
Markovian Interference in Experiments

Anonymous Author(s)
Affiliation
Address
email

Abstract

We consider experiments in dynamical systems where interventions on some1

experimental units impact other units through a limiting constraint (such as2

a limited supply of products). Despite outsize practical importance, the best3

estimators for this ‘Markovian’ interference problem are largely heuristic4

in nature, and their bias is not well understood. We formalize the problem5

of inference in such experiments as one of policy evaluation. Off-policy6

estimators, while unbiased, apparently incur a large penalty in variance7

relative to state-of-the-art heuristics. We introduce an on-policy estimator:8

the Differences-In-Q’s (DQ) estimator. We show that the DQ estimator can9

in general have exponentially smaller variance than off-policy evaluation. At10

the same time, its bias is second order in the impact of the intervention. This11

yields a striking bias-variance tradeoff so that the DQ estimator effectively12

dominates state-of-the-art alternatives. Our empirical evaluation includes a13

set of experiments on a city-scale ride-hailing simulator.14

1. Introduction15

Experimentation is a broadly deployed learning tool in online commerce that is, in principle,16

simple: apply the treatment in question at random (e.g. an A/B test), and ‘naively’ infer the17

treatment effect by differencing the average outcomes under treatment and control. About a18

decade ago, Blake and Coey [8] pointed out a challenge in such experimentation on Ebay:19

“Consider the example of testing a new search engine ranking algorithm which steers test20

buyers towards a particular class of items for sale. If test users buy up those items, the21

supply available to the control users declines.”22

The above violation of the so-called Stable Unit Treatment Value Assumption (SUTVA [13]),23

has been viewed as problematic in the context of online platforms at least as early as Reiley’s24

seminal ‘Magic on the Internet’ work [40]; Blake and Coey [8] were simply pointing out that25

the resulting inferential biases were large, which is particularly problematic since treatment26

effects in this context are typically tiny. The interference problem above is germane to27

experimentation on commerce platforms where interventions on a given experimental unit28

impact other units since all units effectively share a common inventory of ‘demand’ or ‘supply’29

depending on context.30

Despite what appears to be the ubiquity of such interference, a practical solution is far31

from settled. The majority of approaches so far fall under the category of experimental32

design, the idea being that a more-careful assignment of treatment will render the bias of the33

‘naively’-derived inference negligible. This ongoing line of work has produced sophisticated34

experiment designs which, in the best cases, provably reduce bias under highly specialized35
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models. While this is promising in theory, experimentation on online platforms in particular36

still largely relies on the simplest designs, i.e. A/B tests. For reasons including cost and37

organizational frictions, sophisticated experimental designs are not be an ideal lever, and38

often infeasible.39

Markovian Interference and Existing Approaches: We study a generic experimentation40

problem within a system represented as a Markov Decision Process (MDP), where treatment41

corresponds to an action which may interfere with state transitions. This form of interference,42

which we refer to as Markovian, naturally subsumes the platform examples above, as recently43

noted by others either implicitly [48] or explicitly [26, 52]. In that example, a user arrives at44

each time step, the platform chooses an action (whether to treat the user), and the user’s45

purchase decision alters the system state (inventory levels).46

Our goal is to estimate the Average Treatment Effect (ATE), defined as the difference in47

steady-state reward with and without applying the treatment. In light of the above discussion,48

we assume that experimentation is done under simple randomization (i.e. A/B testing). Now49

without design as a lever, there are perhaps two existing families of estimators:50

1. Naive: We will explicitly define the Naive estimator in the next section, but the strategy51

amounts to simply ignoring the presence of interference. This is by and large what is done in52

practice. Of course it may suffer from high bias (we show this formally in Example 1), but it53

serves as more than just a strawman. In particular, bias is only one side of the estimation54

coin, and with respect to the other side, namely variance, the Naive estimator is effectively55

the best possible.56

2. Off-Policy Evaluation (OPE): Another approach comes from viewing our problem57

as one of policy evaluation in reinforcement learning (RL). Succinctly, it can be viewed as58

estimating the average reward of two different policies (no treatment, or treatment) given59

observations from some third policy (simple randomization). This immediately suggests60

framing the problem as one of Off-Policy Evaluation, and borrowing one of many existing61

unbiased estimators, e.g. [59, 58, 39, 24, 31, 32]. This tack appears to be promising, e.g. [52],62

but we observe that the resulting variance is necessarily large (Theorem 3).63

Our Contributions: Against the above backdrop, we propose a novel on-policy treatment-64

effect estimator, which we dub the ‘Differences-In-Q’s (DQ)’ estimator, for experiments with65

Markovian interference. In a nutshell, we characterize our contribution as follows:66

The DQ estimator has provably negligible bias relative to the treatment effect. Its variance67

can, in general be exponentially smaller than that of an efficent off-policy estimator. In both68

stylized and large-scale real-world models, it dominates state-of-the-art alternatives.69

We next describe these relative merits in greater detail:70

1. Second-order Bias: We show (Theorem 1) that when the impact of an intervention on71

transition probabilities is O(δ), the bias of the DQ estimator is O(δ2). The DQ estimator72

thus leverages the one piece of structure we have relative to generic off-policy evaluation:73

treatment effects are typically small.74

2. Variance: We show (Theorem 2) that the DQ estimator is asymptotically normal, and75

provide a non-trivial, explicit characterization of its variance. By comparison, we show76

(Theorem 4) that this variance can, in general, be exponentially (in the size of the state77

space) smaller than the variance of any unbiased off-policy estimator.78

Summarizing the above points, we are the first (to our knowledge) to explicitly characterize the79

favorable bias-variance trade-off in using on-policy estimation to tackle off-policy evaluation.80

This new lens has broader implications for OPE and policy optimization in RL.81

3. Practical Performance: We conduct experiments in both a caricatured one-dimensional82

environment proposed by others [26], as well as a city-scale simulator of a ride-sharing83

platform. We show that in both settings the DQ estimator has MSE that is substantially84

lower than (a) naive and off-policy estimators, and even (b) estimators given access to85

incumbent state-of-the-art experimental designs.86

Related Literature: The largest portion of work in interference is in experimental design,87

with the design levers ranging from stopping times in A/B tests [34, 25, 66, 27], to any88

form of more-sophisticated ‘clustering’ of units [12, 18, 21, 15, 43, 62, 64, 17], to clustering89

specifically when interference is represented by a network [41, 63, 50, 2, 7, 45, 70], to the90
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proportion of units treated [23, 57, 4], to the timing of treatment [53, 9, 19], and beyond91

[3, 33, 60, 41, 11, 6, 22, 50]. As alluded to earlier, these sophisticated designs can be powerful,92

but cost, user experience, and other implementation concerns restrict their application in93

practice [35, 36].94

We view this paper as orthogonal to this literature, but will eventually compare against a95

recent state-of-the-art design, so-called two-sided randomization [26, 5], that is specific to96

the context of two-sided marketplaces (e.g. the one we simulate).97

As stated earlier, the problem we study is one of off-policy evaluation (OPE) [46, 55]. The98

fundamental challenge in OPE is high variance, which can be attributed to the nature of the99

algorithmic tools used, e.g. sampling procedures [59, 58, 39]. Recent work on ‘doubly-robust’100

estimators [24, 31, 32] has improved on variance (incidentally, our estimator is loosely tied101

to these, as we discuss in Section 6), but again we will show, via a formal lower bound, that102

unbiased estimators as a whole have prohibitively large variance. Finally, our motivation is103

close in spirit to a recent paper [52], which applies OPE directly in Markovian interference104

settings; we make a direct experimental comparison in Section 5.105

In the policy optimization literature, ‘trust-region’ methods [51] and conservative policy106

iteration [30] use a related on-policy estimation approach to bound policy improvement.107

However, the explicit application of on-policy estimation in the context of OPE, and in108

particular the striking bias-variance tradeoff this enables, are novel to this paper.109

2. Model110

This section formalizes the inference problem that we tackle, casting it in the language of111

MDPs. Vis-à-vis the existing literature, this lens allows us to reason about the problem using112

a large, well-established toolkit, and makes obvious the fact that OPE provides unbiased113

estimation of the ATE. We then present what we call the ‘Naive’ estimator (alluded to in114

the introduction). This is the lowest-variance estimator one can hope for in this setting, but115

it can have significant bias, as we will see.116

We begin by defining an MDP with state space S. We denote by st ∈ S the state of the MDP117

at time t ∈ N. Every state is associated with a set of available actions A which govern the118

transition probabilities between states via the (unknown) function p : S ×A×S → [0, 1]. We119

assume that A = {0, 1} irrespective of state; for descriptive purposes, we will associate the ‘1’120

action with the use of a prospective intervention, so that ‘0’ is associated with not employing121

the intervention. We denote by r(s, a) the reward earned in state s having employed action122

a. A policy π : S → A maps states to random actions. We define the average reward λπ,123

under any (ergodic, unichain) policy π, according to:124

λπ = lim
T→∞

1
T

T∑
t=1

r(st, π(st)).

There are three policies we define explicitly:125

The Incumbent Policy π0: This policy never uses the intervention, so that π0(s) = 0 for126

all s. This is ‘business as usual’. Denote the associated transition matrix as P0 (i.e. the127

entries of P0 are exactly p(·, 0, ·))128

The Intervention Policy π1: This policy always uses the intervention, so that π1(s) = 1129

for all s. This reflects the system, should the intervention under consideration be ‘rolled out’.130

Denote the associated transition matrix as P1.131

The Experimentation Policy πp: This policy corresponds to the experiment design. Sim-132

ple randomization would select π(s) = 1 with some fixed probability p, say 1/2, independently133

at every period. This corresponds to the sort of search engine experiment alluded to in the134

introduction. The transition matrix associated with this design is then P1/2 = 1
2P0 + 1

2P1.135

The Inference Problem: We are given a single sequence of T states, actions, and rewards,136

observed under the experimentation policy πp (recall that cost and constraints [35, 36]137

prohibit us from running π0 or π1 separately until convergence). The data we have is the138

sequence {(st, at, r(st, at)) : t = 1, . . . , T}, wherein at , πp(st). We must estimate the139
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average treatment effect (ATE):140

ATE , λπ1 − λπ0 .

2.1. The Naive Estimator and Bias141

A natural approach to estimating the ATE is to use simple randomization (i.e. P1/2) and142

the following Naive estimator:143

(1) ˆATEN = 1
|T1|

∑
t∈T1

r(st, at)−
1
|T0|

∑
t∈T0

r(st, at),

where T1 = {t : at = 1} and T0 = {t : at = 0}. In the context of the search engine experiment,144

this corresponds to simply averaging some metric of interest (say, conversion) among the145

test users (T1) and control users (T0). What goes wrong is simply that the two empirical146

averages above, that seek to estimate λπ1 and λπ0 respectively, employ the wrong measure147

over states. This is sufficient to introduce bias that is on the order of the treatment effect148

being estimated:149

Example 1. Consider an MDP on two states, S = {0,1}. We collect a reward of 0 in state150

0 irrespective of the action taken in that state (r(0, 0) = r(0, 1) = 0), and a reward of 1 in151

state 1, again, irrespective of action (r(1, 0) = r(1, 1) = 1). On the other hand, transitions152

are impacted by our choice of action. Specifically, let p(0, 0,0) = p(0, 0,1) = p(1, 0,1) =153

p(1, 0,0) = 1/2. We maintain p(0, 1,1) = p(0, 1,0) = 1/2 so that the intervention has no154

effect at state 0. On the other hand, we let p(1, 1,1) = 1/2 + δ, so that p(1, 1,0) = 1/2− δ,155

for some δ > 0. In words, the intervention tends to discourage a transition to 0 from state 1.156

In the above example, it is easy to calculate that ATE = (1/2)δ/(1− δ), reflecting the157

shift in the stationary distribution favoring state 1, induced under the intervention. On158

the other hand, we can calculate that limT
ˆATEN = 0, so that the bias induced by the159

‘experimentation’ policy relative to the stationary distributions under the incumbent and160

intervention policies respectively, is comparable to the size of the treatment effect.161

3. The Differences-In-Q’s Estimator162

We are now prepared to introduce our estimator for inference in the presence of Markovian163

interference. Before defining our estimator, which we will see is only slightly more complicated164

than the Naive estimator, we recall a few useful objects associated with MDPs. First, for a165

fixed policy π, define the Bellman operator Tπ : R|S| × R→ R|S| according to166

Tπ(V, λ) = rπ − λ1 + PπV,

where rπ : S → R is defined according to rπ(s) = E [r(s, π(s))]. The average cost of policy π,167

denoted λπ, and the bias function corresponding to π, denoted Vπ, are then a solution to168

the fixed point equation Tπ(V, λ) = V . Finally, the Q-function associated with π, denoted169

Qπ : S ×A → R, is defined according to170

Qπ(s, a) = r(s, a)− λπ + E [Vπ(s1)|s0 = s, a0 = a] .(2)

3.1. An Idealized First Step171

In motivating our estimator, let us begin with the following idealization of the Naive estimator,172

where we denote by ρ1/2 the steady state distribution under the randomization policy π1/2:173

Eρ1/2

[
ˆATEN

]
=
∑
s

ρ1/2(s) [r(s, 1)− r(s, 0)] .

It is not hard to see that in the context of Example 1, we continue to have Eρ1/2 [ ˆATEN ] = 0,174

so that this idealization of the Naive estimator continues to have bias on the order of the175

treatment effect. Consider then, the following alternative:176

(3) Eρ1/2

[
ˆATED

]
=
∑
s

ρ1/2(s)
[
Qπ1/2(s, 1)−Qπ1/2(s, 0)

]
,
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where the term Eρ1/2 [ ˆATED] can for now just be thought of as an idealized constant ( ˆATED is177

defined soon in (4)). Compared to Eρ1/2 [ ˆATEN ], we see that Eρ1/2 [ ˆATED] takes a remarkably178

similar form, except that as opposed to an average over differences in rewards, we compute179

an average of differences in Q-function values. The idea is that doing so will hopefully180

compensate for the shift in distribution induced by π1/2. We return to our example to check:181

Example 1 (Continued). Continuing with our example, we can explicitly calculate Qπ1/2(·, ·),182

the average reward λπ1/2 , and the stationary distribution ρ1/2 (see Appendix B). Doing so183

allows us to calculate that184

Eρ1/2

[
ˆATED

]
= 1

2

(
δ

(1− δ/2)2

)
.

That is, |ATE− Eρ1/2 [ ˆATED]| = O(δ2), so that the bias of this idealized estimator is second-185

order (i.e. negligible) relative to the ATE.186

Is the dramatic mitigation of bias we see in Example 1 generic? If the experimentation187

policy mixes fast, our first set of results essentially answers this question in the affirmative.188

In particular, we make the following mixing time assumption:189

Assumption 1 (Mixing time). There exist constants C and λ such that for all s ∈ S,190

dTV(P k1/2(s, ·), ρ1/2) ≤ Cλk,

where dTV(·, ·) denotes total variation distance.191

We then have that the second order bias we saw in Example 1 is, in fact, generic:192

Theorem 1 (Bias of DQ). Assume that for any state s ∈ S, dTV(p(s, 1, ·), p(s, 0, ·)) ≤ δ.193

Then,194 ∣∣∣ATE− Eρ1/2

[
ˆATED

]∣∣∣ ≤ C ′( 1
1− λ

)2
rmax · δ2

where rmax := maxs,a |r(s, a)| and C ′ is a constant depending (polynomially) on log(C).195

3.2. The Differences-In-Q’s Estimator196

Motivated by the development in the previous subsection, the Differences-In-Q’s (DQ)197

estimator we propose to use is simply198

(4) ˆATED = 1
|T1|

∑
t∈T1

Q̂π1/2(st, at)−
1
|T0|

∑
t∈T0

Q̂π1/2(st, at),

where we take an empirical average over the state trajectory produced under the randomiza-199

tion policy, and Q̂π1/2 is an estimator of the Q-function. For concreteness, we obtain Q̂π1/2200

by solving201

min
V̂ ,λ̂

∑
s∈S

( ∑
t,st=s

r(st, at)− λ̂+ V̂ (st+1)− V̂ (st)
)2

.(5)

Our main result characterizes the variance and asymptotic normality of ˆATED:202

Theorem 2 (Variance and Asymptotic Normality of DQ). The DQ estimator is asymptotically203

normal so that204 √
T
(

ˆATED − Eρ1/2

[
ˆATED

])
d→ N (0, σ2

D),

with standard deviation205

σD ≤ C ′
(

1
1− λ

)5/2
log
(

1
mins∈S ρ1/2(s)

)
rmax.

where C ′ is a constant depending (polynomially) on log(C).206
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One Extreme of the Bias-Variance Tradeoff: We may heuristically think of the207

Naive estimator as representing one extreme of the bias-variance tradeoff among reasonable208

estimators. For the sake of comparison, by the Markov Chain CLT, the Naive estimator is209

also asymptotically normal with standard deviation Θ(rmax/(1−λ)1/2). This rate is efficient210

for the estimation of the mean of a Markov chain [20]. On the other hand, while the Naive211

estimator is effectively useless for the problem at hand given its bias is in general Θ(δ), that212

of the DQ estimator is O(δ2).213

4. The Price of Being Unbiased214

Thus far, we have seen that the DQ estimator provides a dramatic mitigation in bias215

(Theorem 1) at a relatively modest price in variance (Theorem 2). This suggests another216

question: could we hope to construct an unbiased estimator that has low variance (i.e.217

comparable to either the Naive or DQ estimators). We will see that the short answer is: no.218

4.1. The Variance of an Optimal Unbiased Estimator219

As noted earlier, a plethora of Off-policy evaluation (OPE) algorithms might be used to220

provide an unbiased estimate of the ATE. Rather than consider a particular OPE algorithm,221

here we produce a lower bound on the variance of any unbiased OPE algorithm. While such222

a bound is obviously of independent interest (since OPE is a far more general problem than223

what we seek to accomplish in this paper), we will primarily be interested in comparing this224

lower bound to the variance of the DQ estimator from Theorem 2.225

Theorem 3 (Variance Lower Bound for Unbiased Estimators). Assume we are given a dataset226

{(st, at, r(st, at)) : t = 0, . . . , T} generated under the experimentation policy π1/2, with s0227

distributed according to ρ1/2. Then for any unbiased estimator τ̂ of ATE, we have that228

T ·Var(τ̂) ≥ 2
∑
s

ρ1(s)2

ρ1/2(s)
∑
s′

p(s, 1, s′)(Vπ1(s′)− Vπ1(s) + r(s, 1)− λπ1)2

+ 2
∑
s

ρ0(s)2

ρ1/2(s)
∑
s′

p(s, 0, s′)(Vπ0(s′)− Vπ0(s) + r(s, 0)− λπ0)2 , σ2
off .

It is worth remarking that this lower bound is tight: in the appendix we show that an229

LSTD(0)-type OPE algorithm achieves this lower bound. While this is of independent230

interest vis-à-vis average cost OPE, we turn next to our ostensible goal here – evaluating the231

‘price’ of unbiasedness. We can do so simply by comparing the variance of the DQ estimator232

with the lower bound above. In fact, we are able to exhibit a class of one-dimensional233

Markov chains (in essence the same model proposed by [26] as a caricature of the dynamic234

interference problem) for which we have:235

Theorem 4 (Price of Unbiasedness). For any 0 < δ ≤ 1
5 , there exists a class of MDPs236

parameterized by n ∈ N, where n is the number of states, such that237

σD
σoff

= O

(
n8

cn

)
,

for some constant c > 1. Furthermore, |(ATE− E[ ˆATED])/ATE| ≤ δ.238

Another Extreme of the Bias-Variance Tradeoff: Theorems 2, 3, and 4 together reveal239

the opposite extreme of the bias-variance tradeoff. Specifically, if we insisted on an unbiased240

estimator for our problem (of which there are many, thanks to our framing of the problem241

as one of OPE), we would pay a large price in terms of variance. In particular Theorem 4242

illustrates that this price can grow exponentially in the size of the state space. This jibes243

with our empirical evaluation in both caricatured and large-scale MDPs in Section 5.244

Taken together our results reveal that the DQ estimator accomplishes a striking bias-245

variance tradeoff: it has substantially smaller variance than any unbiased estimator (in fact,246

comparable to the Naive estimator), all while ensuring bias that is second order in the impact247

of the intervention.248
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5. Experiments249

This section will empirically investigate the DQ estimator and a number of alternatives in250

two settings: a simple one-dimensional toy model proposed by [26], and more realistically, a251

city-scale simulator of a ride-hailing platform similar to what large ride-hailing operators use252

in production. The alternatives we consider include: 1) the Naive estimator; 2) TSRI-1 and253

TSRI-2, the “two-sided randomization” (TSR) designs/estimators from [26]; 3) a variety of254

OPE estimators. For the OPE estimators, we note that off-policy average reward estimation255

has only recently been addressed in [65, 69], and we implement their specific estimators256

which we simply denote as TD and GTD respectively. We also implement an extension to257

an LSTD type estimator proposed in [52].258

5.1. A toy example259

We first study all of our estimators in a simple setting that does not call for any sort260

of value function approximation. Our goal is to understand the relative merits of these261

estimators in terms of their bias and variance. To this end, we adopt precisely the toy MDP262

studied by [26]; a stylized model of a rental marketplace. This MDP is essentially a 1-D263

Markov chain on N = 5000 states parameterized by a ‘customer arrival’ rate λ and a ‘rental264

duration’ rate µ. At a given state n (so that n units of inventory are in the system), the265

probability that an arriving customer rents a unit is impacted by the intervention. As such266

if the intervention increases the probability of a customer renting, this reduces the inventory267

availability for customers that arrive later. Our MDP setup exactly replicates that of [26],268

with N = 5000, λ = 1, µ = 1; see the appendix for further details. We run all estimators over
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Figure 1: Toy-example from [26]. Left: Estimated ATE at time t/N = 104 across 100
trajectories. Dashed line indicates actual ATE. Diamonds indicate the asymptotic mean for
each estimator. DQ shows compelling bias-variance tradeoff for this experimental budget.
Right: Relative RMSE vs. Time; DQ dominates the alternatives at all timescales.

269
100 separate trajectories of length t = 104N of the above MDP initialized in its stationary270

distribution. Figure 1 summarizes the results of this experiment. Beginning with the left271

panel, which reports estimated quantities at t = 104N , we immediately see:272

TSR improves on Naive: The actual ATE in the experiment is 1.5%. Whereas it has the273

lowest variance of the estimators here, the Naive estimator has among the highest bias. The274

two TSR estimators reduce this bias substantially at a modest increase in variance. It is275

worth noting, as a sanity check, that these results precisely recreate those reported in [26].276

OPE estimators are high variance: The OPE estimators have the highest variance of277

those considered here. The TD estimator has the lower variance but this is simply because it278

is implicitly regularized. Run long enough, both estimators will recover the treatment effect.279

DQ shows a compelling bias-variance tradeoff: In contrast, the DQ estimator has the280

lowest bias at t = 104N and its variance is comparable to the TSR estimators (It is worth281

noting that run long enough, the DQ estimator had a bias of ∼ −5× 10−7).282
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Conclusions hold across experimental budgets: Turning our attention briefly to the283

right chart in Figure 1, we show the relative RMSE (i.e. RMSE normalized by the treatment284

effect) of the various estimators considered here across all experimental budgets t. RMSE285

effectively scalarizes bias and variance and we see that on this scalarization the DQ estimator286

dominates the other estimators considered here over all choice of t.287

We note that specialized designs such as TSR can still be valuable in specific settings: when288

λ� µ, for example, TSR is nearly unbiased (as shown in [26]), and can outperform DQ; see289

the appendix for such a study.290

5.2. A Large-Scale Ridesharing Simulator291

We next turn our attention to a city-scale ridesharing simulator similar to those used in292

production at large ride-hailing services. We will consider the problem of experimenting293

with changes to dispatching rules. Experimenting with these changes naturally creates294

Markovian interference by impacting the downstream supply/ positioning of drivers. Relative295

to the earlier toy example, the corresponding MDP here has an intractably large state-space,296

necessitating value function approximation for the DQ and OPE estimators.297

The simulator: Ridesharing admits a natural MDP; see e.g. [48]. The state at the time of298

a request corresponds to that of all drivers at that time: position, assigned routes, riders, and299

the pickup/dropoff location of the request. Actions correspond to driver assignments and300

pricing decisions. The reward for a request is the price paid by the rider, less cost incurred301

to service the request. Our simulator models Manhattan. Riders and drivers are generated302

according to real world data, based on [1]; this yields ∼ 300k requests and ∼ 7k unique drivers303

per real day. An arriving request is served a menu of options generated by a price engine.304

The rider chooses an option based on a choice model calibrated on taxi prices (for the outside305

option) and implied delay disutility from typical match rates. A dispatch engine assigns a306

driver to the rider; the engine chooses the driver who can serve the rider at minimal marginal307

cost, subject to the product’s constraints. Finally drivers proceed along their assigned routes308

until the next request is received. The simulator implements pooling. Users can switch out309

demand and supply generation, pricing and dispatch algorithms, driver repositioning, and310

the choice model via a simple API. Other simulators exist in the literature [48, 68], but lack311

either an open-source implementation, or implement a subset of the functionality here.312

The experiment: We experiment with dispatch policies. Specifically, we consider assigning313

a request to an idle driver or a ‘pool’ driver, i.e. a driver who already has riders in their car.314

A dispatch algorithm might prefer the former, but only if the cost of the resulting trip is at315

most α% higher than the cost of assigning to a pool driver. We consider three experiments,316

each of which changes α from a baseline of 0 to one of three distinct values: 30%, 50% or 70%,317

with ATEs of 0.5%, -0.9%, and -4.6% respectively. As we noted earlier, we would expect318

significant interference in this experiment (or indeed any experiment that experiments with319

pricing or dispatch) since an intervention changes the availability / position of drivers for320

subsequent requests.321

Figure 2 summarizes the results of the above experiments, wherein each estimator was run322

over 50 independent simulator trajectories, each over 3× 105 requests. The DQ and OPE323

estimators shared a common linear approximation architecture with basis functions that324

count the number of drivers at every occupancy level. We note that this approximation325

introduces its own bias which is not addressed by our theory. We immediately see:326

Strong Impact of Interference: As we might expect, interference has a significant impact327

here as witnessed by the large bias in the Naive estimator.328

Incumbent estimators do not improve on Naive: None of the incumbent estimators329

improve on Naive in this hard problem. This is also the case for the TSR designs, which in330

this large scale setting surprisingly appear to have significant variance. The OPE estimators331

have lower variance due to the regularization caused by value function approximation.332

DQ works: In all three experiments, the bias in DQ (although in a relative sense higher333

than in the toy model) is substantially smaller than the alternatives, and also smaller than the334

ATE. This is evident in the left panel in Figure 2. Notice that in the rightmost experiment335

(ATE = 0.5), DQ is the only estimator to learn that the ATE is positive. Like in the toy336

model, the right panel shows that these results are robust over experimentation budgets.337
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Figure 2: Ridesharing model Left: ˆATE at t = 3 × 105 over 50 trajectories. Dashed line
indicates actual ATE. DQ has lowest bias, and is only estimator to estimate correct sign of the
treatment at all effect sizes. Right: RMSE vs. Time; DQ dominates at all time scales.

6. Discussion: refining the bias-variance tradeoff338

To summarize, we have shown that the DQ estimator achieves a surprising bias-variance339

tradeoff by applying on-policy estimation to the Markovian interference problem, and more340

generally to OPE. Here we draw further connections between the Naive, DQ, and OPE341

estimators, and suggest how to interpolate between these estimators to realize other points342

along the bias-variance curve.343

Dynkin’s formula and an OPE meta-estimator. First, we situate the DQ estimator in the344

context of existing OPE techniques, using an identity referred to as Dynkin’s formula in345

stochastic control, and re-derived several times in the RL literature:346

(6) λ1 = λ1/2 + Eρ1/2

[
ρ1(s)
ρ1/2(s) (Qπ1/2(s, 1)− Vπ1/2(s))

]
.

Taking λ1 − λ0 , this translates into a familiar identity for the ATE:347

(7) ATE = Eρ1/2

[
ζ(s)(Qπ1/2(s, 1)−Qπ1/2(s, 0))

]
where ζ(s) = 1

2
ρ1(s)+ρ0(s)
ρ1/2(s) is the likelihood ratio of the stationary distributions. A variety of348

OPE estimators – including doubly-robust ([31, 61]) and primal-dual ([14, 56]) estimators –349

in fact estimate Equation (7) explicitly by plugging in estimates ζ̂, Q̂π1/2 of the likelihood350

ratio and value functions (referred to as the “doubly-robust meta-estimator” in [31]):351

ˆATEDR = 1
|T1|

∑
t∈T1

ζ̂(st)Q̂π1/2(st, 1)− 1
|T0|

∑
t∈T0

ζ̂(st)Q̂π1/2(st, 0)

Refining the bias-variance tradeoff. Immediately, we see that that by taking the likelihood352

ratio to be a constant ζ̂(s) = 1 ∀s, we recover the DQ estimator ˆATEDQ. Furthermore, if353

we then take V̂π1/2 to be any constant V̂π1/2(s) = c ∀s, we recover the Naive estimator1.354

The DQ and Naive estimators’ relationship to OPE then becomes clear: we obtain DQ by355

choosing a minimal variance (but highly biased) estimator of ζ; and we obtain the Naive356

estimator by subsequently choosing minimal variance (but highly biased) estimator of V .357

1To see this, observe that Q̂π1/2 (s, a) = r(s, a) + E
[
V̂π1/2 (s′)|s, a

]
= r(s, a) + c
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This suggests that we can interpolate between these extremes by making more refined358

bias-variance tradeoffs in estimating ζ̂ and Vπ1/2 . It turns out that several natural approaches359

to variance reduction provide exactly such an interpolation:360

• Explicit regularization. In estimating ζ̂(s), one can directly penalize its deviation361

from one, where increasing the penalty interpolates from OPE to DQ. Given that362

estimation of ζ̂(s) is the key difference between DQ and unbiased OPE – and363

therefore the source of the massive variance gap (Theorems ?? and ??) – we would364

expect this to be a particularly powerful approach to OPE, and indeed some works365

have shown strong empirical performance using similar penalties [44].366

Similarly, one can directly penalize the deviation of V̂π1/2 from zero (or any constant),367

as in regularized variants of LSTD (see e.g. [37]). As we increase the regulariza-368

tion penalty on ζ̂(s), we interpolate from OPE to DQ; additionally increasing the369

regularization penalty on V̂π1/2 then interpolates from DQ to Naive. Approaches370

combining both forms of regularization have been explored in [67].371

• Function approximation. More generally, one can restrict ζ̂(s) and V̂π1/2 to lie in372

particular function classes, with one extreme being any mapping S 7→ R, and the373

other extreme being the constant functions V̂π1/2(s) = c or ζ̂(s) = 1. As one example,374

when the state space is massive we may approximate it using state aggregation.375

At the extreme, aggregating all states into a single aggregate state implies that376

the value function (or likelihood ratio) must be a constant. As the aggregation for377

ζ̂(s) goes from fine to coarse, we interpolate between OPE and DQ; subsequently378

increasing the coarseness of V̂π1/2(s) then interpolates between DQ and Naive.379

• Discounting. A common technique to estimate the average reward value func-380

tion is to instead estimate a discounted reward value function Qγ(s, a) =381

E
[∑T

t=0 γ
tr(st, at)|s0 = s, a0 = a

]
, motivated by the fact that we obtain exactly the382

average-reward value function Q as the discount rate γ goes to one (under the proper383

scaling; precisely, limγ→1(1− γ)Qγ(s, a) = Q(s, a) [47]). This approach is commonly384

applied to reduce variance in average reward RL (see e.g. [29]). Implementing DQ385

with Q̂π1/2(s, a) = (1− γ)Qγ(s, a) yields the exact DQ estimator as γ → 1, and the386

Naive estimator as γ → 0.387
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Appendix606

A. Notation607

For a vector a ∈ Rn, we use ‖a‖1 =
∑n
i=1 |ai| and ‖a‖∞ = maxni=1 |ai|. For a matrix608

M ∈ Rn×m, we use ‖M‖1,∞ = max1≤i≤n
∑m
j=1 |aij | to represent the maximal row-wise609

l1-norms. We use 1 to represent the vectors with all ones. We use A# to represent the610

group inverse of A. For an irreducible and aperiodic Markov chain with associated transition611

matrix P and the stationary distribution ρ, we have (I − P )# = (I − P + 1ρ>)−1 − 1ρ>.612

B. Analysis of Example 1613

To begin, let us derive the ATE. Under policy π0, the transition matrix is

P0 =
[
1/2 1/2
1/2 1/2

]
and the stationary distribution is ρ0 = [1/2, 1/2]> accordingly. Similarly, one can verify
under policy π1, the transition matrix is

P1 =
[

1/2 1/2
1/2− δ 1/2 + δ

]
and the stationary distribution is ρ1 = [ 1−2δ

2−2δ ,
1

2−2δ ]>. Let r0 = [0, 1]>, r1 = [0, 1]> be the614

reward vector under actions 0 or 1. Then, the ATE is615

ATE = r>1 ρ1 − r>0 ρ0

= 1
2− 2δ −

1
2

= 1− 1 + δ

2− 2δ

= δ

2
1

1− δ .

Next, we consider the computation of Eρ1/2 [ ˆATED], which can be written as616

Eρ1/2 [ ˆATED] = ρ>1/2(Q1 −Q0)

where Qa is the Q-value vector for the policy π1/2 under the action a. To compute ρ1/2, Q0,617

and Q1, consider the transition matrix P for the policy π1/2:618

P =
[

1/2 1/2
1/2− δ/2 1/2 + δ/2

]
.

Then one can verify that the stationary distribution ρ1/2 is619

ρ1/2 =
[

1− δ
2− δ ,

1
2− δ

]>
and the average reward λ1/2 = 1

2−δ .620

Furthermore, consider the following Bellman equation for Q-value function:621

Q(s, a) = r(s, a)− λ1/2 +
∑
s′,a′

Pa(s, s′)1
2Q(s′, a′).
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One can verify that one solution of the above equations is622

Q(0, 0) = 0, Q(0, 1) = 0

Q(1, 0) = 1, Q(1, 1) = 1 + 2δ
2− δ

Therefore,623

Eρ1/2 [ ˆATED] = 1
2− δ (Q(1, 1)−Q(1, 0))

= 1
2− δ

2δ
2− δ

= 1
2

(
δ

(1− δ/2)2

)
.

For the bias induced by the DQ estimator, we have624

ATE− Eρ1/2 [ ˆATED] = δ

2

(
1

1− δ −
1

(1− δ/2)2

)
= δ

2

(
1

1− δ −
1

1− δ + δ2/4

)
= δ

2
δ2/4

(1− δ)(1− δ + δ2/4) .

This completes the analysis.625

C. Proof of Theorem 1626

The proof of Theorem 1 is a simple proof built on a perturbation formula for stationary627

distributions of Markov chains. We in fact construct a novel Taylor series representation of628

the ATE parameterized by δ that controls the perturbation around P1/2, which yields the629

Naive estimator as the zeroth-order truncation of the series; and the idealized DQ estimator630

as the natural first-order correction. Theorem 1 then proceeds by bounding the remainder.631

This strategy additionally allows us to generalize the DQ estimator to arbitrarily high-order632

bias corrections, by computing Q-functions iteratively. Here we present the proof (with some633

details omitted for simplicity).634

We first define few pieces of useful notation. Let ρ0 ∈ R|S|, ρ1/2 ∈ R|S|, ρ1 ∈ R|S| be the635

vectors of the stationary distributions of P0, P1/2, P1 accordingly. Let r0 ∈ R|S|, r1/2 ∈636

R|S|, r1 ∈ R|S| be the reward vectors associated with policies π0, π1/2, π1, i.e., ra(s) = r(s, a)637

and r1/2 = 1
2r0 + 1

2r1.638

To begin, we parameterize P0 := P1/2 − δA and P1 := P1/2 + δA by δ with fixed P1/2 and639

some fixed matrix A ∈ R|S|×|S| with ‖A‖1,∞ ≤ 1 (‖A‖1,∞ = maxi
∑
j |Aij |)2. Then, ρ0 and640

ρ1 can also be viewed as a function of δ. Also recall ATE = ρ>1 r1 − ρ>0 r0. Our goal is to641

represent ATE as a function of δ and then study the Taylor expansion of such a function.642

To do so, we use the following known perturbation formula of Markov chains.643

Lemma 1 (Stationary Distribution Perturbation, Theorem 4.1 [42]). Suppose P ∈ Rn×n and644

P ′ ∈ Rn×n are transitions matrices of two finite-state aperiodic and irreducible Markov645

Chains and ρ ∈ Rn, ρ′ ∈ Rn are the stationary distributions accordingly. Then ρ′> =646

ρ>+ ρ′>(P ′−P )(I −P )# where (I −P )# is the group inverse of I −P given by (I −P )# =647

(I − P + 1ρ>)−1 − 1ρ>.648

Let us apply Lemma 1 to ρ>1 r1 based on the perturbation between ρ1/2 and ρ1.649

ρ>1 r1 = ρ>1/2r1 + ρ>1 (P1 − P1/2)(I − P1/2)#r1

= ρ>1/2r1 + δ · ρ>1 A(I − P1/2)#r1(8)
2This is always possible since dTV(p(s, 1, ·), p(s, 0, ·)) ≤ δ.
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Note that we can apply Lemma 1 again to the ρ1 in the RHS of Eq. (8) and then repeat this650

process,651

ρ>1 r1 =
K∑
k=0

δk · ρ>1/2
(
A(I − P1/2)#)k r1 + δK+1 · ρ>1

(
A(I − P1/2)#)K+1

r1(9)

for any K = 0, 1, 2, . . . . Essentially Eq. (9) provides the K-th order Taylor expansion for652

ρ>1 r1 with an explicit remainder. Furthermore, we can bound the remainder by653 ∣∣∣ρ>1 (A(I − P1/2)#)K+1
r1

∣∣∣ (i)
≤ ‖ρ1‖1

(
‖A‖1,∞‖I − P#

1/2‖1,∞
)K+1

‖r1‖max

(ii)
≤ ‖I − P#

1/2‖
K+1
1,∞ rmax

(iii)
≤
(

2 ln(C) + 1
1− λ

)K+1
rmax

Here in (i) we use that for any vector a, b and matrix B, we have |a>b| ≤ ‖a‖1‖b‖max and654

‖a>B‖1 ≤ ‖a‖1‖B‖1,∞. In (ii) we use that ‖ρ1‖1 = 1, ‖A‖1,∞ ≤ 1. In (iii), we use the655

following lemma implied by the mixing time assumption and the series expansion of (I−P )#.656

Lemma 2. Suppose for any s ∈ S, dTV(P k1/2(s, ·), ρ1/2) ≤ Cλk. Then ‖(I − P1/2)#‖1,∞ ≤657

2 ln(C)+1
1−λ .658

Appplying a similar process to ρ>0 r0, we obtain the Taylor expansion for the ATE.659

ATE =
K∑
k=0

δk ·
(
ρ>1/2

(
A(I − P1/2)#)k r1 − ρ>1/2

(
(−A)(I − P1/2)#)k r0

)
+ δK+1 · aK(10)

where |aK | ≤ 2
(

2 ln(C)+1
1−λ

)K+1
rmax. It is easy to see that the Naive estimator ρ>1/2(r1 − r0)660

corresponds to the zeroth-order truncation. In fact, the DQ estimator, i.e., Eρ1/2

[
ˆATED

]
,661

exactly matches the first-order truncation. To see this, by the definition of Eρ1/2

[
ˆATED

]
662

and Q-functions,663

Eρ1/2

[
ˆATED

]
=
∑
s

ρ1/2(s)
(
Qπ1/2(s, 1)−Qπ1/2(s, 0)

)
=
∑
s

ρ1/2(s)
(
r1(s) +

∑
s′

V1/2(s′)P1(s, s′)− r0(s)−
∑
s′

V1/2(s′)P0(s, s′)
)

= ρ>1/2
(
r1 − r0 + (P1 − P0)V1/2

)
where V1/2 is the induced vector of the V -function of policy π1/2. By the well-known fact664

that V1/2 = (I − P1/2)#r1/2 induced by the Bellman equation, we then have665

Eρ1/2

[
ˆATED

]
= ρ>1/2

(
r1 − r0 + (P1 − P0)(I − P1/2)#r1/2

)
= ρ>1/2r1 − ρ>1/2r0 + δρ>1/2A(I − P1/2)#(r1 + r0).

Then indeed Eρ1/2

[
ˆATED

]
is the first-order Taylor truncation. Together, this completes the666

proof.667

Generalization to Higher-Order Bias Correction. In fact, we can also use the K-th order668

Taylor expansion of ATE, to design estimators that can correct higher-order bias, in a similar669

way presented above.670
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D. Proof of Theorem 2671

To begin, we present the outline of the proof. We aim to use Markov chain CLT ([28]) to672

provide the asymptotic normality of our estimator. Note that Markov chain CLT states that673

for a Markov chain X1, X2, . . . , and a bounded function u with the domain on the state674

space, there exists Σu such that675

√
T

(
1
T

T∑
t=1

u(Xt)− u∗
)

d→ N(0,Σu)

where u∗ is the expected value of u under the stationary distribution of the Markov chain.676

Delta method. Unfortunately, the estimator ˆATED can not be directly written as an677

empirical average of some function u. To address this issue, we use the delta method (see e.g.678

[16], Lemma 5). In particular, we write ˆATED = f(uT ) as a function of a random vector uT679

given by uT := 1
T

∑T
t=1 u(Xt). Under some minor conditions, the delta method states that680

√
T (f(uT )− f(u∗)) d→ N(0, σ2

f )

where σ2
f := ∇f(u∗)>Σu∇f(u∗) and ∇f(u∗) is the gradient of f evaluating at the point u∗.681

This forms the basis of proving Theorem 2.682

Linearization. To simplify the analysis for σf , instead of computing Σu explicitly, we683

“linearize” the function f by defining f̃(Xt) := ∇f(u∗)>(u(Xt)− u∗) and the delta method684

in fact implies (see Lemma 6)685

√
T

(
1
T

T∑
t=1

f̃(Xt)
)

d→ N(0, σ2
f ),

i.e., the linearized f converges with the same limiting variance as the original f. Therefore,686

we can focus on f̃ for analyzing σf .687

Bounding σf with the Entry-wise Non-expansive Lemma. To bound σf , we will688

invoke Lemma 4, which states that689

σf ≤
√

1
1− λf̃max

where f̃max := maxs |f̃(s)|. Then the problem boils down to bound f̃max. This bound is the690

key of Theorem 2 and requires us to bound691

max
k

ρ>1/2(P1 − P0)(I − P1/2)#D−1/2ek(11)

where D is a diagonal matrix with entries Dii = ρ1/2(i). It is not clear a priori that Eq. (11)692

is well-controlled. In fact, a loose analysis for Eq. (11) will give f̃max = O( 1
(ρmin)1/2 ), which693

shows no advantage comparing to the off-policy estimators (the off-policy estimator requires694

a bound for (ρ>0 + ρ>1 )(P1 − P0)(I − P1/2)#D−1/2).695

Fortunately, we observe that based on the fact that ρ1/2 is the stationary distribution of696

P1/2 (on-policy estimator), there exists a non-expansive property (coined as the “Entry-wise697

Non-expansive Lemma”, see Lemma 3), which states that698

(ρ>1/2(P1 − P0)(I − P1/2)#)k ≤ c · ρ1/2(k)

for some c that depend only on λ and log(1/ρmin). This is the key enabler for establishing699

the advantage of on-policy estimators rigorously, that leads to f̃max = O(log( 1
ρmin

)). We700

believe this novel lemma is of independent interest for the field of OPE.701

Next, we present the proof in full details.702
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D.1. Delta method and Linearization703

To begin, consider the Markov chain Xt = (st, at, st+1). For a ∈ {0, 1}, denote F (a), h(a) by704

F (a)(Xt) := 2EstE>st+1
· 1(at = a)(12)

h(a)(Xt) := 2r(st, at) · Est · 1(at = a)(13)

where Es is a vector with all entries zero except that the s-th entry is one. Let F (a)
T ∈705

R|S|×|S|, h(a)
T ∈ R|S| be the empirical average of the function F (a) and h(a):706

F
(a)
T := 1

T

T∑
t=1

F (a)(Xt)

h
(a)
T = 1

T

T∑
t=1

h(a)(Xt).

We aim to write ˆATED := f(F (0)
T , F

(1)
T , h

(0)
T , h

(1)
T ) as a function of F (0)

T , F
(1)
T , h

(0)
T , h

(1)
T for707

applying delta method. To do so, let D(a)
T be an diagonal matrix with entries D(a)

T (s, s) =708 ∑
s′ F

(a)
T (s, s′). One can verify that709

V̂ = (D(0)
T +D

(1)
T − F

(0)
T − F (1)

F )#(h(0)
T + h

(1)
T )

gives the estimation of V -function in Eq. (5). Further, one can verify that with a plugging-in710

estimator for Q, the DQ estimator is given by711

ˆATED = f(F (0)
T , F

(1)
T , h

(0)
T , h

(1)
T )

=: 1>(F (1)
T − F (0)

T )(D(0)
T +D

(1)
T − F

(0)
T − F (1)

F )#(h(0)
T + h

(1)
T )

+ 1>(h(1)
T − h

(0)
T ).

By Markov chain CLT, we have when T goes to infinity712

F
(0)
T → F ∗0 := DP0, F

(1)
T → F ∗1 := DP1

h
(0)
T → h∗0 := Dr0, h

(1)
T → h∗1 := Dr1

where D is a diagonal matrix with entries Ds,s = ρ1/2(s). Then by the delta method (see713

Lemma 5), we have3714

√
T (f(F (0)

T , F
(1)
T , h

(0)
T , h

(1)
T )− f(F ∗0 , F ∗1 , h∗0, h∗1)) d→ N(0, σ2

f )
which is equivalent to715

√
T ( ˆATED − Eρ1/2 [ ˆATED]) d→ N(0, σ2

f )

since f(F ∗0 , F ∗1 , h∗0, h∗1) = Eρ1/2 [ ˆATED]. To analyze σf , we consider the “lin-716

earization” of f around u∗ := (F ∗0 , F ∗1 , h∗0, h∗1). In particular, let u(Xt) =717

(F (0)(Xt), F (1)(Xt), h(0)(Xt), h(1)(Xt)). Let (λ, V ) be the average reward and the “true”718

V -function under the policy π1/2. One can verify that719

f̃(s, a, s′) = ∇f(u∗)>(u(s, a, s′)− u∗)
= (1>D(P1 − P0)(I − P1/2)#D−1)Es(r(s, a)− λ+ V (s′)− V (s))

+ 2(1(a = 1)− 1(a = 0))(V (s′) + r(s, a))− c
where c := Eρ1/2 [2(1(a = 1)− 1(a = 0))(V (s′) + r(s, a))]. By Lemma 6, we have720

√
T

(
1
T

T∑
t=1

f̃(Xt)
)

d→ N(0, σ2
f ).

3The group inverse is continuous if we consider the set of matrices with rank |S| − 1 ([49]).
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D.2. Bound σf721

Next, we aim to provide a bound for σf . Note that that the mixing time of Xt is the same722

as st and by Lemma 4, we have723

σf ≤
√

2f̃max

√
2 ln(C) + 1

1− λ
where f̃max = maxs,a,s′ |f̃(s, a, s′)|. Then the problem boils down to bound f̃max.724

Let zs := (1>D(P1 − P0)(I − P1/2)#D−1)Es. By the definition of f̃ , we have725

f̃max ≤ 2(zmax + 2)(Vmax + rmax)
where zmax := maxs |zs|, Vmax := maxs |V (s)|. For Vmax, we have726

‖V ‖∞ = ‖(I − P1/2)#r‖∞
≤ ‖(I − P1/2)‖1,∞rmax

≤ 2 ln(C) + 1
1− λ rmax.

For zmax, we have the following claim.727

Lemma 3. There exists a constant C ′ such that

zmax ≤ C ′ log
(

1
ρmin

)
1

1− λ.

Therefore, there exists a constant C ′′ such that728

σf ≤ C ′′ log
(

1
ρmin

)(
1

1− λ

)5/2
rmax

which completes the proof.729

Proof of Lemma 3. Let730

v> := 1>D(P1 − P0) = ρ>1/2(P1 − P0).

We claim that |(P1−P0)(s, s′)| ≤ 2P1/2(s, s′) for any s and s′. This is due to 2P1/2 = P0 +P1731

and for any a ≥ 0, b ≥ 0, we have732

|a− b| ≤ a+ b.

Furthermore, note that ρ>1/2P1/2 = ρ>1/2. Then for any s′,733

|v(s′)| = |
∑
s

ρ1/2(s)(P1 − P0)(s, s′)|

≤
∑
s

ρ1/2(s)|(P1 − P0)(s, s′)|

≤
∑
s

ρ1/2(s)2P1/2(s, s′)

≤ 2ρ1/2(s′).
This is to say, v is entry-wise bounded by ρ1/2. Furthermore, this bound holds for any734

transformation under P1/2.735

|(v>P k1/2)(s′)| = |
∑
s

v(s)P k1/2(s, s′)|

≤ 2
∑
s

ρ1/2(s)P k1/2(s, s′)

≤ 2ρ1/2(s′).
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Next, consider736

v>(I − P1/2)#es′ =
∞∑
k=0

v>(P k1/2 − 1ρ>1/2)es′

=:
∞∑
k=0

ak.

Note that |(v>P k1/2)es′ | ≤ 2ρ1/2(s′). Further, |v>1ρ>1/2es′ | ≤ |v>1|ρ1/2(s′) ≤ 2ρ1/2(s′).737

Therefore, for any k,738

|ak| ≤ 4ρ1/2(s′).

We also have739

|ak| ≤ ‖v>‖1‖P k − 1ρ>‖1,∞‖es′‖max

≤ 2Cλk.

Let ρmin := mins ρ1/2(s). With a := 4, b := 2C 1
ρmin

, we have740

1
ρ1/2(s′)

∞∑
k=0

ak ≤
∞∑
k=0

min
(

4, 2Cλk 1
ρmin

)

≤
logλ(1/b)−1∑

k=0
a+

∑
k=logλ(1/b)

bλk

= logλ(1/b)a+ 1
1− λ

≤ ln(b)
1− λa+ 1

1− λ

. log
(

1
ρmin

)
1

1− λ.

Then v>(I − P1/2)#D−1Es . log
(

1
ρmin

)
1

1−λ , which completes the proof. �741

E. Proof of Theorem 3742

The proof is based on a multi-variate Cramér-Rao bound. To begin, we assume P0(s, s′) >743

0, P1(s, s′) > 0 for all (s, s′).4744

Consider the parameters θ = (F0, F1) which controls the transition matrices745

P0(s, s′) = F0(s, s′)∑
s′′ F0(s, s′′) , P1(s, s′) = F1(s, s′)∑

s′′ F1(s, s′′) .

Given the observations Xt = (st, at), t = 0, 1, . . . , T under the policy π1/2. We can compute746

the log-likelihood747

l(X1, . . . , XT | θ) =

∑
s,a,s′

ns,a,s′ · ln(Pa(s, s′))

− T ln(2)

4The general case follows a similar proof and is omitted for simplicity.
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where ns,a,s′ =
∑
t 1(st = s, at = a, st+1 = s′). Then, the entry of the Fisher information748

matrix with θ∗ = (P0, P1) is given by749

Ik,m = −EX
[
∂l(X|θ∗)
∂θk∂θm

]

= −EX

∑
s,a,s′

ns,a,s′

Pa(s, s′) ·
∂Pa(s, s′)
∂θk∂θm

+ EX

∑
s,a,s′

ns,a,s′

Pa(s, s′)2 ·
∂Pa(s, s′)
∂θk

∂Pa(s, s′)
∂θm


= −T

∑
s,a,s′

1
2ρ1/2(s) · ∂Pa(s, s′)

∂θk∂θm
+ T

∑
s,a,s′

1
2
ρ1/2(s)
Pa(s, s′) ·

∂Pa(s, s′)
∂θk

∂Pa(s, s′)
∂θm

= −T ∂1
∂θk∂θm

+ T
∑
s,a,s′

1
2
ρ1/2(s)
Pa(s, s′) ·

∂Pa(s, s′)
∂θk

∂Pa(s, s′)
∂θm

= T
∑
s,a,s′

1
2
ρ1/2(s)
Pa(s, s′) ·

∂Pa(s, s′)
∂θk

∂Pa(s, s′)
∂θm

.

Consider θk = F0(i, j), θm = F0(i, l), we have750

1
T
Ik,m = 1

2
ρ1/2(i)
P0(i, j)1(j = l)− 1

2ρ1/2(i).

For θk = F1(i, j), θm = F1(i, l), we have751

1
T
Ik,m = 1

2
ρ1/2(i)
P1(i, j)1(j = l)− 1

2ρ1/2(i).

Otherwise it is easy to see that Ik,m = 0.752

Next, consider an unbiased estimator τ̂(X1, . . . , XT ) for ATE. We can write ATE = f(F0, F1)753

as a function of F0 and F1. Further, one can verify that754

∂f(θ∗)
∂F0(i, j) = −ρ0(i)(Vπ0(j)− Vπ0(i) + r0(i)− λπ0)

∂f(θ∗)
∂F1(i, j) = ρ1(i)(Vπ1(j)− Vπ1(i) + r1(i)− λπ1).

Finally, we aim to use the multi-variate Cramér-Rao bound. To do so, let v(1)
i be an vector

with the j-th element being v(1)
i (j) = ρ1(i)(Vπ1(j)− Vπ1(i) + r1(i)− λπ1). Let

I
(1)
i (j, l) = T

2
ρ1/2(i)
P1(i, j)1(j = l)− T

2 ρ1/2(i)

be a matrix. Similarly, define v(0)
i and I(0)

i accordingly. Then, by the multi-variate Cramér-755

Rao bound for the singular Fisher information matrix [54], we have756

TVar(τ̂) ≥
∑
i

v
(1)>
i (I(1)

i )−1v
(1)
i +

∑
i

v
(0)>
i (I(0)

i )−1v
(0)
i

= 2
∑
i

ρ0(i)2

ρ1/2(i)
∑
j

P0(i, j)(Vπ0(j)− Vπ0(i) + r0(i)− λπ0)2

+ 2
∑
i

ρ1(i)2

ρ1/2(i)
∑
j

P1(i, j)(Vπ1(j)− Vπ1(i) + r1(i)− λπ1)2

which completes the proof.757

E.1. Unbiased Estimator that achieves the lower-bound758

In this section, we construct an LSTD(0)-type OPE estimator that achieves the aforemen-759

tioned Cramér-Rao lower bound. To do so, we solve the following least square optimization760
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problems that are similar to Eq. (5),761

(V̂1, λ̂
π1) = arg min

V̂ ,λ̂

∑
s∈S

( ∑
t,st=s,at=1

r(st, at)− λ̂+ V̂ (st+1)− V̂ (st)
)2

(14)

(V̂0, λ̂
π0) = arg min

V̂ ,λ̂

∑
s∈S

( ∑
t,st=s,at=0

r(st, at)− λ̂+ V̂ (st+1)− V̂ (st)
)2

.(15)

Then, the estimation for the average treatment effect is given by762

τoff := λ̂π1 − λ̂π0 .

To analyze the variance of τ̂ , we follow the similar analysis as in Theorem 2. To begin, one763

can verify that764

λ̂π0 − λπ0 =
(
ρ̂>0 − ρ>0

)
r0

where ρ̂0 is the empirical stationary distribution for the empirical transition matrix P̂0 (ρ̂1765

and P̂1 can be defined accordingly).766

Next, by the perturbation bound of ρ̂0, we have767

ρ̂>0 − ρ>0 = ρ>0 (P̂0 − P0)(I − P̂0)#.

Hence,768

λ̂0 − λπ0 = (ρ̂>0 − ρ>0 )r0

= ρ>0 (P̂0 − P0)(I − P̂0)#r0.

Note that P̂0 is a function of F (0)
T (P̂0(i, j) = F

(0)
T (i, j)/

∑
k F

(0)
T (i, k), F (0) is defined in

Eq. (12)). Therefore, we can define f0(F (0)
T ) := λ̂0 − λπ0 as a function of F (0)

T . Similarly, we
can define

f1(F (1)
T ) := λ̂1 − λπ1 = ρ>1 (P̂1 − P1)(I − P̂1)#r1

Then by Lemma 6, we have the asymptotic normality for τoff :

√
T (τoff −ATE) =

√
T (f1(F (1)

T )− f0(F (0)
T )) d→ N(0, σ2

off).

In order to compute σoff by using Lemma 6, we will linearize f1 − f0 around (F ∗0 , F ∗1 ). To769

do so, consider770

∂f0(F0)
∂(F0)(i, j) = ρ>0

∂(P̂0 − P0)
∂F0(i, j) (I − P0)−1(r0 − λπ1)

+ ρ>0 (P0 − P0)∂(I − P0)−1

∂(F0)(i, j) (r0 − λπ1)

= ρ>0
∂P̂0

∂F0(i, j)V0

=
∑
k

ρ0(i)V0(k)∂P̂0(i, k)
∂F0(i, j)
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Note that P̂ (i, k) = F̂0(i, k)/
∑
l F̂0(i, l). Therefore,771

∂f0(F0)
∂(F0)(i, j) =

∑
k

ρ0(i)V0(k)
∂ F0(i,k)∑

l
F0(i,l)

∂F0(i, j)

=
∑
k

ρ0(i)V0(k)
1(j = k)

∑
l F0(i, l)− F0(i, k)

(
∑
l F0(i, l))2

=
∑
k

ρ0(i)V0(k)1(j = k)ρ(i)− ρ(i)P0(k|i)
ρ(i)2

= ρ0(i)
ρ(i) V0(j)− ρ0(i)

ρ(i)
∑
k

P0(k|i)V0(k)

= ρ0(i)
ρ(i) (V0(j)− V0(i) + r0(i)− λπ0).

Hence, the linearization of f0 is772 ∑
ij

∂f0(F0)
∂(F0)(i, j)

(
(F0(s, s′, a))ij − F0(i, j)

)
= 2 · 1(a = 0)ρ0(s)

ρ(s) (V0(s′)− V0(s) + r0(s)− λπ0)−
∑
ij

ρ0(i)(V0(j)P0(j|i)− V0(i) + r0(i)− λπ0)

= 2 · 1(a = 0)ρ0(s)
ρ(s) (V0(s′)− V0(s) + r0(s)− λπ0).

The similar linearization can be done for f1. Then the linearization of f1 − f0 is773

g((s, s′, a)) = −2 · 1(a = 0)ρ0(s)
ρ(s) (V0(s′)− V0(s) + r0(s)− λπ0)

+ 2 · 1(a = 1)ρ1(s)
ρ(s) (V1(s′)− V1(s) + r1(s)− λπ1).

Note that for any E[g(Xk)|X1 = (s, s′, a)] = 0 for any (s, s′, a) and k ≥ 2. Hence774

σ2
off = Varρ(g) + 2

∞∑
k=2

Covρ[g(Xk)g(X1)]

= Varρ(g)

= 2
∑
s,s′

ρ0(s)2P0(s′|s)
ρ(s) (V0(s′)− V0(s) + r0(s)− λπ0)2

+ 2
∑
s,s′

ρ1(s)2P1(s′|s)
ρ(s) (V1(s′)− V1(s) + r1(s)− λπ1)2

which completes the proof.775

F. Proof of Theorem 4776

We construct a birth-death Markov chain with n states. Let P ∈ Rn×n be a transition777

matrix where P (s, s+ 1) = 1
4 − δ, P (s, s− 1) = 1

4 and P (s, s) = 1/2 + δ (except at the two778

ends with P (0, 0) = 3/4 + δ and P (n− 1, n− 1) = 3/4).779

Let the stationary distribution of P be ρ. Then ρ(s) = c (1− 4δ)s for 0 ≤ s ≤ n − 1 and780

c := 1∑
s
(1−4δ)s

is a constant. By [10], we have that the spectral gap of the chain is on the781
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order of γ = O(1/n). Furthermore, the mixing time of the chain is bounded by782

‖P k − 1ρ>‖1,∞ ≤
(

1
ρmin

)
(1− γ)k

‖(I − P )#‖1,∞ ≤ log
(

1
ρmin

)
O(n) = O(n2).

Following the same proof in Theorem 2, we have that the on-policy variance is bounded by783

σon = O(n6).

On the other hand, consider the node k where
∑n
s=k ρ(s) ≤ c′δ/n2 and

∑n
s=k−1 ρ(s) > c′δ/n2784

for some sufficiently small constant c′. Let P1 be the same as P except ∀s ≥ k785

P1(s, s+ 1) = 1
4

P1(s, s) = 1
2 .

Let ρ1 be the stationary distribution of P1. One can verify that ρ1(n) = O(1/n2). We then786

construct r such that r(n, 1) = 1 and λπ1 = 0. Then787

σoff ≥

√
2ρ1(n)2

ρ(n)
3
4

= Ω
(
ecn

n2

)
for some constant c. Therefore,788

σon

σoff
= O

(
n8

ecn

)
.

Next, consider the bias of the DQ estimator. Suppose ATE = δ without loss (one can always789

achieve this by adding some constants to r). Let P0 = 2 ·P1−P and let ρ0 be the stationary790

distribution of P0. One can verify that791

‖ρ1 − ρ‖1 = O(δ/n2), ‖ρ0 − ρ‖1 = O(δ/n2).

Furthermore, following the proof in Theorem 1, we have792

|(ATE− E[ ˆATED])/ATE| ≤ (‖ρ1 − ρ‖1 + ‖ρ0 − ρ‖1)‖I − P‖#1,∞

≤ C · c′δ 1
n2n

2

≤ δ

for sufficiently small constant c′. This completes the proof.793

G. Technical Lemmas794

Lemma 2. Suppose P ∈ Rn×n is the transition matrix of a finite-state aperiodic and irre-
ducible Markov Chain and ρ is the stationary distribution. Suppose there exists C and λ
such that for any k = 0, 1, . . .

‖P k − 1ρ>‖1,∞ ≤ Cλk.
Then795

‖(I − P )#‖1,∞ ≤
2 ln(C) + 1

1− λ .
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Proof. Note that796

A = (I − P + 1ρ>)−1 − 1ρ>

=
∞∑
k=0

(
P k − 1ρ>

)
.

Then797

‖A‖1,∞ ≤
∞∑
k=0
‖P k − 1ρ>‖1,∞

≤
∞∑
k=0

min
(
2, Cλk

)
≤

logλ(1/C)−1∑
k=0

2 +
∞∑

k=logλ(1/C)

Cλk

≤ 2 logλ(1/C) + 1
1− λ

= 2 ln(C)
− ln(λ) + 1

1− λ
(i)
≤ 2 ln(C) + 1

1− λ
where (i) is due to − ln(x) ≤ 1− x for x > 0. �798

Lemma 4. For a finite-state aperiodic and irreducible Markov Chain X1, X2, . . . , Xt. Let P
be the transition matrix, ρ be the stationary distribution, and S be the state space. Suppose
there exists C and λ such that for k = 0, 1, . . . ,

‖P k − 1ρ>‖1,∞ ≤ Cλk.
Then for any bounded function f : S → [a, b], there exists σ such that when T goes to infinity,799

1√
T

T∑
t=1

(f(Xt)− f∗)
d→ N(0, σ2)(16)

where f∗ = Eρ(f) is the expected value of f under the stationary distribution and800

σ ≤
√

2(b− a)
√

2 ln(C) + 1
1− λ .(17)

Proof. Note that Eq. (16) is simply due to the Markov chain CLT ([28]). Let D be an801

diagonal matrix with entries Dii = ρi. [28] further states that802

σ2 = Varρ(f) + 2
∞∑
k=2

Eρ[(f(X1)− f∗)(f(Xk)− f∗)]

= (f − f∗)>D(f − f∗) + 2
∞∑
k=1

(f − f∗)>DP k(f − f∗)

= 2
∞∑
k=0

(f − f∗)>D(P k − 1ρ>)(f − f∗)− (f − f∗)>D(f − f∗)

≤ 2
∞∑
k=0

(f − f∗)>D(P k − 1ρ>)(f − f∗)

≤ 2‖(f − f∗)>D‖1‖I − P‖#1,∞‖f − f∗‖max

≤ 2‖f − f∗‖2max
2 ln(C) + 1

1− λ .
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Therefore,803

σ ≤
√

2(b− a)
√

2 ln(C) + 1
1− λ .

�804

Lemma 5 (Theorem 6.2 [38]). Let Uk be a sequence of random variables in Rp converging805

in probability to u. Let ak be a deterministic non-negative sequence increasing to ∞. Let806 √
αk(Uk − u) converge in distribution to N(0,Γ). Let f : Rp → Rq be a function twice807

differentiable in a neighborhood of u. Then, denoting the Jacobian of f at u by ∇f(u), we808

have809

1. f(Uk) converges in probability to f(u).810

2. √αk(f(Uk)− f(u)) converges in distribution to N(0,∇f(u∗)Γ∇f(u∗)>).811

Lemma 6. Consider an irreducible and aperiodic finite-state space Markov Chain812

X1, X2, . . . , Xt. Let S be the state space and ρ be the stationary distribution. Let u : S → Rp813

be a function with each component ui, 1 ≤ i ≤ p. Let u∗ =
∑
s∈S ρ(s)u(s) be the expected814

value of u under the stationary distribution ρ.815

Let f : Rp → R be a function twice differentiable in a neighbor of u∗. Then, there exists816

σ ≥ 0 such that when T →∞,817

√
T

(
f

(
1
T

T∑
i=1

u(Xt)
)
− f(u∗)

)
d→ N(0, σ2)

√
T

(
p∑
i=1

(ui(Xt)− u∗i ) ·
∂f(u∗)
∂ui

)
d→ N(0, σ2)

Proof. To begin, note that by the Markov Chain CLT (Corollary 5 [28]), we have818

√
T

(
1
T

T∑
i=1

u(Xt)− u∗
)

d→ N(0,Σ)

for some covariance matrix Σ ∈ Rp×p. In particular,819

Σ := Eρ[(u(X1)− u∗)(u(X1)− u∗)>] + 2
∞∑
k=2

Eρ[(u(X1)− u∗)(u(Xk)− u∗)>](18)

where Eρ denotes the expectation when the initial distribution of the Markov chain is ρ.820

Then, since f is twice differentiable in a neighborhood of u∗, we can invoke Lemma 5 to get821

√
T

(
f

(
1
T

T∑
i=1

u(Xt)
)
− f(u∗)

)
d→ N(0, σ2)

where σ2 := ∇f(u∗)>Σ∇f(u∗).822

Next, let F (X) :=
∑p
i=1 (ui(X)− u∗i ) ·

∂f(u∗)
∂ui

= (u(X)− u∗)>∇f(u∗). Then using the fact823

1
T

∑T
t=1 u(Xt)→ u∗ and invoking the Markov chain CLT again, we have824

√
T

(
1
T

T∑
t=1

F (Xt)
)

d→ N(0, σ2
F )

where825

σ2
F := Eρ[F (X1)2] + 2

∞∑
k=2

Eρ[F (X1)F (Xk)].
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Expanding F (X) by (u(X)− u∗)>∇f(u∗), we have826

σ2
F = Eρ[((u(X1)− u∗)>∇f(u∗))2] + 2

∞∑
k=2

Eρ[(u(X1)− u∗)>∇f(u∗)(u(Xk)− u∗)>∇f(u∗)]

= ∇f(u∗)>Eρ[(u(X1)− u∗)(u(X1)− u∗)>]∇f(u∗)

+∇f(u∗)>
∞∑
k=2

Eρ[(u(X1)− u∗)(u(Xk)− u∗)>]∇f(u∗)

(i)= ∇f(u∗)>Σ∇f(u∗)
= σ2

where (i) uses Eq. (18). This implies that F (the linearization of f at the point u∗) will827

converge with the same limiting variance as f . �828

H. Experiment details829

H.1. Synthetic example830

H.1.1. Environment831

We replicate exactly the environment of [26]. We model a rental marketplace with N = 5000832

homogeneous listings. Customers arrive according to a Poisson process with rate Nλ, decide833

whether to rent a listing (with rental probability controlled by the intervention), and if they834

do rent, they occupy a listing for an exponentially distributed time with mean 1
µ .835

Specifically, we define our MDP to be the discrete-time jump chain of this process, with836

events indexed by t and state st ∈ {0, 1 . . . N} representing the current inventory of listings.837

At the tth event, the system chooses to apply control (at = 0) or treatment (at = 1). One of838

the following state transition and reward scenarios may then happen:839

1. A previously occupied rental becomes available, i.e. st+1 = st + 1 and rt = 0; this840

occurs with probability (N−st)µ
Nµ+Nλ841

2. A customer arrives, with probability Nλ
Nµ+Nλ , and subsequently:842

(a) Rents a listing, so st+1 = st−1 and rt = 1; this occurs with probability stv(at)
N+stv(at)843

conditional on a customer arrival, where v(0) = 0.315 and v(1) = 0.3937 are844

the average utility under control and treatment, respectively.845

(b) Does not rent a listing , so st+1 = st and rt = 0; this occurs with probability846
N

N+stv(at) conditional on a customer arrival.847

3. No state change occurs; i.e. st+1 = st and rt = 0.848

[26] also describes a two-sided randomization scheme, where listings are also assigned849

to control or treatment, and the customer’s purchase probability depends on both the850

customer’s treatment assignment at, as well as the number of control listings and the number851

of treatment listings. This corresponds to a more complicated MDP with a two-dimensional852

state st = (sco
t , s

tr
t ), where sco

t corresponds to the number of available control listings, and853

str
t the number of available treatment listings. The average utility of a control listing is854

vco(0) = vco(1) = v(0), while the average utility of a treatment listing is vtr(0) = v(0) and855

vtr(1) = v(1). We defer to [26] for further details of this scheme.856
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H.1.2. Implementation details857

Here we list algorithms and hyperparameters tuned for this experiment. Hyperparameters858

were chosen to minimize MSE averaged over 10 held-out trajectories. As in [26], we also859

include a burn-in period of T0 = 5N .860

1. Naive. This has no hyperparameters.861

2. TSRI. This has several hyperparameters, which affect both the experimental design862

(customer randomization probability p and listing randomization probability pL),863

as well as the estimator (parameters k and β, as described in [26]). We set p, pL, β864

assuming λ, µ are known, exactly as prescribed in [26]. Specifically, we compute the865

values reported in Table 1 as:866

p =
(

1− e−λ/µ
)

+ 0.5e−λ/µ pL = 0.5
(

1− e−λ/µ
)

+ e−λ/µ β = e−λ/µ

We report results for both k = 1 and k = 2.867

3. DQ with LSTD, which we estimate using a slight modification of Equation (5). Specif-868

ically, we directly estimate the state-action value function Q instead of separately869

estimating the state value function V and P1, P0, and we add an L2 regularization870

term. In short, we approximate and solve for a fixed point to the regularized871

least-squares problem:872

Q = arg min
Q′
‖Q′ − r − PQ+ λ‖22 + ξ‖Q′‖22

where Q ∈ R2(N+1) is the vector of estimated Q(s, a) values, andP ∈ R2(N+1)×2(N+1)873

is the state-action transition matrix. We use sample means in each state to construct874

plug-in estimates of r, P and λ.875

4. Off-Policy with LSTD, which we note is novel in the average reward literature. In876

Section ?? we describe this algorithm, provide convergence guarantees, and show877

that this algorithm is efficient. This can be construed as a direct analog of [52]’s878

off-policy estimator, which applies LSTD in the discounted-reward setting. It has879

no hyperparameters.880

5. Off-Policy with TD, where Q -functions and off-policy average rewards are calcu-881

lated according to the Differential TD algorithm of [65]. This approach has two882

hyperparameters: the learning rate for the Q -function γ/
√
t, and the learning rate883

for the mean reward estimate βγ/
√
t.884

For these experiments, we exclude the Off-Policy GTD variant described in [69] as their885

convergence guarantees do not apply to the tabular setting.886

Algorithm Hyperparameters
TSRI p = 0.816, pL = 0.683, k ∈ {1,2}, β = 0.368

DQ (LSTD) ξ ∈ {0.01,0.1, 1, 10, 100}
Off-Policy (TD) β ∈ {0.2,0.5}, γ ∈ {0.001,0.01, 0.1, 1.}

Table 1: Hyperparameters for the synthetic example of [26]. Parameter settings reported in
the main text are in bold.

H.1.3. Additional results887

We note that there are scenarios for which which specialized designs and estimators –888

specifically TSR, in this example – can provide a superior bias-variance tradeoff. [26] shows889

that the TSRI estimators become unbiased when λ � µ. We ran the synthetic example890

setting λ = 10, µ = 1 (also mirroring results from [26]), and indeed for this setting for891

reasonable horizons TSR achieves lower RMSE. Recall, however, that TSR is ill-defined892

for settings where there is no natural notion of two-sided randomization (i.e. in any MDP893

without a notion of two sides), and its bias properties are clearly highly instance-specific894

30



and depend on knowledge of λ, µ. DQ still outperforms all alternatives besides TSR in this895

setting, and even in this extremely unbalanced setting bachieves a much lower asymptotic896

bias than TSR (-5e-3 vs 1e-2, as a proportion of the treatment effect magnitude). .897

Figure 3: Toy-example from [26], with λ = 10. Left: Estimated ATE at time t/N = 103 across
100 trajectories. Dashed line indicates actual ATE. Diamonds indicate the asymptotic mean
for each estimator. Over this horizon, TSRI-1 and TSRI-2 exhibit small bias and variance,
although asymptotically DQ still has lower bias.

H.1.4. Computing environment898

These experiments were performed on a personal desktop with a 24-core Intel Xeon X5670899

CPU and 128 GB RAM. Total compute time per seed averaged less than two hours.900

H.2. Ridesharing Simulator901

H.2.1. Environment902

We implement a ridesharing simulator, with code available on Github.903

1. Riders are generated based on trips resampled from the NYC Taxi Dataset [1], with904

a random willingness-to-pay per second distributed as LogNormal(log(0.01), 1.). The905

the rider’s outside option is assumed to be the trip they actually took in the dataset,906

and the cost (i.e., negative utility) the rider incurs for this option is the fare recorded907

in the dataset, plus the trip time times the rider’s WTP per second.908

2. Drivers enter the system at pickup locations in the same dataset, but at a lower909

arrival rate (tuned to achieve a utilization of ∼ 70%). Drivers stay in the system for910

an exponential time with a mean of two hours, and stop serving new requests once911

they exit the system.912

3. When a request enters the system, the pricing engine computes the cost to serve that913

request with an idle driver (where cost is based on recent per-mile and per-minute914

fare rates), and discounts this by 10%; this is the price offered to the rider. The915

pricing engine also offers the rider a worst-case time-to-destination (ETD) guarantee,916

which is 1.5 times the time to serve the request with an idle driver. The rider then917

chooses to accept or reject the offer, based on whether their worst-case utility for918

the trip exceeds the utility of the outside option. If the rider rejects the offer they919

exit the system.920

4. If the rider accepts, the request is submitted to the dispatch engine. The dispatcher921

searches for the nearest idle driver and the 10 nearest pool drivers to the request.922

This list of candidates is filtered to those who can serve the request while satisfying923
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the ETD guarantees of all riders. The pool candidates are then further filtered to924

those whose cost to service the request is at most 1
1+αt times the cost of the idle925

driver, where αt = αco = 0 in control (at = 0) and αt = αtr in treatment (at = 1),926

where we vary αtr ∈ {0.3, 0.5, 0.7}. Finally, the minimum cost driver among this set927

is dispatched.928

We can implement two-sided randomization in this market as follows. Each driver is also929

randomized into either treatment or control. The dispatcher then dispatches to the minimum930

cost driver among the following set:931

• All idle drivers (i.e., drivers currently assigned no passengers).932

• Control pool drivers, whose cost is at most 1
1+αco

times the minimum cost idle driver.933

• Treatment pool drivers, whose cost is at most 1
1+atαtr+(1−at)αco

times the minimum934

cost idle driver.935

H.2.2. Estimators936

We use the same approximation architecture for each algorithm, where Q(s, a) = θ>φ(s, a)937

is a linear function of features φ : S ×A 7→ Rd with coefficients θ. We take features φ(st, at)938

to consist of the number of drivers in the system with each of 0, 1, 2, and 3 open seats939

remaining, as well as the price and cost of the current request, and an indicator variable for940

the action taken.941

The estimators are then:942

1. Naive, with no hyperparameters.943

2. TSRI, again with hyperparameters p, pL, k, β. We set these based on the relative944

supply and demand characteristics of the simulator. Specifically, with analogy to the945

synthetic problem, the system averages around 600 drivers active at any moment,946

with 3 passenger seats per driver, for a total of N ≈ 1800 available units of capacity.947

The arrival rate is 4 passengers per second, yielding λ ≈ 4/1800, while the average948

trip lasts 12 minutes, yielding µ ≈ 720. Ultimately we have λ/µ ≈ 1.6, and set the949

algorithm hyperparameters accordingly.950

3. DQ with LSTD, with a single regularization hyperparameter ξ. Here we solve for951

θ by approximating and solving for a fixed point to the regularized least-squares952

problem:953

θ = arg min
θ′
‖Φθ′ − r − PΦθ + λ‖22 + ξ‖θ′‖22

where Φ ∈ R|S|×|A| is the matrix of state-action feature representations.954

4. Off-Policy with LSTD, where we solve simultaneously for θ1, λ1 by solving for the955

unique fixed point of the projected Bellman equation Φ>1 Φ1θ1 = Φ>1 (r1 − 1λ1) +956

Φ>1 P1Φ1θ1, where Φ1 ∈ R|S| is the matrix of state-action features corresponding to957

action 1, and r1 ∈ R|S| is the vector of rewards for action 1. We solve an analogous958

equation for θ0, λ0. This effectively extends the algorithm of Section ?? to the959

setting of linear function approximation. This has no hyperparameters.960

5. Off-Policy with TD, where Q -functions and off-policy average rewards are calculated961

according to the extension of [65] to linear function approximation, as provided in962

[69]. This approach has two hyperparameters: the learning rate for the Q -function963

γ/
√
t, and the learning rate for the mean reward estimate βγ/

√
t.964

6. Off-Policy with Gradient TD (GTD), as in [69]. This has the same hyperparameters965

β, γ as TD.966

A single hyperparameter was selected for each algorithm across all treatment effect settings,967

based on a scalarization of MSE across all settings, and tuned on 10 held-out trajectories for968

each setting.969
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Algorithm Hyperparameters
TSRI p = 0.9, pL = 0.6, k ∈ {1,2}, β = 0.2

DQ (LSTD) ξ ∈ {0.01, 0.1,1, 10, 100}
Off-Policy (TD) β ∈ {0.2,0.5}, γ ∈ {0.001,0.01, 0.1, 1.}

Off-Policy (GTD) β ∈ {0.2,0.5}, γ ∈ {0.001,0.01, 0.1, 1.}
Table 2: Hyperparameters for the ridesharing setting. Parameter settings reported in the main
text are in bold.

H.2.3. Computing environment970

These experiments were performed on an internal cluster. Each run of the simulator took an971

average of around four hours, allocating a single CPU and 8GB of RAM.972
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