
Supplementary Material

A Literature Review

We give the most relevant work related to the paper and review some of the main developments in
differentially private learning below.

Private Optimization: In [14], Chaudhuri et al. studied centralized privacy-preserving machine
learning algorithms for convex optimization problem. In [10], Bassily et al. derived lower bounds
on the empirical risk minimization under central differential privacy constraints. Furthermore, they
proposed a differential privacy SGD algorithm that matches the lower bound for convex functions.
In [1], the authors have generalized the private SGD algorithm proposed in [10] for non-convex
optimization framework. In addition, the authors have proposed a new analysis technique, called
moment accounting, to improve on the strong composition theorems to compute the central differential
privacy guarantee for iterative algorithms. However, the works mentioned, [14, 10, 1], assume that
there exists a trusted server that collects the clients’ data. This motivates other works to design a
distributed SGD algorithms, where each client perturbs her own data without needing a trusted server.

Distributed learning under local differential privacy (LDP) has studied in [2, 21, 27]. In [2] the
authors proposed a communication-efficient algorithm for learning models under local differential
privacy. In [21], the authors have proposed a distributed local-differential-privacy gradient descent
algorithm, a newly proposed anonymization/shuffling framework [7] is used to amplify the privacy.
In [27], the authors proposed communication efficient algorithms for general `p-norm stetting under
local differential privacy constraints, where they use recent results on amplification by shuffling to
boost the privacy-utility trade-offs of the distributed learning algorithms.

Shuffled privacy model: The shuffled model of privacy has been of significant recent interest
[22, 25, 6, 26, 5, 15, 7, 8]. However, most of the existing works in literature [22, 7, 24] only
characterize the approximate DP of the shuffled model. Recently, the authors in [29] proposed a
novel bound on the RDP of the shuffled model, where they show that the RDP provides a significant
saving in computing the total privacy budget for a composition of a sequence of shuffled mechanisms.
However, the work [29] does not characterize the RDP of the subsampled shuffle mechanism. We
can compute a bound on the RDP of the subsampled shuffle mechanism by combining the bound
of the RDP of the shuffle mechanism in [29] with the bound of the subsampled RDP mechanism
in [43]. However, we show numerically that our new bound on the subsampled shuffle mechanism
outperforms this bound.

Rényi differential privacy: The work of Abadi et al. [1] provided a new analysis technique to
improve on the strong composition theorems. Inherently, this used Rényi divergence, and was later
formalized in [37] which defined Rényi differential privacy (RDP). Several works [38, 43, 45] have
shown that analyzing the RDP of subsampled mechanisms provides a tighter bound on the total
privacy loss than the bound that can be obtained using the standard strong composition theorems. In
this paper, we analyze the RDP of the subsampled shuffle model, where we can bound the approximate
DP of a sequence of subsampled shuffle models using the transformation from RDP to approximate
DP [1, 43, 13, 3]. We show that our RDP analysis provides a better bound on the total privacy loss of
composition than the bound that can be obtained using the standard strong composition theorems and
the bound that can be obtained by combining the RDP bound of the shuffle model in [29] with the
subsampled RDP mechanism in [43].

B Additional Preliminaries

Here, we give local and central differential privacy definitions that we use throughout this work.
Definition 3 (Local Differential Privacy - LDP [35]). For ✏0 � 0, a randomized mechanism
R : X ! Y is said to be ✏0-local differentially private (in short, ✏0-LDP), if for every pair of inputs
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d, d0 2 X , we have

Pr[R(d) 2 S]  e✏0 Pr[R(d0) 2 S], 8S ⇢ Y . (10)

Let D = {d1, . . . , dn} denote a dataset comprising n points from X . We say that two datasets
D = {d1, . . . , dn} and D0 = {d01, . . . , d0n} are neighboring (and denoted by D ⇠ D0) if they differ
in one data point, i.e., there exists an i 2 [n] such that di 6= d0i and for every j 2 [n], j 6= i, we have
dj = d0j .
Definition 4 (Central Differential Privacy - DP [18, 19]). For ✏, � � 0, a randomized mechanism
M : Xn ! Y is said to be (✏, �)-differentially private (in short, (✏, �)-DP), if for all neighboring
datasets D,D0 2 Xn and every subset S ✓ Y , we have

Pr [M(D) 2 S]  e✏0 Pr [M(D0) 2 S] + �. (11)

C Omitted Details from Section 6

C.1 Proof of Theorem 5: Reduction to the Special Case

First, we prove the joint-convexity of the ternary |�|↵-divergence as it is important in the following
proof.
Lemma 3 (Joint-convexity of the ternary |�|↵-divergence). For all ↵ � 1, the ternary-|�|↵-

divergence E
h���P�Q

R

���
↵i

is jointly convex in P,Q and R. In other words, if Pa = aP0 + (1� a)P1,

Qa = aQ0 + (1� a)Q1, and Ra = aR0 + (1� a)R1 for some a 2 [0, 1], then the following holds

ERa

����
Pa �Qa

Ra

����
↵�
 aER0

����
P0 �Q0

R0

����
↵�

+ (1� a)ER1

����
P1 �Q1

R1

����
↵�

(12)

Proof. First, observe that g(x, y) = |x� y| is jointly convex on R2, i.e., if xa = ax0 + (1� a)x1

and ya = ay0 + (1� a)y1, we have

|xa � ya| = |a(x0 � y0) + (1� a)(x1 � y1)|
 a|x0 � y0|+ (1� a)|x1 � y1| (13)

Let f(x, y) = xj/yj�1, which is jointly convex on R2
+ for j � 1; see [43, Lemma 20] for a proof.

Thus, we get

|Pa �Qa|j

Rj�1
a

 (a|P0 �Q0|+ (1� a)|P1 �Q1|)j

(aR0 + (1� a)R1)j�1
 a

|P0 �Q0|j

Rj�1
0

+ (1� a)
|P1 �Q1|j

Rj�1
1

,

(14)
where the first inequality is obtained from (13) and the second inequality is obtained from the
convexity of f(x, y). ⌅

Now, we prove Theorem 5. Our proof is an adaptation of the proof of [29, Theorem 4]. The
difference comes from the fact that [29, Theorem 4] was for Renyi divergence, whereas, here we
are working with ternary |�|↵-divergence. This changes some details and we provide a full proof of
Theorem 5 below.

Let pi := (pi1, . . . , piB), p0
k := (p0k1, . . . , p

0
kB), p

00
k := (p00k1, . . . , p

00
kB) denote the probability

distributions over Y when the input to R is di, d0k, and d00k respectively, where pij = Pr[R(di) = j]
for all j 2 [B] and i 2 [n]. Let P = {pi : i 2 [k]}, P 0 = {pi : i 2 [k � 1]}

S
{p0

k}, and
P 00 = {pi : i 2 [k � 1]}

S
{p00

k}.

For i 2 [k � 1], let P�i = P \ {pi} and also P�k = P \ {pk}. Here, P,P 0,P 00 correspond to the
datasets D = {d1, . . . , dk},D0 = {d1, . . . , dk�1, d0k}, and D00 = {d1, . . . , dk�1, d00k} respectively,
and for any i 2 [k], P�i corresponds to the dataset D�i = {d1, . . . , di�1, di+1, . . . , dk}.

For any collection P = {p1, . . . ,pk} of k distributions, we define F (P) to be the distribution over
Ak

B (which is the set of histograms on B bins with k elements as defined in (4)) that is induced
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when every client i (independent to the other clients) samples an element from [B] accordingly to the
probability distribution pi. Formally, for any h 2 Ak

B , define

Uh :=

8
<

:(U1, . . . ,UB) : U1, . . . ,UB ✓ [k] s.t.
B[

j=1

Uj = [k] and |Uj | = hj , 8j 2 [B]

9
=

; . (15)

Note that for each (U1, . . . ,UB) 2 Uh, Uj for j = 1, . . . , B denotes the identities of the clients that
map to the j’th element in [B] – here Uj’s are disjoint for all j 2 [B]. Note also that |Uh| =

�k
h

�
=

k!
h1!h2!...hB ! . It is easy to verify that for any h 2 Ak

B , F (P)(h) is equal to

F (P)(h) =
X

(U1,...,UB)2Uh

BY

j=1

Y

i2Uj

pij (16)

Similarly, we can define F (P 0), F (P 00), F (P�i), F (P 0
�i), and F (P 00

�i). Note that F (P), F (P 0) and
F (P 00) are distributions over Ak

B , whereas, F (P�i), F (P 0
�i), and F (P 00

�i) are distributions over
Ak�1

B . It is easy to see that F (P) = Msh(D), F (P 0) = Msh(D0), and F (P 00) = Msh(D00).

A crucial observation is that any distribution pi can be written as the following mixture distribution:

pi = qp00
k + (1� q) p̃i, (17)

where q = 1
e✏0 . The distribution p̃i = [p̃i1, . . . , p̃iB ] is given by p̃ij =

pij�qp00
kj

1�q , where it is easy to
verify that p̃ij � 0 and

PB
j=1 p̃ij = 1.

For any C ✓ [k � 1], define three sets PC ,P 0
C , and P 00

C having k distributions each, as follows:

PC = {p̂1, . . . , p̂k�1}
[

{pk}, (18)

P 0
C = {p̂1, . . . , p̂k�1}

[
{p0

k}, (19)

P 00
C = {p̂1, . . . , p̂k�1}

[
{p00

k}, (20)

where, for every i 2 [k � 1], p̂i is defined as follows:

p̂i =

⇢
p00
k if i 2 C,

p̃i if i 2 [k � 1] \ C. (21)

In the following lemma, we show that F (P), F (P 0), and F (P 00) can be written as convex combina-
tions of {F (PC) : C ✓ [k � 1]}, {F (P 0

C) : C ✓ [n� 1]}, and {F (P 00
C ) : C ✓ [k � 1]}, respectively,

where for any C ✓ [k � 1], F (PC), F (P 0
C). and F (P 00

C ) can be computed analogously as in (16).
Lemma 4 (Mixture Interpretation). F (P), F (P 0), and F (P 00) can be written as the following convex

combinations:

F (P) =
X

C✓[k�1]

q|C|(1� q)k�|C|�1F (PC), (22)

F (P 0) =
X

C✓[k�1]

q|C|(1� q)k�|C|�1F (P 0
C), (23)

F (P 00) =
X

C✓[k�1]

q|C|(1� q)k�|C|�1F (P 00
C ), (24)

where PC ,P 0
C ,P 00

C are defined in (18)-(21).

We present a proof of Lemma 4 in Appendix C.2.

From Lemma 3 and Lemma 4, we get

Eh⇠F (P00)

����
F (P)(h)� F (P 0)(h)

F (P 00)(h)

����
↵�
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X

C✓[k�1]

q|C| (1� q)k�|C|�1 Eh⇠F(P00
C )

����
F (PC)(h)� F (P 0

C)(h)

F (P 00
C )(h)

����
↵�

. (25)

For any C ✓ [k � 1], let eP[k�1]\C = {p̃i : i 2 [k � 1] \ C}. With this notation, note that
PC \ eP[k�1]\C = {p00

k , . . . ,p
00
k}
S
{pk}, P 0

C \ eP[k�1]\C = {p00
k , . . . ,p

00
k}
S
{p0

k}, and P 00
C \ eP[k�1]\C =

{p00
k , . . . ,p

00
k}
S
{p00

k} are a triple of specific neighboring distributions, each containing |C|+ 1 dis-
tributions. In other words, if we define D(k)

|C|+1 = (d00k , . . . , d
00
k , dk), D

0(k)
|C|+1 = (d00k , . . . , d

00
k , d

0
k), and

D00(k)
|C|+1 = (d00k , . . . , d

00
k , d

00
k), each having (|C|+ 1) data points (note that (D00(k)

|C|+1,D
0(k)
|C|+1,D

(k)
|C|+1) 2

D|C|+1
same ), then the mechanisms Msh(D(k)

|C|+1), Msh(D0(k)
|C|+1), and Msh(D00(k)

|C|+1) will have distribu-

tions F (PC \ eP[k�1]\C), F (P 0
C \ eP[k�1]\C), and F (P 00

C \ eP[k�1]\C), respectively.

Now, since (D00(k)
|C|+1,D

0(k)
|C|+1,D

(k)
|C|+1) 2 D|C|+1

same , if we remove the effect of distributions in eP[k�1]\C
in the RHS of (25), we would be able to bound the RHS of (25) using the ternary |�|↵-divergence for
the special neighboring datasets in D|C|+1

same . This is precisely what we will do in the following lemma
and the subsequent corollary, where we will eliminate the distributions in eP[k�1]\C in the RHS (25).

The following lemma holds for arbitrary triples (P,P 0,P 00) of neighboring distributions P =
{p1, . . . ,pk�1,pk}, P 0 = {p1, . . . ,pk�1,p

0
k}, and P 00 = {p1, . . . ,pk�1,p

00
k}, where we show that

the ternary |�|↵-divergence Eh⇠F (P00)

h���F (P)(h)�F (P0)(h)
F (P00)(h)

���
↵i

does not decrease when we eliminate
a distribution pi (i.e., remove the data point di from the datasets) for any i 2 [k � 1].
Lemma 5 (Monotonicity). For any i 2 [k � 1], we have

Eh⇠F (P00)

����
F (P) (h)� F (P 0) (h)

F (P 00) (h)

����
↵�
 Eh⇠F(P00

�i)

"�����
F (P�i) (h)� F

�
P 0
�i

�
(h)

F
�
P 00
�i

�
(h)

�����

↵#
.

(26)

Proof. This can be proved along the lines of the proof of [29, Lemma 5], which shows that

Eh⇠F (P0)

⇣
F (P)(h)
F (P0)(h)

⌘��
 Eh⇠F(P0

�i)

"✓
F (P�i)(h)

F(P0
�i)(h)

◆�
#

holds for all i 2 [k � 1]. This is a

result about Renyi divergence, and the only property of the Renyi divergence that is used in the proof

of [29, Lemma 5] is that Eh⇠F (P0)

⇣
F (P)(h)
F (P0)(h)

⌘��
is convex in pi for any i 2 [k � 1].

Note that Lemma 5 is about the ternary |�|↵-divergence, and the required convexity about this follows
from Lemma 3. So, following the proof of [29, Lemma 5] and using Lemma 3, proves Lemma 5. ⌅

Now, for any given C ✓ [k � 1], by eliminating the distributions p̃i in eP[k�1]\C = {p̃i : i 2
[k � 1] \ C} from PC , P 0

C , and P 00
C (by repeatedly applying Lemma 5), we get that

Eh⇠F(P00
C )

����
F (PC) (h)� F (P 0

C) (h)

F (P 00
C ) (h)

����
↵�

 E
h⇠Msh(D00(k)

m+1)

"�����
Msh(D(k)

m+1)(h)�Msh(D0(k)
m+1)(h)

Msh(D00(k)
m+1)(h)

�����

↵#
, (27)

where m = |C|. By substituting from (27) into (25) completes the proof of Theorem 5.

C.2 Proof of Lemma 4

This can be proved along the lines of the proof of [29, Lemma 3], and we prove it below for
completeness.

We only show (22); (23) and (24) can be shown similarly.
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For convenience, for any C ✓ [k � 1], define

P 00
|C|,k = {p00

k , . . . ,p
00
k} with |P 00

|C|,k| = |C|,
eP[k�1]\C = {p̃i : i 2 [k � 1] \ C}.

With these notations, we can write PC = P 00
|C|,k

S eP[k�1]\C
S
{pk}, and P 0

C =

P 00
|C|,k

S eP[k�1]\C
S
{p0

k}, and P 00
C = P 00

|C|,k
S eP[k�1]\C

S
{p00

k}.

Note that pi = qp0
k + (1� q)p̃i for all i 2 [k � 1]. For any i 2 [k � 1], define the following random

variable bpi:

bpi =

⇢
p00
k w.p. q,
epi w.p. 1� q.

Note that E[bpi] = pi. For any subset C ✓ [k � 1], define an event EC := {bpi = p00
k for i 2

C and bpi = epi for i 2 [k � 1] \ C}. Since bp1, . . . , bpn�1 are independent random variables, we have
Pr[EC ] = q|C|(1� q)n�|C|�1.

Consider an arbitrary h 2 An
B . Define a random variable U(P) over Ak

B whose distribution is equal
to F (P).

F (P)(h) = Pr[U(P) = h]

= Pr[U(p1, . . . ,pk�1,pn) = h]

= Pr
⇥
U
�
E[bp1], . . . ,E[bpk�1],pk

�
= h

⇤

=
X

C✓[k�1]

Pr[EC ] Pr
⇥
U
�
E[bp1], . . . ,E[bpk�1],pk

�
= h | EC

⇤

(e)
=

X

C✓[k�1]

Pr[EC ] Pr
h
U
⇣
P 0
|C|,k

[
eP[k�1]\C

[
{pk}

⌘
= h

i

=
X

C✓[k�1]

Pr[EC ] Pr
⇥
U(PC) = h

⇤

=
X

C✓[k�1]

q|C|(1� q)k�|C|�1 Pr
⇥
U(PC) = h

⇤
,

=
X

C✓[k�1]

q|C|(1� q)k�|C|�1F (PC)(h) (28)

where, P 0
|C|,k and eP[k�1]\C in the RHS of (e) are defined in the statement of the claim.

Since the above calculation holds for every h 2 Ak
B , we have proved (22).

C.3 Proof of Theorem 6: Ternary |�|↵-DP of the Special Case

First, we present the following standard inequality which is important to our proof.
Lemma 6. Let x, y 2 R be any two real numbers. Then, for all j � 1, we have

|x+ y|j  2j�1
�
|x|j + |y|j

�
. (29)

Proof. The proof is simple from the convexity of the function f(x) = xj for j � 1.

|x+ y|j = 2j
����
x+ y

2

����
j

 2j
✓
|x|+ |y|

2

◆j

 2j
✓
|x|j + |y|j

2

◆
= 2j�1

�
|x|j + |y|j

�
,

where the second inequality is obtained from the Jensen’s inequality and the fact that the function
f(x) = xj is convex on R+ for all j � 1. ⌅

From Lemma 6, we get the following corollary.
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Corollary 1. Fix an arbitrary m 2 N and consider any three mutually neighboring datasets
Dm, D0

m, D00
m, where Dm = (d, . . . , d) 2 Xm, D0

m = (d, . . . , d, d0) 2 Xm and D00
m =

(d, . . . , d, d00) 2 Xm. The ternary |�|↵-DP is bounded by

Eh⇠Msh(Dm)

����
Msh(D0

m)(h)�Msh(D00
m)(h)

Msh(Dm)(h)

����
↵�

 2↵�1

✓
Eh⇠Msh(Dm)

����
Msh(D0

m)(h)

Msh(Dm)(h)
� 1

����
↵�

+ Eh⇠Msh(Dm)

����
Msh(D00

m)(h)

Msh(Dm)(h)
� 1

����
↵�◆

.

(30)

Proof. Fix any h 2 Am
B , and take x =

⇣
Msh(D0

m)(h)
Msh(Dm)(h) � 1

⌘
, y = �

⇣
Msh(D00

m)(h)
Msh(Dm)(h) � 1

⌘
. Then

applying Lemma 6 and taking expectation w.r.t. h ⇠Msh(Dm) will yield Corollary 1. ⌅

Remark 3. Observe that the proof of Corollary 1 does not require Dm,D0
m,D00

m to be special
triple of neighboring datasets such that (Dm,D0

m,D00
m) 2 Dm

same. In fact, Corollary 1 holds for
any triple of distributions p, q, r over the same domain, for which we can show Er[

��p�q
r

��↵] 
2↵�1

�
Er[
��p
r � 1

��↵] + Er[
�� q
r � 1

��↵]
�
.

Now, in order to prove Theorem 6, it suffices to bound the expectation terms on the RHS of (30).
This is what we do in the lemma below.
Lemma 7. For any pair of the special pair of neighboring datasets Dm,D0

m, where Dm =
(d, . . . , d) 2 Xm

and D0
m = (d, . . . , d, d0) 2 Xm

, we have

Eh⇠Msh(Dm)

����
Msh(D0

m)(h)

Msh(Dm)(h)
� 1

����
↵�


8
><

>:

(e✏0�1)2

me✏0 if ↵ = 2,

↵�(↵/2)

✓
(e2✏0�1)2

2me2✏0

◆↵/2

otherwise.

Substituting the bound from Lemma 7 into Corollary 1, we get

Eh⇠Msh(Dm)

����
Msh(D0

m)(h)�Msh(D00
m)(h)

Msh(Dm)(h)

����
↵�


8
><

>:

4 (e✏0�1)2

me✏0 if ↵ = 2,

↵�(↵/2)

✓
2(e2✏0�1)2

me2✏0

◆↵/2

otherwise,

which completes the proof of Theorem 6.

Proof of Lemma 7. Consider any pair of neighboring datasets Dm, D0
m, where Dm = (d, . . . , d) 2

Xm, D0
m = (d, . . . , d, d0) 2 Xm. Let p = (p1, . . . , pB) and p0 = (p01, . . . , p

0
B) be the probability

distributions of the discrete ✏0-LDP mechanism R : X ! Y = [B] when its inputs are d and d0

respectively, where pj = Pr[R(d) = j] and p0j = Pr[R(d0) = j] for all j 2 [B]. Since R is ✏0-LDP,
we have

e�✏0  pj
p0j
 e✏0 , 8j 2 [B]. (31)

Since Msh is a shuffled mechanism, it induces a distribution on Am
B for any input dataset. So, for

any h 2 Am
B , Msh(Dm)(h) and Msh(D0

m)(h) are equal to the probabilities of seeing h when the
inputs to Msh are Dm and D0

m, respectively. Thus, for a given histogram h = (h1, . . . , hB) 2 Am
B

with m elements and B bins, we have

Msh(Dm) (h) = MN (m,p,h) =

✓
m

h

◆ BY

j=1

p
hj

j , (32)

Msh(D0
m)(h) =

BX

j=1

p0jMN
⇣
m� 1,p, ehj

⌘
, (33)

where MN (m,p,h) denotes the Multinomial distribution with
�m
h

�
= m!

h1!···hB ! .
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Let X : Am
B ! R be a random variable associated with the distribution M(Dm) on Am

B , and for
any h 2 Am

B , define X(h) := m
⇣

M(D0
m)(h)

M(Dm)(h) � 1
⌘

. Thus, we get that E
h���Msh(D0

m)(h)
Msh(Dm)(h) � 1

���
↵i

=
1

m↵E [|X|↵]. From [29, Lemmas 6, 7], we get that

1

m↵
E [|X|↵] 

8
><

>:

(e✏0�1)2

me✏0 if ↵ = 2,

↵� (↵/2)

✓
(e2✏0�1)2

2me2✏0

◆↵/2

otherwise.
(34)

This completes the proof of Lemma 7. ⌅

C.4 Completing the Proof of Theorem 4

For simplicity of notation, for any m 2 {0, 1, . . . , n� 1}, define

qm :=

✓
k � 1

m

◆
qm(1� q)k�m�1

Em := E
h⇠Msh(D00(k)

m+1)

"�����
Msh(D(k)

m+1)(h)�Msh(D0(k)
m+1)(h)

Msh(D00(k)
m+1)(h)

�����

↵#
.

First we show an important property of Em that we will use in the proof.
Lemma 8. Em is a non-increasing function of m, i.e.,

E
h⇠Msh(D00(k)
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, (35)

where, for any l 2 {m,m + 1}, D(k)
l = (d00k , . . . , d

00
k , dk), D

0(k)
l = (d00k , . . . , d

00
k , d

0
k), and D00(k)

l =
(d00k , . . . , d

00
k , d

00
k), each having l elements.

Proof. Lemma 8 follows from Lemma 5 in a straightforward manner, as Lemma 5 is for arbitrary
triples of adjacent datasets, whereas, Lemma 8 is for triples of adjacent datasets having special
structures. ⌅

Thus, we get

Eh⇠Msh(D00)

����
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Here, steps (a) and (d) follow from the fact that Em is a non-increasing function of m (see Lemma 8).
Step (b) follows from the Chernoff bound. In step (c), we used that Msh(dk) = R(dk), Msh(d0k) =
R(d0k), and Msh(d00k) = R(d00k) which together imply that E0 = (e✏0 � e�✏0)↵, where the inequality
follows because R is an ✏0-LDP mechanism. By choosing � = 0.5 completes the proof of Theorem 4.

D Proof of Theorem 2 (Lower Bound)

Consider the binary case, where each data point d can take a value from X = {0, 1}. Let the local
randomizer R be the binary randomized response (2RR) mechanism, where Pr [R (d) = d] = e✏0

e✏0+1

for d 2 X . It is easy to verify that R is an ✏0-LDP mechanism. For simplicity, let p = 1
e✏0+1 . Consider

two neighboring datasets D, D0 2 {0, 1}k, where D = (0, . . . , 0, 0) and D0 = (0, . . . , 0, 1). Let
m 2 {0, . . . , k} denote the number of ones in the output of the shuffler. We define two distributions

µ0(m) =

✓
k

m

◆
pm(1� p)k�m,
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m

◆
pm(1� p)k�m�1.

(37)

As argued on page 5, since the output of the shuffled mechanism M can be thought of as the
distribution of the number of ones in the output, we have that m ⇠M(D) is distributed as a Binomial
random variable Bin(k, p). Thus, we have

M(D)(m) = µ0(m)

M(D0)(m) = (1� �)µ1(m) + �µ0(m)

It will be useful to compute µ1(m)
µ0(m) � 1 for the calculations later.
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Thus, we have that
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Here, step (a) from the polynomial expansion (1 + x)k =
Pk

m=0

� k
m

�
xm, step (b) follows because

the term corresponding to i = 1 is zero (i.e., Em⇠µ0

h⇣
µ1(m)
µ0(m) � 1

⌘i
= 0), and step (c) from the

from the fact that Em⇠µ0

⇣
m� k

e✏0+1

⌘2�
= kp(1� p) = ke✏0

(e✏0+1)2 , which is equal to the variance

of the Binomial random variable. This completes the proof of Theorem 2.

E Omitted Details from Section 5

E.1 Proof of Lemma 2

Consider arbitrary neighboring datasets D = (d1, . . . , dn) 2 Xn and D0 = (d1, . . . , dn�1, d0n) 2
Xn. Recall that the LDP mechanism R : X ! Y has a discrete range Y = [B] for some B 2 N. Let
pi := (pi1, . . . , piB) and p0

n := (p0n1, . . . , p
0
nB) denote the probability distributions over Y when the

input to R is di and d0n, respectively, where pij = Pr[R(di) = j] and p0nj = Pr[R(d0n) = j] for all
j 2 [B] and i 2 [n].

Let P = {pi : i 2 [n]} and P 0 = {pi : i 2 [n� 1]}
S
{p0

n}. For i 2 [n � 1], let P�i = P \ {pi},
P 0
�i = P 0 \ {pi}, and also P�n = P \ {pn}, P 0

�n = P 0 \ {p0
n}.

Here, P,P 0 correspond to the datasets D = {d1, . . . , dn},D0 = {d1, . . . , dn�1, d0n}, respectively,
and for any i 2 [n], P�i and P 0

�i correspond to the datasets D�i = {d1, . . . , di�1, di+1, . . . , dn}
and D0

�i = {d1, . . . , di�1, di+1, . . . , dn�1, d0n}, respectively. Thus, without loss of generality, we
deal with sets P and P 0 throughout this section instead of dealing with D and D0. Thus, we write
M (P) , M (D) and M (P 0) , M (D0).

We bound the Rényi divergence between M(P) and M(P 0). For given a set S ⇢ [n] with |S| =
�n = k, we define two sets PS ,P 0S , having k distributions each, as follows:

PS = {pi : i 2 S}, (39)

P
0S = {pi : i 2 S}, (40)

Observe that when n 62 S , we have that PS = P 0S . For given k distributions P = (p1, . . . ,pk), we
define a shuffle mechanism Msh (P) as follows:

Msh (P) = Hk (p1, . . . ,pk) . (41)
Thus, the mechanisms M(P) and M(P 0) can be defined by:
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�
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⌘
. Hence, from the polynomial expansion, we get:
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Now, we borrow the trick used in [43] to bound each term in the right hand side in (44). For
completeness, we repeat their definitions and proofs here. We define an auxiliary dummy variable
i ⇠ Unif (1, . . . , k) that is independent to everything else. Furthermore, we define two functions
g(S, i) and g0(S, i) as follows:

g(S, i) =
⇢

Msh

�
PS� if n 2 S

Msh

�
PS[{n}\S(i)

�
otherwise (45)

g0(S, i) =

8
<

:
Msh

⇣
P 0S

⌘
if n 2 S

Msh

⇣
P 0S[{n}\S(i)

⌘
otherwise

(46)

Observe that ES,i [g(S, i)] = PE , ES,i [g0(S, i)] = QE , and ES,i

h
Msh

⇣
P 0S

⌘i
= M (P). As a

result, we get that

Eh⇠M(P0)

"✓
PE (h)�QE (h)

M (P 0) (h)

◆j
#

X

h

|PE (h)�QE (h) |j

(M (P 0) (h))j�1


X

h

ES,i

"
|g(S, i) (h)� g0(S, i) (h) |j

(Msh (P 0S) (h))j�1

#

= ES,iEh⇠Msh(P0S)

"✓
|g(S, i) (h)� g0(S, i) (h) |

Msh (P 0S) (h)

◆j
#

 (⇣(j))j .

Here, step (a) follows from Jensen’s inequality and the convexity of the function xj/yj�1 (see [43,
Lemma 20]). Step (b) follows from Fubini’s theorem. The last inequality is obtained by taking the
supremum over all possible neighboring datasets D, D0. This completes the proof of Lemma 2.

E.2 Combining Theorem 4 and Lemma 2 for Proving Theorem 1

In this section, we complete the remaining calculation from Section 5 of combining the results of
Theorem 4 and Lemma 2 and proving Theorem 1.

Substituting the bound on ⇣(↵) from Theorem 4 into Lemma 2, we get
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where ⌥ =
P�

↵=2
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The above expression in (47) is the bound given in Theorem 1.

F Proof of Theorem 3: Privacy-Convergence Tradeoff

In this section, we prove the privacy-convergence tradeoff of Algorithm 1 and prove Theorem 3.

The privacy part is straightforward from conversion from RDP to approximate DP using Lemma 1
and Theorem 1. Now, we prove the convergence rate.
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At iteration t 2 [T ] of Algorithm 1, server averages the k received gradients and obtains gt =
1
k

P
i2Ut

Rp (g̃t (di)) and then updates the parameter vector as ✓t+1  
Q

C (✓t � ⌘tgt). Observe
that the mechanism Rp is unbiased and has a bounded variance: supx2Bp(L) EkRp (x) � xk22 
G2

p(L). As a result, the average gradient gt is also unbiased, i.e., we have E [gt] = r✓tF (✓t), where
expectation is taken with respect to the random subsampling of clients as well as the randomness of
the mechanism Rp. Now we show that gt has a bounded second moment.
Lemma 9. For any d 2 X , if the function f (✓; .) : C⇥X ! R is convex and L-Lipschitz continuous

with respect to the `g-norm, which is the dual of the `p-norm (i.e.,
1
p + 1

g = 1), then we have

Ekgtk22  L2 max{d1�
2
p , 1}

 
1 +

cd

qn

✓
e✏0 + 1

e✏0 � 1

◆2
!
, (48)

where c is a global constant: c = 4 if p 2 {1,1} and c = 14 if p /2 {1,1}.

Proof. Under the conditions of the lemma, we have from [40, Lemma 2.6] that kr✓f (✓; d) k  L
for all d 2 X , which implies that kr✓F (✓)k  L. Thus, we have

Ekgtk22 = kE [gt] k22 + Ekgt � E [gt] k22
(a)
 max{d1�

2
p , 1}L2 + Ekgt � E [gt] k22

(b)
 max{d1�

2
p , 1}L2 +

Gp(L)2

k

(c)
= max{d1�

2
p , 1}L2 +

G2
p(L)

�n
,

Step (a) follows from the fact that kr✓tF (✓t) k  L together with the norm inequality kukq 
kukp  d

1
p�

1
q kukq for 1  p  q  1. Step (b) follows from the assumption that Rp has bounded

variance. Step (c) uses � = k
n . ⌅

Now, we can use standard SGD convergence results for convex functions. In particular, we use the
following result from [41].
Lemma 10 (SGD Convergence [41]). Let F (✓) be a convex function, and the set C has diameter

D. Consider a stochastic gradient descent algorithm ✓t+1  
Q

C (✓t � ⌘tgt), where gt satisfies

E [gt] = r✓tF (✓t) and Ekgtk22  G2
. By setting ⌘t =

D
G
p
t
, we get

E [F (✓T )]� F (✓⇤)  2DG
2 + log (T )p

T
= O

✓
DG

log (T )p
T

◆
. (49)

As shown in Lemma 9 and above that Algorithm 1 satisfies the premise of Lemma 10. Now, using
the bound on G2 from Lemma 9, we have that the output ✓T of Algorithm 1 satisfies

E [F (✓T )]� F (✓⇤)  O
✓
DG

log (T )p
T

◆
, (50)

where G2 = max{d1�
2
p , 1}L2 +

G2
p(L)

�n . This completes the proof of the third part of Theorem 3.

G Additional Numerical Results

In this section, we present additional numerical experiments of our bounds on RDP of the subsampled
shuffle mechanism and its usage for getting approximate DP of Algorithm 1 for training machine
learning models.

Composition of a sequence of subsampled shuffle models: Observe that our RDP bound presented
in 1 is general for any values of LDP parameter ✏0, number of clients n, and RDP order � � 2. On
the other hand, the results of the privacy amplification by shuffling presented in [24] is valid under
the condition on the LDP parameter:

✏0  log

✓
n

16 log(2/�)

◆
. (51)
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Figure 4: Comparison of our bound on the Approximate (✏, �)-DP (blue) for composition of a
sequence of subsampled shuffle mechanisms for � = 10�8 with applying the strong composition
theorem [34] after getting the Approximate DP of the shuffled model given in [24] with subsam-
pling [42] (magenta).
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Figure 5: Comparison of several bounds on the Approximate (✏, �)-DP for composition of a sequence
of subsampled shuffle mechanisms for � = 10�8: (i) Approximate DP obtained from our upper
bound on the RDP in Theorem 1 (blue); (ii) Approximate DP obtained from our lower bound on the
RDP in Theorem 2 (red); (iii) Approximate DP obtained from the upper bound on the RDP given
in [29] with RDP amplification by subsampling from [43] (black); and (iv) Applying the strong
composition theorem [34] after getting the Approximate DP of the shuffled model given in [24] with
subsampling [42] (magenta).

Furthermore, the results of the privacy amplification by shuffling presented in [7] is valid under the
condition on the LDP parameter:

✏0 
1

2
log

✓
n

log(1/�)

◆
. (52)

Thus, if the conditions in (51)- (52) do not hold, then the results in [24, 7] have a privacy bound:
✏ = ✏0 and � = 0. For example, when total number of clients n = 106, LDP parameter ✏0 = 3, and
we choose uniformly at random k = 1000 clients at each iteration, then both conditions (51)- (52) do
not hold.

In Figure 4, we plot additional results for comparison between our bound on the approximate DP
for a composition of T mechanisms (M1, . . . ,MT ) with the bound obtained by applying the strong
composition theorem [34] after getting the approximate DP of the shuffled model given in [24] with
subsampling [42]. In Figure 5, we plot our bound on the approximate (✏, �)-DP for a composition of
T mechanisms (M1, . . . ,MT ), where Mt is a subsampled shuffle mechanism for t 2 [T ]. In all
our experiments reported in Figure 5, we fix � = 10�8 and ✏0 = 3, where we consider the cases in
which the conditions (51)- (52) do not hold. Thus, we compare our results with the bound: ✏ = ✏0
and � = 0.

We observe that our new bound on the RDP of the subsampled shuffle mechanism achieves a
significant saving in total privacy ✏ compared to the bound in [24, 7]. For example, we save a factor
of 17⇥ compared to the results in [24, 7] with the strong composition theorem [34] in computing the
overall privacy parameter ✏ for number of iterations T = 105, subsampling parameter � = 0.001,
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Figure 6: Privacy-Utility trade-offs on the MNIST dataset with `2-norm clipping.

LDP parameter ✏0 = 3, and number of clients n = 106. We observe that our bound on the over all
privacy parameters almost matches the bound on the RDP given in [29] with subsampled RDP [43]
when subsampling parameter � = 0.001, LDP parameter ✏0 = 3, and number of clients n = 106.

Distributed private learning: We numerically evaluate the proposed privacy-learning performance
on training machine learning models. We train a simple neural network on MNIST dataset that was
also used in [21, 39] and described in Table 1. We assume that we have n = 60, 000 clients, where
each client has one sample. At each step of the Algorithm 1, we choose uniformly at random 2, 000
clients, where each client clips the `2-norm of the gradient with clipping parameter C = 0.005 and
applies the R2 ✏0-LDP mechanism (Privunit) proposed in [17] with ✏0 = 2. We run Algorithm 1 with
� = 10�5 for 200 epochs, with learning rate ⌘ = 12 for the first 30 epochs, and then decrease it to 4
in the next 30 epochs. We decrease the learning rate to 3.5 for the remaining epochs.

Figure 6 plots the mean and the standard deviation of privacy-accuracy trade-offs averaged over 4
runs. We observe that we achieve an accuracy of 81.15%(±0.7) with a total privacy budget of ✏ = 3
using our new privacy analysis, whereas, [24] achieves an accuracy of only 76.46%(±1.9) with the
same privacy budget of ✏ = 3 using the standard composition theorems. Furthermore, we can see that
we achieves accuracy 89.7%(±0.5) with total privacy budget ✏ = 5.8 using our new privacy analysis,
whereas, [24] (together with the standard strong composition theorem) achieves the same accuracy
with a total privacy budget of ✏ = 18.3.

Computation resources: For our experiments, we used a server which has 6 Nvidia RTX2080Ti
GPU’s and Intel Xeon Gold 6230 CPU @ 2.10GHz CPU’s. The longest epoch time is 400 seconds
for training on MNIST.
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