A Full SCOPF formulation

In the N-k SCOPF formulation presented in Equation (6)), for brevity, we abstracted away various
device constraints and operational limits into the sets X', Whase, Z;, and VW;. Here, we write out those
constraints more explicitly to facilitate in-depth descriptions of components of our attack and defense

in Appendices [B]and|[C]

Specifically, let ny,, be the number of nodes (buses) on the power system, and let n, be the number
of generators. By convention, we designate one of these generators to be a slack bus whose voltage
angle is fixed at a particular value. Our dispatch x € R?™s~! then consists of the voltage magnitude at
the slack bus, and the real power generation and voltage magnitude at all other generators, subject to
device limits and operational constraints. As in Section[4.T, we let C represent the set of contingencies,
and 2(?) € R?"s~! represent slightly adjusted settings of the dispatch quantities that the power system

operator can create after scheduling & and then observing some contingency ¢() € C. We then write
the N-k SCOPF problem as

minimize fyase () + E Feont (2, ™)
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where hpgee @ R0~ x R? — R2¥(2n9—1+d) represents device and operational constraints (box
constraints) on x and Whase, heon : RZ™ ™1 x R x R?™~1 x € — R2X(2n9—1+d) represents device

and operational constraints (box constraints) on 20 and w®, and all other quantities are as defined
in Section

We can then re-write our N-k SCOPF minimax formulation presented in Section as
R 1, 19
minimize max foase () + feont(2,y) + =155 (A.22)
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’ hcont(za Weont, T, y) <0 -

d
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where Y := {y : y € [0,1]",|lylli < k} is our outer relaxation to the contingency set, and
s € R?™s are slack variables representing potential infeasibilities in the third-stage optimization
problem.

B Further details on the SCOPF attack

The innermost optimization problem in Equation (A.2c), represents the decision a power grid operator
would make when faced with a particular partial contingency y* after having made a base dispatch z.
In particular, the grid operator is looking to minimize the cost of power generation feon (2, y*), as
well as ensure the system remains feasible (s = 0). To solve for the grid response due to a particular
partial contingency, we solve (A.2c) using a Newton-based approach [45].

Specifically, let A € R2™» be the dual variables on the power flow constraint, and p € R2* (279 —1+d)
be the dual variables on the inequality constraints. The Lagrangian of the optimization problem is
given by

1
L= fcont(z7 y*) + 5”5“5 + )\T(gﬂOW,COHl(Za Weont, j) + 5) + /JThcont<Za Weont, T y*)~ (B.1)
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The KKT conditions for stationarity, primal feasibility, complementary slackness, and dual feasibility
are then given by

8‘6 o afcom(zvy*) + (agﬂow,com(szcontaf)>T)\+ (ahcom(zawcon‘nf,y*))Tlu _ 0

0z 0z 0z 0z
oL =s5+A=0
Os (B.2)

gﬂow,cont(za Weont j) +s5s=0
diag(ﬂ)hcont(z7 Weonts Ty y*) =0
w2 0.

The KKT conditions can be written as a set of equations Fyy,ck(z, s, A, ) = 0. Traditionally in
the power systems literature, the equations in (B.2) are solved using a Newton’s method [43]]. The
iterative Newton’s method starts with some initial estimates 2°, s°, A9, u° for 2, s, A, . Then, at each
iteration i, we construct a Jacobian J* for Fy,c and a corresponding right hand side vector b* at our
current estimate z°~1, 571, X1 1i=1 We then solve the resultant set of linear equations

Jt \i = (B.3)

"

to determine the next estimate for the solution, and iterate until convergence.

C Further details on the SCOPF defense

The defense step of our approach entails adjusting our dispatch in a direction of increased robustness
to the “worst-case” contingency y* found in the attack stage, while also maintaining feasibility in
the base case. To do so, we partially solve the minimization problem shown in Equation (12), as
described in the main text. Specifically, let Ay and Acope denote the dual variables on the power
flow constraints in the base and contingency cases, respectively, and let fipyge and ficon denote the
dual variables on the inequality constraints in the base and contingency cases, respectively. Then, the
Lagrangian of optimization problem is given by
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where a number of the terms in condition (C.5) cancel to zero due to the underlying structure of
N-k SCOPF problem. We can group the KKT conditions together based on their relation to the
base variables or the contingency variables. We define two vectors of equations that group the KKT
conditions together: Fhase (T, Whase, Abases Mbase )> Tepresenting the decoupled defense equations in blue
above, and Fion (2, Weont, Aconts Meont )» T€Presenting the decoupled contingency optimization equations
in red. We can then group the KKT conditions as follows:
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We notice the two KKT terms Fy,se and Fione are independent but are coupled through two additional
terms. For the N-k SCOPF application, these coupling terms represent the generator’s contingency
ramping constraints and the voltage set points from the base case. Due to the sparse nature of the
grid, these couplings are weak, which makes these equations well-suited to solve using a decoupled
Gauss-Seidel approach.

The non-linear Gauss-Seidel is an iterative method to solve the two sets of weakly coupled equations
independently using the values of the coupled variables from the previous iteration. Based on the
KKT conditions above, we can write the Gauss-Siedel equations at iteration ¢ as follows:

0
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0
(C.12)
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By specifically ordering the Gauss-Seidel algorithm to first solve (C.11) and then (C.12), we can
pass the updated contingency-specific coupling variables 2% and A\, obtained by solving (C.11) at
the current iterate ¢ to the solve of (C.12). The Gauss-Seidel algorithm for this specific application
relaxes the coupling by, at iteration 4, using the value of & from the previous iteration, as highlighted
in green in (C.11). By ordering the updates in this way, we initiate the Gauss-Seidel iterations using
the final solution we already obtained when solving for the worst-case attack y* and its associated z*,
which is the solution to (13b).

Rather than running the Gauss-Seidel iterations to convergence, we run only a single iteration in
order to take a step in the dispatch = (before then restarting the attack phase). We can efficiently solve
this single Gauss-Seidel since we reuse the solution from the attack stage for Equation (C.11), and
therefore all that remains to solve is Equation (C.12).

D GO competition scoring

Challenge 1 of the GO competition [34]] created a specific formulation for the grid constraints in
Equation (A.2c). In particular, they relaxed part of the formulation to not allow certain grid models
such as switched shunts. They also used automatic generation control modulate the power generation
at each generator to ensure the power grid frequency remained at its nominal set point. However, in
contrast, our “third stage” power flow solver is built to solve discrete shunts and discrete transformer
tap controls. We also do not use automatic generation control, but instead enable generators to ramp
(i.e., change their production) within some limits determined by the base dispatch. These grid models
are most consistent with the ongoing Challenge 2 of the GO competition [34], which has updated its
grid models since the first competition. The full list of relevant differences in grid models is shown in
the table below.

GO Challenge 1 models CANOJY models
Power generation adjustments ~ Automatic generation control ~ Generator ramping
Discrete shunts Not allowed Allowed
Transformer tap ratios Fixed Adjustable (discrete)

As scores and solutions for GO Challenge 2 are not yet available, we compare our solver against
solvers from GO Challenge 1, despite the fact that our solver uses grid models from GO Challenge 2.
In particular, we score our formulation by using the score weighting criteria given in GO Challenge 1
[34] and compare the against the scores of the top Challenge 1 competitors, which are available at
[34]. However, since the grid models used by our solver vs. the Challenge 1 solvers are different, the
score comparisons we show in Section [5.2|are ultimately approximate. Nonetheless, we believe that
the comparisons still indicate that our methodology is competitive for N-1 SCOPFE.
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