O(δ̂n +
√

log(1/ζ)
n ), where δn is the maximum critical

radii of Ω.

Step 3. Critical radius of Ω.

Ω ,
{

(x,w, z) 7→ r(h∗g(x)− g(w))f(z) : g ∈ GD, f ∈ F3U , r ∈ [0, 1]
}

⊂ {(x,w, z) 7→ r(h(x)− g(w))f(z) : g ∈ GD, h ∈ HAD, f ∈ F3U , r ∈ [0, 1]}
, G̃Ψ,

where the second line is due to ‖h∗g‖2H ≤ A‖g‖2G for all g ∈ G. Suppose that HεAD is an empirical
ε-covering of star{HAD} and GεD is that of star{GD}, Fε3U is that of star{F3U}. Then for any
r(h− g)f ∈ G̃Ψ, r ∈ [0, 1],

inf
hε∈HεAD,fε∈Fε3U ,gε∈GεD

‖r(h− g)f − (hε − gε)fε‖

≤ inf
fε∈Fε3U

‖(h− g)(fε − rf)‖n + inf
hε∈HεAD

‖(hε − h)fε‖n + inf
gε∈GεD

‖(gε − g)fε‖n

≤ inf
fε∈Fε3U

2‖fε − rf‖n + inf
hε∈HεAD

‖hε − h‖n + inf
gε∈GεD

‖gε − g‖n

≤ 4ε,

where the second inequality is from triangular inequality and the thrid inequality is due to the fact
that ‖h− g‖∞ ≤ 2 and ‖fε‖∞ ≤ 1.

Therefore,Hε/4AD × G
ε/4
D ×Fε/43U is an empirical ε-covering of Ω.

By Lemma D.4, we only require that δ̂n satisfies the Dudley’s integral inequality. Actually, since

logNn(t,Bn(δ,Ω)) ≤ logNn(t,Bn(δ, G̃Ψ)) ≤ logNn(t, G̃Ψ)

≤ logNn(t/4, star{HAD}) + logNn(t/4, star{GD})
+ logNn(t/4, star{F3U}),

when δ̂n satisfies the inequality

64√
n

∫ δ

δ2

2

√
logNn(t/4, star{HAD}) + logNn(t/4, star{GD}) + logNn(t/4, star{F3U})dt ≤ δ2,

then with probability 1− ζ, we have δn ≤ O(δ̂n +
√

log(1/ζ)
n ), where δn is the maximum critical

radii of Ω. Finally, after combining Steps 1-3, we have that if δ̂n satisfies the inequality

64√
n

∫ 4δ

δ2

2

√
logNn(t, star{F3U∨L2B}) + logNn(t, star{HAD∨B}) + logNn(t, star{GD})dt ≤ δ2,

then with probability 1− ζ, we have δn ≤ O(δ̂n +
√

log(1/ζ)
n ), where δn is the maximum critical

radii of F3U , Ξ and Ω.

D.4.4 Proof of Lemma D.7

Proof. Critical radius of Ξ. We consider a conservative critical radius for G̃∆, which is a tensor
product of two RKHSs HB and FL2B . Suppose that H and F are endowed with reproducing

kernels KH and KF , with ordered eigenvalues
{
λ↓j (KH)

}∞
j=1

and
{
λ↓j (KF )

}∞
j=1

, respectively.

Then the RKHS G̃∆ has reproducing kernel KΞ = KH ⊗KF , with eigenvalues
{
λ↓j (KH)

}∞
j=1
×{

λ↓j (KF )
}∞
j=1

. Therefore, by Lemma D.6,

Rn(G̃∆, δ) ≤
√

2L2B2

n

√√√√ ∞∑
i,j=1

min
{
λ↓i (KH)λ↓j (KF ), δ2

}
.
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Critical radius of Ω. We consider a conservative critical radius for

G̃Ψ = {(x,w, z) 7→ r(h(x)− g(w))f(z) : g ∈ GD, h ∈ HAD, f ∈ F3U , r ∈ [0, 1]} .

Let h̃(x,w) = h(x) and g̃(x,w) = g(w), x ∈ X , w ∈ W . In addition, h̃ ∈ H̃AD on X ×W with
kernelKH̃ = KH⊗1 and g̃ ∈ G̃D on X ×W with kernelKG̃ = 1⊗KG . Notice that h−g ∈ H̃AD+

G̃D, which is a RKHS endowed with RKHS norm ‖f‖H̃+G̃ = minf=h̃+g̃,h̃∈H̃,g̃∈G̃ ‖h̃‖H̃+‖g̃‖G̃ , and
reproducing kernel KH̃ +KG̃ . As a result, ‖h− g‖H̃+G̃ ≤

√
AD+

√
D for all h− g ∈ H̃AD + G̃D.

According to Weyl’s inequality for compact self-adjoint operators in Hilbert spaces (see the s-
number sequence theory in Hinrichs [2006] and Pietsch [1987, 2.11.9]), λ↓i+j−1(KH̃ + KG̃) ≤
λ↓i (KH̃) + λ↓j (KG̃) = λ↓i (KH) + λ↓j (KG) whenever i, j ≥ 1, so we have λ↓j (KH̃ + KG̃) ≤
λ↓[(j+1)/2](KH) + λ↓[(j+1)/2](KG) whenever j ≥ 1.

Since (H̃+ G̃)⊗F is a RKHS with reproducing kernel (KH̃ +KG̃)⊗KF , by the same argument
for Ξ, we have

Rn(G̃Ψ, δ) ≤
√
D(1 +

√
A)

√
6U

n

√√√√ ∞∑
i,j=1

min
{

[λ↓[(i+1)/2](KH) + λ↓[(i+1)/2](KG)]λ↓j (KF ), δ2
}

≤
√
D(1 +

√
A)

√
12U

n

√√√√ ∞∑
i,j=1

min
{

[λ↓i (KH) + λ↓i (KG)]λ↓j (KF ), δ2
}
.

E Additional estimation details

In this section we demonstrate the performance of the proposed FQE-type algorithm introduced in
Section 5 for the case whereH(t) and F (t) are Reproducing kernel Hilbert spaces (RKHSs) endowed
with reproducing kernels KH(t) and KF(t) respectively and canonical RKHS norms ‖ • ‖H(t) =
‖ • ‖KH(t)

, ‖ • ‖F(t) = ‖ • ‖KF(t)
respectively, for 1 ≤ t ≤ T .

For each 1 ≤ t ≤ T , based on observed batch data {St,i,Wt,i, Zt,i, At,i, Rt,i}ni=1, we can ob-
tain the Gram matrices KH(t) = [KH(t)([Wt,i, St,i, At,i], [Wt,j , St,j , At,j ])]

n
i,j=1 and KF(t) =

[KF(t)([Zt,i, St,i, At,i], [Zt,j , St,j , At,j ])]
n
i,j=1. Then we compute q̂πt = P̂t(v̂πt+1 +Rt) via (7) with

g = v̂πt+1 +Rt. Specifically, q̂πt has the following form:

q̂πt (w, s, a) = [P̂t(v̂πt+1 +Rt)](w, s, a) =

n∑
i=1

αiKH(t)([Wt,i, St,i, At,i], [w, s, a]), (31)

where α = [α1, . . . , αn]> =
(
KH(t)M(t)KH(t) + 4λ2µKH(t)

)†
KH(t)M(t)Yt with M(t) =

K
1/2

F(t)(
M
nδ2 KF(t) + In)−1K

1/2

F(t) , and Yt = Rt + v̂πt+1 with Rt = [Rt,1, . . . , Rt,k]> and v̂πt+1 =

[v̂πt+1(Wt+1,1, St+1,1), . . . , v̂πt+1(Wt+1,n, St+1,n)]>. Here A† denotes the Moore-Penrose pseudo-
inverse of A.

Selection of hyper-parameters. There are several hyper-parameters in (31) for each 1 ≤ t ≤ T .
In each step, we treat Yt = Rt + v̂πt+1 as the response vector and use cross-validation to tune
M/δ2 and λ2µ in (31). We adopt the tricks of Dikkala et al. [2020] and use the recommended
defaults in their Python package mliv, where two scaling functions are defined by ς(n) = 5/n0.4

and ζ(scale, n) = scale× ς4(n)/2.

For cross-validation, let I(1), . . . , I(K) denote the index sets of the randomly partitioned K folds
of the indices {1, . . . , n} and I(−k) = {1, . . . , n}\I(k), k = 1, . . . ,K. We summarize the one-step
NPIV estimation with cross-validation in Algorithm 2.
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Algorithm 2: Min-max NPIV estimation with RKHSs
1 Input: {St,i,Wt,i, Zt,i, At,i, Yt,i = Rt,i + v̂πt+1(Wt+1,i, St+1,i)}ni=1, target policy πt, kernels

KH(t) , KF(t) , SCALE as some positive scaling factors, the number of cross-validation partition
K.

2 Repeat for scale ∈ SCALE:
3 Repeat for k = 1, . . . ,K:
4 [M/δ2](−k) = 1/ς2(|I(−k)|), [λ2µ](−k) = ζ(scale, |I(−k)|).
5 Obtain q̂π (−k)

t by (31) with data whose indices are in I(−k).
6 [M/δ2](k) = 1/ς2(|I(k)|).
7 Calculate εi = Yt,i − q̂π (−k)

t (Wt,i, St,i, At,i) for i ∈ I(k).
8 Loss(k)(scale) = ε>MI(k)ε, where ε = [εi]

>
i∈I(k) and MI(k) is obtained by data in

I(k).
9 Loss(scale) = K−1

∑K
k=1 Loss

(k)(scale).
10 scale∗ = arg minscale∈SCALE Loss(scale).
11 Obtain q̂πt by (31) with all data and M/δ2 = 1/ς2(n), λ2µ = ζ(scale∗, n).
12 Output: {v̂πt (Wt,i, St,i) =

∑
a∈A q̂

π
t (Wt,i, St,i, a)π(a | St,i)}ni=1.

Below we summarize our proposed FQE-type algorithm using a sequential NPIV estimation with
tuning procedure described in Algorithm 3.

Algorithm 3: A FQE-type algorithm by sequential min-max NPIV estimation

1 Input: Batch Data Dn = {{St,i,Wt,i, Zt,i, At,i, Rt,i}Tt=1}ni=1, a target policy π = {πt}Tt=1,
kernels {KH(t) ,KF(t)}Tt=1, set SCALE as some positive scaling factors, number of
cross-validation partition K.

2 Let v̂πT+1 = 0.
3 Repeat for t = T, . . . , 1:
4 Obtain {v̂πt (Wt,i, St,i)}ni=1 by Algorithm 2.
5 Output: V̂(π) = n−1

∑n
k=1 v̂

π
1 (W1,k, S1,k).

F Simulation details

In this section, we perform a simulation study to evaluate the performance of our proposed OPE
estimation and to verify the finite-sample error bound of our OPE estimator in the main result
Theorem 6.3.

F.1 Simulation setup

Let S = R2, U = R,W = R,Z = R, and A = {1,−1}.

MDP setting. At time t, given (St, Ut, At), we generate

St+1 = St +AtUt12 + eSt+1
,

where 12 = [1, 1]> and the random error eSt+1 ∼ N ([0, 0]>, I2) with I2 denoting the 2-by-2 identity
matrix.

The behavior policy is

π̃bt (At | Ut, St) = expit
{
−At

(
t0 + tuUt + t>s St

)}
,

where t0 = 0, tu = 1, and t>s = [−0.5,−0.5].

By this behavior policy

πbt (At | St) = E[π̃bt (At | Ut, St) | At, St] = expit{−At
(
t0 + tuκ0 + (ts + tuκs)

>St
)
},

provided that the following conditional distribution is used.
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We generate the hidden state Ut, and two proximal variables Zt and Wt by the following conditional
multivariate normal distribution given (St, At):

(Zt,Wt, Ut) | (St, At) ∼ N

[α0 + αaAt + αsSt
µ0 + µaAt + µsSt
κ0 + κaAt + κsSt

]
,Σ =

 σ2
z σzw σzu

σzw σ2
w σwu

σzu σwu σ2
u

 ,

where

• α0 = 0, αa = 0.5, α>s = [0.5, 0.5],

• µ0 = 0, µa = −0.25, µ>s = [0.5, 0.5],

• κ0 = 0, κa = −0.5, κ>s = [0.5, 0.5]

• the covariance matrix

Σ =

[
1 0.25 0.5

0.25 1 0.5
0.5 0.5 1

]

The initial S1 is uniformly sampled2 from R2.

Reward setting. The reward is given by

Rt = expit

{
1

2
At(Ut + [1,−2]St)

}
+ et,

where et ∼ Uniform[−0.1, 0.1]. One can verify that our simulation setting satisfies the conditions in
Section A.1 so that our method can be applied.

Target policy. We evaluate a ε-greedy policy π(a | St) maximizing the immediate reward:

At | St ∼
{

sign {E[Ut + [1,−2]St | St]} with probability 1− ε,
Uniform{−1, 1} with probability ε.

We set ε = 0.2.

F.2 Implementation

We present the results of policy evaluation for the simulation setup above. Specifically, to evaluate
the finite-sample error bound of the proposed estimator in terms of the sample size n, we consider
T = 1, 3, 5 and let n = 256, 512, 1024, 2048, 4096; to evaluate the estimation error of our OPE
estimator in terms of the length of horizon T , we fix n = 512 and let T = 1, 2, 4, 8, 16, 24, 32, 48, 64.
For each setting of (n, T ), we repeat 100 times. All simulation are computed on a desktop with one
AMD Ryzen 3800X CPU, 32GB of DDR4 RAM and one Nvidia RTX 3080 GPU.

We choose F (t) and H(t) as RKHSs endowed with Gaussian kernels, with bandwidths selected
according to the median heuristic trick by Fukumizu et al. [2009] for each 1 ≤ t ≤ T . The pool of
scaling factors SCALE contains 30 positive numbers spaced evenly on a log scale between 0.001 to
0.05. The number of cross-validation partition K = 5. The true target policy value of π is estimated
by the mean cumulative rewards of 50, 000 Monte Carlo trajectories with policy π.

2Sample by gym package build in function spaces.sample() from spaces.Box(low=-np.inf,
high=np.inf, shape=(2,), dtype=np.float32).
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