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Abstract

Computing market equilibria is a problem of both theoretical and applied interest.
Much research to date focuses on the case of static Fisher markets with full infor-
mation on buyers’ utility functions and item supplies. Motivated by real-world
markets, we consider an online setting: individuals have linear, additive utility
functions; items arrive sequentially and must be allocated and priced irrevoca-
bly. We define the notion of an online market equilibrium in such a market as
time-indexed allocations and prices which guarantee buyer optimality and market
clearance in hindsight. We propose a simple, scalable and interpretable allocation
and pricing dynamics termed as PACE. When items are drawn i.i.d. from an un-
known distribution (with a possibly continuous support), we show that PACE leads
to an online market equilibrium asymptotically. In particular, PACE ensures that
buyers’ time-averaged utilities converge to the equilibrium utilities w.r.t. a static
market with item supplies being the unknown distribution and that buyers’ time-
averaged expenditures converge to their per-period budget. Hence, many desirable
properties of market equilibrium-based fair division such as envy-freeness, Pareto
optimality, and the proportional-share guarantee are also attained asymptotically
in the online setting. Next, we extend the dynamics to handle quasilinear buyer
utilities, which gives the first online algorithm for computing first-price pacing
equilibria. Finally, numerical experiments on real and synthetic datasets show that
the dynamics converges quickly under various metrics.

1 Introduction

A market is said to be in equilibrium when supply is equal to demand. Computing prices and
allocations which constitute a market equilibrium (ME) has long been a topic of interest [17, 20,
28, 31, 38, 43]. Most existing work focuses on the case of static markets. However, in this paper
we consider the case of online markets where items arrive sequentially. We consider the extension
of market equilibrium to this setting and provide market dynamics which quickly converge to an
equilibrium in the case of online Fisher markets.

In static Fisher markets there is a fixed supply of each item, individual preferences are linear, additive,
and items are divisible (or equivalently, randomization is allowed so individuals can purchase not just
items but lotteries over items). In general, finding market equilibria is a hard problem [14, 39, 47].
However, in static linear Fisher markets, equilibrium prices and allocations can be computed via
solving the Eisenberg-Gale (EG) convex program [22, 37].

We consider an online extension of Fisher markets where buyers are constantly present but items
arrive one-at-a-time. Buyers’ budgets are per-period and represent their respective ‘bidding powers’
instead of being binding constraints. We extend the definition of market equilibrium to the online
setting: online equilibrium allocations and prices are time-indexed and, when averaged across time,
form an equilibrium in a corresponding static Fisher market where item supplies are proportional
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to item arrival probabilities. Due to the stochastic nature of online Fisher markets, any online
algorithm can only attain an online market equilibrium asymptotically, that is, the allocations and
prices approximately satisfy the equilibrium conditions after running the algorithm for a long time.

We propose market dynamics that find these equilibria in an online fashion based on the dual
averaging algorithm applied to a reformulation of the dual of the EG convex program. We refer to
this mechanism as PACE (Pace According to Current Estimated utility). In PACE, each buyer is
assigned a utility pacing multiplier at time 0. When an item arrives, the individual with the highest
adjusted utility (its valuation times the multiplier) receives that item and pays a price equal to its
adjusted utility. The pacing multipliers of all individuals are then adjusted according to a closed-form
rule which is given by the time average of the subgradient of the dual of the EG program. Intuitively,
the pacing multipliers of those that did not receive the item go up while the receiver’s typically (but
not always) goes down. We show that PACE yields item allocations and prices that satisfy various
equilibrium properties asymptotically, for example no-regret and envy-freeness.

One important application of market equilibrium is fair allocation using the competitive equilibrium
from equal incomes (CEEI) mechanism [12, 46]. In CEEI, each individual is given an endowment
of faux currency and reports her valuations for items; then, a market equilibrium is computed and
the items are allocated accordingly. However, many fair division problems are online rather than
static. These include the allocation of impressions to content in certain recommender systems [34],
workers to shifts, donations to food banks [2], scarce compute time to requestors [25, 29, 40], or
blood donations to blood banks [32]. Similarly, online advertising can also be thought of as the
allocation of impressions to advertisers via a market though with a budget of real money rather than
faux currency. In the static CEEI case with linear additive preferences, the resulting equilibrium
outcomes (i.e. results of the EG program) have been described as “perfect justice” [3]. In the online
case, PACE achieves the same fair allocations as CEEI asymptotically. See Appendix A for more
related work in the areas of (static and online) equilibrium computation and fair division.

We evaluate PACE experimentally in several market datasets. Convergence to good outcomes happens
quickly in experiments. Taken together our results, we conclude that PACE is an attractive algorithm
for both computing online market equilibria and online fair division.

Main contributions. We consider the problem of allocating and pricing sequentially arriving items
to n buyers. This setting is termed as an online Fisher market. Given a sequence of item arrivals,
we define an online market equilibrium as the items’ allocations and prices that, in hindsight, ensure
buyer optimality and market clearance. We propose the PACE dynamics, which can be viewed
as a nontrivial instantiation of the dual averaging algorithm on a reformulation of the dual of the
Eisenberg-Gale convex program. Leveraging the convergence theory of dual averaging, we show
that, when item arrivals are drawn from an (unknown) underlying distribution s, possibly over an
infinite/continuous item space, PACE ensures the following.

• The pacing multipliers generated by PACE converge to the static equilibrium utility prices. Here,
“static” means w.r.t. to an underlying static Fisher market.

• Buyers’ time-averaged utilities converge to the static equilibrium utilities.
• Buyers’ time-averaged expenditures converge to their respective budgets.

These convergences are all in mean square with rates O((log t)/t), O((log t)/t) and O((log t)2/t),
respectively, where the constants in these rates involve moderate polynomials of n. In this way,
PACE generates allocations and prices that constitute an online market equilibrium in the limit. In
particular, the allocations and prices ensure that the allocation is Pareto optimal, and buyers have no
regret, no envy, and get at least their proportional share asymptotically. We also extend PACE to the
case of quasilinear buyer utilities, which yields the first online algorithm for computing first-price
pacing equilibria. Finally, numerical experiments suggest that PACE converges much faster than its
theoretical rates in terms of pacing multipliers, utilities and expenditures.

2 Static and Online Fisher Markets

Static Fisher markets and equilibria. We first introduce static Fisher markets and their equilibria.
Following the recent work [24, §2], we consider a measurable (possibly continuous) item space.

2



Below are the technical preliminaries for the subsequent online setting. They can be skimmed through
and referred back to as needed.

From now on, we define [k] := {1, . . . , k} for any k ∈ N := {0, 1, 2, . . . } and R+ (R++, resp.) as
the set of nonnegative (positive, resp.) real numbers. Let I{A} ∈ {0, 1} denote the indicator function
of an event A.

(a) There are n buyers (individuals), each having a budget Bi > 0.
(b) The item space is a finite measure space (Θ,M, µ) with 0 < µ(Θ) < ∞. From now on, Lp

(and Lp
+, resp.) denote the set of (nonnegative, resp.) Lp functions on Θ for any p ∈ [1,∞]

(including p = ∞). Below are some concrete special cases for illustration.

(i) Finite: Θ = [m], M = 2[m] = {A : A ⊆ [m]} and µ(A) =
∑

a∈A µ(a) (all 2m subsets
are measurable and the measure is given by a point mass on each item).

(ii) Lebesgue-measurable: µ is the Lebesgue measure on Rd, M is the Lebesgue σ-algebra
and Θ is a (Lebesgue-)measurable subset of Rd with positive finite measure. For example,
Θ can be a compact subset of Rd with a nonempty interior.

(iii) Countably infinite: Θ = N and µ(A) =
∑

a∈A µ(a) for any A ⊆ N, where µ(N) < 0.
For example, µ(a) can be the probability mass of a Poisson distribution, in which case
(N,M, µ) is a probability space.

(c) The supplies of items is s ∈ L∞
+ , i.e., item θ ∈ Θ has supply s(θ). Since Θ is compact, it is

measurable with a finite measure. For the finite case Θ = [m], we have s = (s1, . . . , sm) ∈ Rm
+ .

(d) The valuation of each buyer i on all items is vi ∈ L1
+, i.e., buyer i has valuation vi(θ) on item

θ ∈ Θ. For the finite case Θ = [m], we have vi = (vi1, . . . , vim) ∈ Rm
+ .

(e) For buyer i, an allocation of items xi ∈ L∞
+ gives a utility of

ui(xi) := ⟨vi, xi⟩ :=
∫
Θ

vi(θ)xi(θ)dθ,

where the angle brackets are based on the notation of applying a bounded linear functional xi to
a vector vi in the Banach space L1 and the integral is the usual Lebesgue integral. For the finite
case Θ = [m], we have xi = (xi1, . . . , xim) ∈ Rm

+ and the utility is

ui(xi) = ⟨vi, xi⟩ =
∑
j

vijxij ,

the usual Euclidean vector inner product. We will use x ∈ (L∞
+ )n to denote the aggregate

allocation of items to all buyers, i.e., the concatenation of all buyers’ allocations.
(f) The prices of items are modeled as p ∈ L1

+; in other words, the price of item θ ∈ Θ is p(θ). For
the finite case Θ = [m], we have p = (p1, . . . , pm) ∈ Rm

+ .

(g) For a measurable item subset A ⊆ Θ, let vi(A) :=
∫
A
vi(θ)dθ (and similarly for p and s),

the vi-induced measure of A. For the finite case Θ = [m], for any item subset A ⊂ [m],
vi(A) =

∑
j∈A vij (and similarly for p(A) and s(A)).

(h) Without loss of generality, we assume a unit total budget ∥B∥1 = 1, a unit total supply s(Θ) = 1
and normalized buyer valuations ⟨vi, s⟩ = 1. In other words, all items have a total value of 1 for
every buyer.

Definition 1. Given item prices p ∈ L1
+, the demand of buyer i is its set of utility-maximizing

allocations given the prices and budget:

Di(p) := argmax{⟨vi, xi⟩ : xi ∈ L∞
+ , ⟨p, xi⟩ ≤ Bi}.

The associated utility level Ûi(p) is defined as the value of ⟨vi, xi⟩ for any xi ∈ Di(p).
Definition 2. A market equilibrium (ME) is an allocation-price pair (x∗, p∗) ∈ (L∞

+ )n × L1
+ such

that the following holds.

(i) Supply feasibility:
∑

i x
∗
i ≤ s.

(ii) Buyer optimality: x∗
i ∈ Di(p

∗) for all i.
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(iii) Market clearance: ⟨p∗, s−
∑

i x
∗
i ⟩ = 0 (any item with a positive price is fully allocated).

In the above definition and subsequently, all equations involving measurable functions are understood
as “holding almost everywhere.” For example,

∑
i xi ≤ s means the (measurable) set {θ ∈ Θ :∑

i xi(θ) ≤ s(θ)} has the same measure as Θ. Given a ME (x∗, p∗), we often denote the (unique)
equilibrium utilities as u∗

i = ⟨vi, x∗
i ⟩. For a finite-dimensional linear Fisher market, it is well known

that a ME can be computed via solving the EG convex program. Recently, [24] generalized this
framework to handle the case of an infinite item space. More specifically, consider the following
(possibly infinite-dimensional) convex programs.

sup
x∈(L∞

+ )n

∑
i

Bi log⟨vi, xi⟩ s.t.
∑
i

xi ≤ s. (PEG)

inf
p∈L1

+, β∈Rn
+

(
⟨p, s⟩ −

∑
i

Bi log βi

)
s.t. p ≥ βivi, ∀ i. (DEG)

The following theorem summarizes the results in [24, §3] regarding the above convex programs
capturing market equilibria. As shown in that work, the above convex programs satisfy strong duality
and their optimal solutions (which correspond to ME) can be characterized by the KKT optimality
conditions. We slightly generalize the assumptions of [24] by allowing non-uniform item supplies s
instead of s(θ) = 1 for all θ ∈ Θ. For completeness, a proof, which is mainly based on the proofs of
the results in [24, §3], can be found in the Appendix.
Theorem 1. The following hold regarding (PEG) and (DEG).

• Both suprema are attained.
• Given x∗ feasible to (PEG) and (p∗, β∗) feasible to (DEG), they are both optimal if and only if

the following holds: (i) ⟨p∗, s−
∑

i x
∗
i ⟩ = 0 (market clearance), (ii) ⟨p∗−β∗

i vi, x
∗
i ⟩ = 0 (buyer

i only receives items within its ‘winning set’ {p∗ = β∗
i vi}) (ii) and ⟨vi, x∗

i ⟩ = u∗
i := Bi/β

∗
i

(buyer i gets its maximum possible utility from x∗
i ). In this case, (x∗, p∗) is a ME.

• Conversely, for a ME (x∗, p∗), it holds that (i) x∗ is an optimal solution of (PEG) and (ii)
(p∗, β∗), where β∗

i := Bi/⟨vi, x∗
i ⟩, is an optimal solution of (DEG).

In the above theorem, β∗
i is known as buyer i’s utility price, i.e., price per unit utility at equilibrium.

As is well known, in a ME (x∗, p∗), the allocations x∗ are

inline Pareto optimal,
inline envy-free (in a budget weighted sense, i.e., ⟨vi, x∗

i ⟩/Bi ≥ ⟨vi, x∗
k⟩/Bk for all k ̸= i),

inline proportional (i.e., ⟨vi, x∗
i ⟩ ≥ ⟨vi, s⟩/n = 1/n); see, e.g.,[24, Theorem 3].

Online Fisher markets and equilibria. We now consider a simple online variant of the Fisher market
setting, referred to as an online Fisher market (OFM). There are n buyers, each with a valuation
vi ∈ L1

+. Assume there are discrete time steps t = 1, 2, . . . . At each time step t, an item θt arrives
and each buyer i sees a value vi(θt). The item must be allocated irrevocably to one buyer. Each buyer
i has a budget Bi > 0 representing her per-period expenditure rate. 1

Next, we introduce the notions of demand, utility level and online market equilibrium in an OFM.
All of them are defined based on sequences of arrived items and their prices; they do not require any
distributional assumption on the item arrivals.
Definition 3. Let the arrived items be (θτ )τ∈[t]. An allocation (of arrived items) is (xτ

i )(τ,i)∈[t]×[n],
where xτ

i ∈ [0, 1] is the fraction of the item θτ allocated to buyer i.2 Let the prices of the arrived

1This assumption is similar to one made in the literature on budget management in auctions, where each
buyers has a per-period expenditure rate and the overall budget equal to the rate times the number of time periods.
If a hard budget cap across all time periods is desired, then PACE and similar mechanisms may deplete some
buyers’ budgets close to the end of the horizon [6–8].

2We allow fractional allocations in the definition for more generality. As we will see, fractional allocation is
not needed: PACE generates allocations and prices that satisfy the OME conditions asymptotically via assigning
each arrived item to one buyer.
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items be (pτ (θτ ))τ∈[t]. The demand of each buyer i (in hindsight) at time t is

Dt
i = argmax

(zτ
i )τ∈[t]

{
1

t

t∑
τ=1

vi(θτ )z
τ
i : 0 ≤ zτi ≤ 1, ∀ τ, 1

t

t∑
τ=1

pτ (θτ )z
τ
i ≤ Bi

}
. (1)

Let Û t
i be the utility level associated with this demand, i.e., the maximum value in (1). An online

market equilibrium (OME) is a pair of allocations (xτ
i )(τ,i)∈[t]×[n] and prices pτ (θτ ) such that the

following holds.

(i) Total allocation does not exceed the unit amount of the item
∑

i x
τ
i ≤ 1 for all τ .

(ii) Buyers’ realized allocations are optimal in hindsight: (xτ
i )τ∈[t] ∈ Dt

i for all i.

(iii) Market clearance:
∑

i x
τ
i = 1 for τ such that pτ (θτ ) > 0.

In words, Û t
i is the maximum possible (time-averaged) utility buyer i could have attained via choosing

from the arrived items (θτ )τ∈[t] in hindsight, subject to their respective posted prices (pτ (θτ ))τ∈[t]

and her current total budget tBi, with Dt
i being the set of such utility-maximizing (time-indexed)

allocations subject to per-period item availability constraints. An OME is a pair of allocations and
prices that make buyers optimal in hindsight and market cleared.

Given an OFM, we define the associated underlying static Fisher market as having the same n buyers
and an item space Θ with supply s being the (unknown) distribution from which the arriving items θt
are drawn. To clarify the concepts of OFM and OME, we consider some simple special cases.

• Suppose all item arrivals θ1, . . . , θt are known in advance. Then, the OFM is the same as a
static n × t Fisher market with the same buyers and the t items, each having a unit supply.
Here, buyer i’s valuation of item τ is viτ = vi(θτ ). To compute an OME, it suffices to solve
the classical (finite-dimensional) Eisenberg-Gale convex program, that is, (PEG) with Θ = [t],
s = (1, . . . , 1) ∈ Rt

+ and x ∈ Rn×t
+ . Let the static ME be (x∗, p∗) ∈ Rn×t

+ ×Rt
++. When each

item θτ arrives, OME allocates a fraction x∗
iτ of the item to each buyer i and set its price as p∗τ .

• Suppose the sequentially arriving items are drawn i.i.d. from a known underlying distribution
s ∈ L∞

+ (which specifies a random variable θ ∼ s such that P[θ ∈ A] = s(A) for any
measurable set A ⊆ Θ) and all buyers’ valuations vi are known. Suppose we have also computed
a static ME (x∗, p∗) (Definition 2) of a market with buyer valuations vi, budgets Bi and item
supplies being the distribution s (the underlying static market). Then, when a new item θt (which
is drawn from the distribution s) arrives at time t, set its price as p∗(θt) and allocate a fraction
x∗
i (θt)/s(θt) of it to each buyer i (assume s(θt) > 0, i.e., only items with positive supplies

can appear). Then, the time-averaged utility of each buyer i is 1
t

∑t
τ=1 vi(θt)x

∗
i (θt)/s(θt),

which converges to Eθ∼s[vi(θ)xi(θ)/s(θ)] =
∫
Θ
vi(θ)x

∗
i (θ)dθ = u∗

i a.s. by to the Strong Law
of Large Numbers. Since the online process is carried out using static equilibrium prices and
allocations, the static ME properties (Definition 2) ensure the required OME properties hold
asymptotically.

The above special cases require full knowledge of either the exact future item arrivals or the un-
derlying static market to attain an OME. Next, we propose a simple, distributed dynamics which
generates allocations and prices that satisfy the OME conditions asymptotically without requiring
such knowledge (in particular, without knowledge of the distribution s).

3 The PACE Dynamics

In this section, we introduce the PACE (Pacing According to Current Estimated utility) dynamics
that prices and allocates sequentially arriving items via (i) maintaining a pacing multiplier for each
buyer and (ii) simple, distributed updates.3 In §5, we will show that PACE is an instantiation of dual
averaging [48], a stochastic first-order method for regularized optimization, applied to a reformulation
of (DEG). In the PACE dynamics, each buyer maintains a pacing multiplier βt

i , starting from an
initial value β1

i = 1 + δ0 for some small δ0 > 0 (e.g., δ0 = 0.05). At time step t, the following
events take place.

3Pacing and pacing multipliers are terminology in budget management in large-scale ad auctions [18, 19].
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(a) An item θt appears and each buyer i sees a value vi(θt) for the item.
(b) Each buyer i bids their paced value βt

ivi(θt) for the item.
(c) The item is allocated to the highest bidder (the winner at t): it = argmaxi β

t
ivi(θt), with ties

broken arbitrarily. For concreteness, we always choose the lowest winning index, i.e.,

it = min argmax
i

βt
ivi(θt).

Then, the price of θt is set by the first-price rule

pt(θt) = max
i

βt
ivi(θt) = βt

itvi(θt)

and the winner it pays this price pt(θt) for the item θt.
(d) Each buyer i gets a utility

ut
i = vi(θt)I{i = it}.

In other words, the winner it gets vit(θt) and other buyers get zero.
(e) Each buyer i updates its cumulative average utility ūt

i:

ūt
i =

1

t

t∑
τ=1

uτ
i =

t− 1

t
ūt−1
i +

1

t
ut
i.

(f) Each buyer i updates their pacing multiplier βt+1
i as follows:

βt+1
i = Π[li,hi](Bi/ū

t
i) := min{max{li, Bi/ū

t
i}, hi}.

where li = Bi/(1 + δ0) and hi = 1 + δ0 for some fixed δ0 > 0 (e.g., δ0 = 0.05).

As will be seen in §5, buyer i’s equilibrium pacing multiplier (i.e., utility price) satisfies li < β∗
i < hi

and her per-period utility ut
i corresponds to the ith component of a stochastic subgradient of a function

on β in a reformulation of the convex program (DEG), on which we run dual averaging. Furthermore,
the update rule for βt+1

i is such that, if the realized utilities ūt
i were the true static equilibrium utility

for buyer i, then βt+1
i would be the equilibrium multiplier. Note that PACE does not randomize (any

randomness can only come from the market environment from which item arrivals are drawn) and
assigns every item to a single buyer without splitting it.

The simplicity and distributed nature of PACE makes it desirable for large-scale practical use.

• It can be run on arbitrary sequential item arrivals and only requires buyers’ valuations vi(θt)
on the arrived items (rather than all valuations vi over the potentially large item space). No
parameter tuning is needed (in particular, no stepsize tuning as in many first-order optimization
methods).

• When run as a centralized allocation mechanism, PACE only needs to maintain O(n) scalars,
namely, βt

i , Bi and ūt
i for all i. At time t, it observes buyers’ valuations vi(θt) of the item

θt, compute bids βt
ivi(θt), finds the winner it, set the price as the maximal bid βt

it
vit(θt) and

allocates the item to the winner; finally, it updates ūt and βt+1 as in (f), which takes O(n) time.
• PACE can also be run among the buyers in a decentralized manner, in which case each buyer

only maintains two scalar values: the pacing multiplier βt
i and time-averaged utility ūt

i. When a
new item arrives, each buyer only performs a few simple arithmetic operations to create a bid
βt
ivi(θt), receives her utility (if she wins) and subsequently updates ūt

i and βt+1
i .

These make PACE suitable for Internet-scale online fair division and online Fisher market applications.
In particular, it is very reminiscent of how Internet advertising auctions are run. There, a similar
auction-based system is used, with the pacing multiplier ensuring that each advertiser smooths
out their budget expenditure across the many auctions. The primary difference between this and
our setting is that (i) the auction can be first-price or second-price and (ii) buyers usually have
quasilinear utilities, that is, utility of the item minus the expenditure (price paid) [6–8, 18]. In §C, we
extend PACE to quasilinear utilities, which provides a novel online algorithm for first-price pacing
equilibrium computation [19].
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4 Dual Averaging

In this section, we briefly recap the setup and general convergence results of dual averaging [35, 48],
which will be used in the analysis of PACE. First, we introduce some notation for this and the next
section. Let e(i) denote the i’th unit basis vector in Rn and 1 ∈ Rn denote the vector of 1’s. For
x, y ∈ Rn, [x, y] denotes the Cartesian product of intervals

∏n
i=1[xk, yk] ⊆ Rn. All norms ∥ · ∥

without a subscript are Euclidean 2-norms, unless otherwise stated.

Let Ψ be a closed, strongly convex function with domain domΨ := {w ∈ Rn : Ψ(w) < ∞}. Here,
we do not employ any auxiliary regularizing function, since our problem has a natural source of
strong convexity (i.e., a strongly convex Ψ) through the −Bi log βi terms in (DEG). Let Z ⊆ Rd

be an arbitrary sample space. For each z ∈ Z, let fz be a convex and subdifferentiable function on
domΨ. Considers the following regularized convex optimization problem [48, §1.1]:

min
w

Efz(w) + Ψ(w), (2)

where the expectation is taken over a probability distribution D on Z. We assume access to an oracle
that, given any ft and w ∈ domΨ, returns a subgradient gt ∈ ∂ft(w). The dual averaging algorithm
(DA) [48, Algorithm 1], with a strongly convex Ψ and no auxiliary regularizer, is as follows. First,
set w1 ∈ argminw Ψ(w) and ḡ0 = 0. Then, for each t = 1, 2, . . . , DA performs the following steps:

(1) Observe ft and compute gt ∈ ∂ft(w
t).

(2) Update the average subgradient (the dual average) via ḡt = t−1
t ḡt−1 + 1

t ḡ
t.

(3) Compute the next iterate wt+1 = argminw{⟨ḡt, w⟩+Ψ(w)}.

The following convergence guarantee on DA is proved as part of the proof of Corollary 4 in [48].
Theorem 2. Dual averaging generates iterates wt such that

E∥wt − w∗∥2 ≤ (6 + log t)G2

tσ2
,

where G2 is an upper bound on E∥gt∥2, t = 1, 2, . . . and σ is the strong convexity modulus of Ψ.

When solving the stochastic optimization problem (2), in Theorem 2, we can set G2 to be an upper
bound on supw∈domΨ E∥gz(w)∥2, where gz(w) is a subgradient oracle mapping each (z, w) ∈
Z × domΨ to a subgradient and the expectation is over z ∼ D and possible randomness of the
subgradient oracle. We will shortly see that a reformulation of DEG, when cast into the form (2),
exhibits stochastic subgradients that are exactly buyers’ received utilities in each time step. Using
Theorem 2, we can show that the sequence of pacing multipliers βt generated by PACE converges to
the underlying (equilibrium) utility prices β∗ of the static Fisher market.

5 Convergence Analysis of the PACE dynamics

We will now show that PACE correspond to running DA on the vector βt of pacing multipliers for
the buyers. To this end, we first reformulate (DEG) into a (finite-dimensional) convex program in β
in the form of (2):

min
β

(〈
max

i
βivi, s

〉
−
∑
i

Bi log βi

)
s.t. β ∈ [B/(1 + δ0), (1 + δ0)1], (3)

where δ0 > 0 is an arbitrarily small constant. The bounds on β do not change the optimal solution,
because β∗

i ∈ (Bi, 1) for each i. Detailed steps of the reformulation are given in Appendix B.

In order to run DA, we need to compute a subgradient of fθ : β 7→ maxi βivi(θ) at any θ ∈ Θ.
Following [24, §5], since fθ is a piecewise linear function, a subgradient is

gθ(β) := vi∗(θ)e
(i∗) ∈ ∂fθ(β),

where i∗ = min argmaxi βivi(θ) is the winner (see, e.g., [10, Theorem 3.50]).

We can now show that the PACE dynamics corresponds to running DA on (3). Here, Ψ(β) =
−
∑

i Bi log βi with domΨ = [B/(1 + δ0), (1 + δ0)1]. First, choose β1 = argminΨ = (1 + δ0)1
(i.e., β1

i = 1 + δ0 for all i) and ḡ0 = 0. At each time step t = 1, 2, . . . , given the current pacing
multiplier βt, DA applied to (3) unrolls the following steps.
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• An item θt arrives, having value vi(θt) for each buyer i. The function ft in DA is
fθt : β 7→ max

i
βivi(θt).

• The winner is it = min argmaxi β
t
ivi(θt) and a subgradient is gt = vitjte

(it) ∈ ∂ft(β
t). Its

ith entry is exactly the realized (single-period) utility of individual i at time t in PACE, that is,
gti = vi(θt)I{i = it} = ut

i.
• Update the dual average (time-averaged utilities): for each i, compute ḡt = t−1

t ḡt−1 + 1
t g

t, i.e.,

ḡti =
t− 1

t
ḡt−1
i +

1

t
vi(θt)I{i = it}.

• Update the pacing multipliers:

βt+1 = argmin
β∈[B/(1+δ0),(1+δ0)1]

{
⟨ḡt, β⟩ −

∑
i

Bi log βi

}
.

The minimization problem is separable in each i and exhibits a simple and explicit solution
which recovers step (f) in PACE (where ḡti = ūt

i):

βt+1
i = argmin

βi∈[B/(1+δ0),1+δ0]

{
ḡtiβi −Bi log βi

}
⇒ βt+1

i = Π[Bi/(1+δ0),1+δ0]

(
Bi

ūt
i

)
.

As mentioned earlier, PACE does not require a stepsize parameter. This is because DA is stepsize-free
given a strongly convex regularizer Ψ, which is indeed the case in our reformulation (3). In addition,
in the above update step for βt+1

i , the directions of change are as follows.

• For a non-winner i ̸= it, we have ut
i = 0 and hence ūt

i ≤ ūt−1
i . This implies βt+1

i ≥ βt
i . In

words, a non-winner’s pacing multiplier weakly increases. The increase is strict if ūt−1
i > 0,

i.e., buyer i has already received a nonzero utility.
• For the winner it, ūt

it
may become greater than ḡt−1

it
, in which case βt+1

it
≤ βt

it
. In words, the

winner’s pacing multiplier may go up or down.

In order to analyze PACE, we assume vi(Θ) = 1, vi ∈ L∞
+ (normalized and a.e.-bounded valuations)4

and that there is an underlying item distribution s ∈ L∞
+ from which the item arrivals θt, t = 1, 2, . . .

are drawn i.i.d.5 Define the underlying static Fisher market as one having the same n buyers (each
with valuation vi and budget Bi) and item supplies s. Denote the equilibrium utilities and utility
prices w.r.t. the underlying static market as u∗ and β∗, respectively. We further assume that the
valuations are vi ∈ L∞

+ (i.e., a.e.-bounded on the item space). This is not restrictive: since an
individual item θ has value vi(θ) for each buyer i, it should be a finite value.

Convergence of pacing multipliers. After aligning PACE with DA, the convergence of the pacing
multipliers βt follows directly from Theorem 2.
Theorem 3. PACE generates pacing multipliers βt such that

E∥βt − β∗∥2 ≤ (6 + log t)G2

tσ2
, t = 1, 2, . . . ,

where G2 = maxi Eθ∼s[vi(θ)
2] ≤ maxi ∥vi∥2∞, σ = mini Bi

(1+δ0)2
.

In other words, we have mean-square convergence of βt to β∗ at a O((log t)/t) rate. Since ∥B∥1 = 1,
we have mini Bi ≤ 1/n. Hence, σ = O(1/n) and the constant in the bound is Ω(n2). Whether such
dependence on n can be improved via new analysis remains an interesting research question.

Convergence of utilities. We next show that the time-averaged utility ūt (which equals to the dual
average ḡt) converges to the equilibrium utility vector u∗ of the underlying Fisher market. A key step
in the proof is to bound the probability of a projection in updating βt+1

i , that is, P[Bi/ū
t
i /∈ [li, ui]].

4The a.e.-boundedness assumption is needed in subsequent convergence analysis. Since Θ has a finite
measure, it holds that L∞

+ ⊆ L1
+. For a finite item space Θ = [m], both are equal to Rm

+ .
5The distributional assumption on item arrivals (i.e., they are drawn i.i.d. from an unknown distribution s)

is needed to establish asymptotic equilibrium properties of PACE. See Appendix B for an example that any
algorithm can yield arbitrarily suboptimal allocations without such a distributional assumption.
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Theorem 4. For each i, let ϵi := min{hi − β∗
i , β

∗
i − li} > 0 be the minimum distance to the

pacing-multiplier interval. Let ∥v∥∞ := maxi ∥vi∥∞. It holds that

E(ūt
i − u∗

i )
2 ≤

(
∥vi∥2∞
ϵ2i

+

(
1 + δ0
Bi

)2
)
E(βt+1

i − β∗
i )

2.

Hence, letting C = 1
(mini Bi)2

(
(∥v∥∞/δ0)

2 + (1 + δ0)
2
)
, we have

E∥ūt − u∗∥2 ≤ C · (6 + log(t+ 1))G2

(t+ 1)σ2
.

Note that C = Ω(n2). Hence, in this and the next theorems, the constant in the bound is Ω(n4),
which arises from C and σ = O(mini Bi) = O(1/n).

Convergence of expenditures. The expenditure of buyer i at time step t is bti = βt
ivi(θt)I{i = iτ}.

In other words, only the winner it spends a nonzero amount, which is its bid. Let b̄ti =
1
t

∑t
τ=1 b

τ
i

be buyer i’s average expenditure. Utilizing the above convergence results, we show mean-squared
convergence of b̄t to B at an O((log t)2/t) rate.
Theorem 5. For each i, it holds that

E(b̄ti −Bi) ≤ 2

[
(β∗

i )
2E(ḡti − u∗

i )
2 + 2∥vi∥2∞

1

t

t∑
τ=1

E(βτ
i − β∗

i )
2

]
.

For t ≥ 3 and the constant C defined in Theorem 4, we have

E∥b̄t −B∥2 ≤ 2G2

tσ2

(
6(C + ∥v∥2∞) + (C + 6∥v∥2∞) log t+

∥v∥2∞
2

(log t)2
)
.

PACE attains OME asymptotically. Next, we show that PACE attains OME asymptotically, i.e., it
generates allocations and prices that make buyers no-regret and envy-free in the limit (these notions
will be clarified shortly). Let xt

i := I{i = it} denote whether buyer it is the winner (i.e., whether
she is allocated the item θt at time t) Utilizing Theorems 4 and 5, we can show that buyer i’s regret,
that is, the difference between the maximum possible utility in hindsight Û t

i (Definition 3) and the
realized utility ūt

i, vanishes as t grows. The same holds for each buyer’s envy. In other words, at a
large t, in hindsight, no buyer prefers another buyer’s set of allocated items (up to a vanishing error).6

Theorem 6. Denote ξti = |ūt
i − u∗

i |, ∆t
i = |b̄ti − Bi|, γt = ∥v∥∞

t

∑t
τ=1 ∥βτ − β∗∥∞. Let rti :=

max{Û t
i − ūt

i, 0} be the regret of buyer i at time t. Then, it holds that rti ≤ ξti + γt/Bi and
E(rti)

2 = O
(
(log t)2/t

)
. Furthermore, define the envy of buyer i (w.r.t. all other buyers) at time t

be ρti = maxk ū
t
ik/Bk − ūt

i/Bi, where ūt
ik = 1

t

∑t
τ=1 vi(θτ )x

τ
k is buyer i’s time-averaged utility

given her own valuations and of buyer k’s allocations. Denote ηti =
1
t

∑t
τ=1(p

∗(θt)− βτ
i vi(θt))x

t
i.

It holds that

ρti ≤
1

Bi

(
ξti +max

k ̸=i

∆t
k + ηtk
Bk

)
and E(ηti)

2 ≤ ∥v∥2∞G2

tσ2

(
6(1 + log t) +

(log t)2

2

)
.

Hence, the envy ρti of buyer i vanishes in mean square, i.e., E(ρti)
2 = O

(
(log t)2/t

)
.

In light of Definition 3, Theorem 6 shows that (xτ
i )(i,τ)∈[n]×[t] is approximately optimal for buyer

i. Since PACE also clears the market, we conclude that it attains OME asymptotically. Recall that
theorem 4 ensures that buyers’ ūt

i converge to their static equilibrium utilities u∗
i . Since the latter

satisfy Pareto optimality and proportional share guarantee (u∗
i ≥ Bi for all i), so are the time-averaged

realized utilities in the limit. Together with Theorem 6, we conclude that PACE achieves the said
fairness and efficiency guarantees, namely, Pareto optimality, envy-freeness and proportional-share
guarantee, asymptotically.

6In a static market, given an allocation x ∈ Rn×m
+ , the (maximum, budget-weighted) envy of buyer i

toward others’ bundles is ρi(x) = maxk⟨vi, xk⟩/Bk − ⟨vi, xi⟩/Bi (see, e.g., [12, 46]). It is well-known that
ρi(x

∗) = 0 for all i at equilibrium, a consequence of buyer optimality (Definition 2).
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Figure 1: In all of our markets, iterates of the PACE dynamics quickly converges to their static
equilibrium values both in the average case and the worst-off-buyer case. The horizontal line shows
the fraction of u∗ achieved by the proportional share solution. The PACE utilities quickly outperform
the proportional share utilities. Vertical lines indicate when t is a multiple of 10n.

6 Experiments

We evaluate the PACE dynamics in several real and synthetic datasets, namely, MovieLens, Household
Items and an infinite-dimensional market instance with item space Θ = [0, 1] and vi being linear
functions on [0, 1]. For the first two datasets, see [31] for more information and exploratory data
analysis. For all datasets, we consider the CEEI (fair division) setting where Bi = 1/n for all i. For
each dataset (with number of buyers n = 1500, 2876, 100, respectively), we run PACE for T = 10n
time steps (iterations). More details on the experiments and additional plots displaying convergence
of expenditures can be found in Appendix D. Figure 1 displays the mean values of the average and
maximum relative errors of the pacing multipliers and time-averaged cumulative utilities over 10
repeated experiments with different seeds (relative errors of cumulative spending w.r.t. total budgets
are plotted separately in Appendix D). The standard errors are also displayed as vertical bars but are
very small and nearly invisible. Vertical dotted lines indicate t = 10n The figures do not show the
initial iterates t = 1, . . . , 5n.

We see that PACE converges very quickly numerically: within 10 epochs (10n time steps) average
deviations in most quantities falls within 5% of the equilibrium quantity, with the worst case not
far behind. An important point is that budget spend takes much longer to converge than utility.
This demonstrates an important practical difference for using PACE in an allocation scenario where
budgets are ‘real money’ (e.g. Internet ad impressions) as compared to a CEEI-like setting, where
budgets are faux currency only used for fair division.

7 Conclusion

We introduced the concept of an online Fisher market and proposed the PACE dynamics. We showed
that when items arrive sequentially and stochastically, PACE converges to equilibrium outcomes of
the underlying market model. Furthermore, we showed that, as a consequence of this, PACE can be
used in online fair division problems to generate an online allocation that, asymptotically, achieves
the compelling fairness properties of CEEI.

Many questions remain for future research. We mostly focused on the case where budgets are faux
currency and there are many open questions for adapting PACE to a real-money budget-management
setting as well as more complicated nonlinear utility models. Another imperative question, especially
for practitioners, is whether PACE guarantees some level of incentive-compatibility.
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A Related Work

The problem of market equilibrium computation has been of interest in economics for a long time (see,
e.g., [37]). There is a large literature focusing on computation of equilibrium in the specific case of
(finite-dimensional) Fisher markets through various convex optimization formulations [17, 22, 31, 44]
and gradient-based methods [11, 23, 36]. Other works extend these results to settings such as
quasilinear utilities, capped utilities, indivisible items, or imperfectly specified utility functions [13,
16, 17, 30, 33, 41]. One of the most well-known algorithm for computing static market equilibria under
Constant Elasticity of Substitution (CES) utilities is the Proportional Response (PR) dynamics [11, 49].
Recently, [24] extends the classical Fisher market model to a measurable (possibly continuous) item
space and shows that infinite-dimensional EG-type convex programs capture ME under this setting.
Our work extends these ideas to a Fisher market-like scenario where items arrive sequentially.

The Fisher market literature above focuses on divisible items or randomized allocations of indivisible
items. There is also a large literature on fair allocation of indivisible items (e.g. [5, 13, 42]) including
approximate ME-based methods [12, 39]. We note that all allocations in our setting are discrete and
the relationship to Fisher markets happens in the time-average sense.

Perhaps most similar to our setting is that of [4], who study how to allocate allocate items in an online
fashion in order to obtain a market-equilibrium-like allocation. However, they consider competitive
ratios, and give a primal-dual algorithm that suffers at most a logarithmic loss compared to the
best hindsight optimal solution, even for worst-case arrivals. In addition to the lack of asymptotic
convergence, they also only show guarantees on various (arithmetic, geometric, harmonic) averages
of the utilities. In contrast to this, our work considers stochastic arrivals, and gives an adaptive
algorithm for asymptotically achieving all the desireable market equilibrium properties (e.g. no envy,
Pareto optimality, equilibrium utilities). Another important difference is that our approach is easily
implemented as a distributed dynamics that requires only a first-price auction allocation mechanism
with indivisible allocations, in O(n) time per item arrival (n being the number of buyers). At each
time step, the algorithm only uses buyers’ valuations of the current arriving item. This makes our
approach suitable for implementation in large-scale systems with a huge, possibly infinite item space.

Other methods for online fair division have been studied by various authors. In this literature, there
are various notions of “online:” either buyers, items, or both can arrive online. Here we survey
only related work where items arrive online. [2] studies a simple mechanism where agents can
declare if they like an item, and then a coin is flipped to determine which of the agents that liked
the item will get it. [29] studies online allocation for Leontief utilities (where each agent wants a
bundle with items of fixed proportions) and shows how to achieve various properties for this setting.
[15] studies an evolving market environment and shows that the PR dynamics generates iterates
that are close to the (changing) equilibrium. Similar to the classical PR dynamics, in each time
step, all buyers’ valuations of all items are known to the algorithm. In contrast, our work allows
an unknown underlying market from which items are sampled: in each time step, PACE only uses
buyers’ valuations of the current arriving item. [9] studies an online fair allocation problem and
proposes a stochastic approximation scheme, which relies on frequently resolving the EG convex
program, that ensures a constant approximation ratio (in terms of a proportional fairness measure)
relative to the offline fair allocation. Very recently, [45] studies the problem of online fair division in
which there is a fixed (finite) number of divisible items and sequentially arriving agents. The authors
show that envy-freeness and (Pareto) efficiency cannot be minimized simultaneously; instead, there
exists a boundary such that any algorithm can only possibly achieve the envy-efficiency combinations
on one side of it, while they also propose such an algorithm. See also [1] for a survey of further works
in this area.

The idea of pacing has been studied in the context of budget management in second-price auctions.
The work most related to our work is [7], which studies an online version of that setting. [7] and
our work are very different in terms of problem settings, results, and analysis. Here, we point out
some key differences. [7] first show that, in the typical setting of a single bidder interacting with
second-price auctions where values and prices are drawn from a stochastic environment, an adaptive
pacing strategy achieves O(1/

√
T ) regret and ergodic convergence of the bidder’s pacing multipliers.

Then, under additional assumptions on monotonicity of the bidders’ expected expenditures, the
authors establish game-theoretic equilibrium properties when all bidders use the same strategy, i.e.,
under the “simultaneous learning” setting. In contrast, we focus on market equilibrium properties
such as fairness and efficiency. Furthermore, in terms of technical assumptions and convergence
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results, our PACE dynamics is stepsize-free, both in theory and numerically, while the adaptive pacing
algorithm in [7] requires careful stepsizing rules; in our setting, we have last-iterate convergence of
pacing multipliers (Theorem 7), whereas [7] only establishes ergodic convergence without a rate.
These differences are, fundamentally, due to the use of different first-order optimization methods,
and the fact that we leverage strong convexity of the EG dual. The analysis in [7] builds upon
the convergence properties of mirror descent and stochastic approximation. Hence, it requires
pre-determined vanishing stepsizes (their Assumption 1). In the simultaneous learning setting, the
stepsizes of all bidders furthermore need to be carefully selected in joint fashion (their Assumption
3). In contrast, PACE is completely stepsize free, thanks to structure of the reformulated dual EG
convex program (3), on which dual averaging can be applied directly without any stepsize parameter
or an auxiliary regularization term. This makes it vastly easier to apply PACE in practice.

B Proofs, Derivations and Examples

Proof of Theorem 1

In [24, §3], it is assumed that item supplies are uniform, i.e., s(θ) = 1 for all θ ∈ Θ. As is well-known
in the finite case (Θ = [m]), this assumption is w.l.o.g. when studying a static Fisher market. Here,
we show that all results in [24, §3] can be easily generalized to the case of non-uniform supplies s
(Theorem 1). For any market instance M with buyer valuations vi ∈ L1

+, budgets Bi, i ∈ [n] and
item supplies s ∈ L∞

+ (all normalized as described in (h) in §2), consider another market instance M̃
with supplies being the constant function taking 1 on Θ (denoted as 1), valuations

ṽi(θ) = vi(θ)s(θ)

and the same budgets. First, note that ṽi ∈ L1
+ since s ∈ L∞

+ and Θ has a finite measure (∥s∥∞ =
inf{M : |s| ≤ M a.e.}):∫

Θ

ṽi(θ)dθ ≤ ∥s∥∞
∫
Θ

vi(θ)dθ = ∥s∥∞vi(Θ) = ∥s∥∞.

Denote the set of feasible allocations of M as F , that is, the set of (xi) such that xi ∈ L∞
+ for all i

and
∑

i xi ≤ s. Similarly, denote the set of feasible allocations of M̃ as F̃ . For any x ∈ F , consider

x̃i(θ) =

{
xi(θ)/s(θ) if θ > 0,

0 o.w.
(4)

Since 0 ≤ xi ≤ s (a.e.), we have 0 ≤ x̃i ≤ 1 (which means x̃i ∈ L∞
+ ). Since

∑
i xi ≤ s, we have

∑
i

x̃i ≤ 1.

Therefore, the set of utilities attainable by allocations in F is the same as the set of utilities attainable
by F̃ . In other words,

U =
{
u ∈ Rn

+ : x ∈ F, ⟨vi, xi⟩ = ui, i ∈ [n]
}
= Ũ =

{
ũ ∈ Rn

+ : x̃ ∈ F̃ , ⟨ṽi, x̃i⟩ = ũi

}
.

By [24, Lemma 1] and its proof there (here, we only need the compactness, not the existence of a pure
allocation for any feasible utility vector; hence, invoking [21, Theorem 1] suffices), Ũ is convex and
compact and so is U . Hence, the suprema of (PEG) is attained. Completely analogous to the proof
of [24, Theorem 2], we can show that both suprema of (PEG) is attained. Furthermore, completely
analogous to the proofs of Lemma 3 and Theorem 2 there, we can show that strong duality holds for
(PEG) and (DEG). More specifically, for any x feasible to (PEG) and (p, β) feasible to (DEG), and
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any 0 ≤ ui ≤ ⟨vi, xi⟩ (i.e., adding auxiliary variable ui to (PEG)), it holds that∑
i

Bi log ui ≤
∑
i

Bi log ui −
∑
i

βi(ui − ⟨vi, xi⟩)−

〈
p,
∑
i

xi − s

〉
=
∑
i

(Bi log ui − βiui)−
∑
i

⟨p− βivi, xi⟩+ ⟨p, s⟩

≤
∑
i

(Bi log
Bi

βi
− βi ·

Bi

βi
)−

∑
i

⟨p− βivi, xi⟩+ ⟨p, s⟩

≤
∑
i

(Bi logBi −Bi) + ⟨p, s⟩ −
∑
i

Bi log βi

= ⟨p, s⟩ −
∑
i

Bi log βi − C,

where the constant C =
∑

i Bi(1− logBi). In the above derivation, the first inequality uses βi ≥ 0,
ui ≤ ⟨vi, xi⟩,

∑
i xi ≤ s; the second inequality uses the fact that ui = Bi/βi maximizes the function

ui 7→ Bi log ui − βiui

for any βi > 0 (i.e., substituting ui = Bi/βi into the first line); the third inequality uses feasibility
w.r.t. (DEG), i.e., p ≥ βivi for all i. Hence, when all inequalities are tight at a pair of solutions x∗

and (p∗, β∗) feasible to (PEG) and (DEG), respectively (i.e., both optima are attained), the following
KKT conditions must hold:

• ⟨p∗, s−
∑

i x
∗
i ⟩ = 0 (via the first inequality above being tight).

• u∗ = Bi/β
∗
i for all i (via the second above).

• ⟨p∗ − β∗
i vi, x

∗
i ⟩ = 0 for for all i (via the third above).

As the proof of [24, Theorem 2] shows, these conditions (together with feasibility w.r.t. the two
convex programs) are necessary and sufficient for (x∗, p∗) being a ME.

An example: necessity of the distributional assumption on item arrivals

In the definitions of OFM and OME in §2, we do not impose any distributional assumption on the
sequentially arriving items θt. The PACE dynamics does not require any distributional assumption
either. It is in the analysis of PACE in §5 that we assume that θt are drawn i.i.d. from an (unknown)
underlying distribution s ∈ L∞

+ (where s(Θ) = 1 since it is a distribution). We define an underlying
static Fisher market with the same buyers and item supplies s. Then, §5 essentially shows that PACE
guarantees that various (time-averaged) quantities converge to their static equilibrium quantities in
the underlying market.

To justify the necessity of such a distributional assumption on item arrivals, consider the following
example in which items arrivals are chosen by an adaptive “adversary” whose goal is to make the
buyers’ time-averaged utilities of any online algorithm deviate from the static equilibrium utilities
(defined by the “hindsight market,” i.e., the n× T market with items θ1, . . . , θT ) as much as possible.
For simplicity (and w.l.o.g.), budgets, valuations and supplies are not normalized in this example.

• There are n buyers with equal budgets Bi = 1 and an item space of Θ = [n+ 1].

• Let the valuation matrix be as follows, for some large M > n:

v =


1 M M M 0
...

...
... 0 M

... M 0
...

...
1 0 M M M

 .

In other words, for item 1, all buyers have valuation 1. For each item j = 2, . . . , n+ 1, buyer
(n+ 2− j) has valuation 0 and other buyers have valuation M .
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• The item supplies are 1 for all j ∈ [n+ 1].

• The number of time periods T is large.

Given any fixed j0 = 2, . . . , n+ 1, the n× T static market with T/2 items of type 1 and T/2 items
of type j0 exhibits the following ME:

• Buyer i0 := n + 2 − j∗ receives all T/2 items of type 1 with a utility of u∗
i0

= T/2 and
β∗
i0

= 2/T .

• Each buyer i ∈ [n] \ {i0} receives T/(2(n − 1)) items of type 2 (i.e., all items of type 2 are
evenly distributed among them) with a utility u∗

i = MT
2(n−1) and β∗

i = 2(n−1)
MT .

• The price of item 1 (with T/2 copies) is p∗1 = max
{
2/T, 2(n−1)

MT

}
= 2

T . The price of item

j0 (with T/2 copies) is p∗j0 = max
{
β∗
i0
· 0, 2(n−1)

MT ·M
}
= 2(n − 1)/T . To verify these are

equilibrium prices, note the following:

– Buyer i0 has vi0j0 = 0 < vi01 = 1. Hence, given p∗, will strictly prefer type 1 items over
type j0. Her equilibrium allocation also consists of only type-1 items that cost exactly her
budget: T

2 · 2
T = 1.

– Buyer i ̸= i0 prefers type j0 over type 1 since the former has a higher value-per-unit-price:

M

p∗j0
=

MT

2(n− 1)
>

T

2
=

1

p∗1
.

Her equilibrium allocation also consists of only type-j0 items that cost exactly her budget:
T

2(n−1) ·
2(n−1)

T = 1.

Given any online algorithm, consider the following adaptive adversary.

• In the first T/2 time steps, every item arrival is of type 1, that is, θt = 1, t = 1, . . . , T/2. The
algorithm must irrevocably allocate them to the buyers.

• Since every buyer has the same valuation 1 on type 1, there exists a buyer i0 that receives
ui0 ≤ T/(2n) up to T/2.

• Then, the adversary picks j0 = n+ 2− i0 and every item arrival in the remaining T/2 periods i
s of type j0 (which has value zero for i0).

In this way, buyer i0 only receives a total utility of ui0 across all T . As shown above, in the static
(hindsight) n× T market, she should have received an equilibrium utility of u∗

i0
= T/2 (i.e., being

allocated all type-1 items). Hence, the realized utility of buyer i0 is only 1/n of her static equilibrium
utility.

Reformulation of (DEG) into (3)

The reformulation is mainly based on [24, §5], except that we now allow non-uniform supplies s
instead of s(θ) = 1 for all θ ∈ Θ. Assuming uniform supplies is w.l.o.g. in the static Fisher market
(via rescaling all vi) but is not so in OFM, since s in an FOM represents the arbitrary, unknown
underlying item distribution from which item arrivals are drawn.

In (DEG), fixing a β > 0, setting

p = max
i

βivi ∈ L1(Θ)+,

i.e., the smallest L1 function greater than or equal to βivi for all i, clearly minimizes the objective
subject to the constraints. Hence, we can eliminate p in this way and write (DEG) as a finite-
dimensional convex program in β. Here, βivi, s⟩ is convex in β since β 7→ maxi βivi(θ) is convex

18



for any θ ∈ Θ. More specifically, for any β, γ ∈ Rn
+, λ ∈ [0, 1], θ ∈ Θ, we have

max
i

(λβi + (1− λ)γi)vi(θ) ≤ λmax
i

βivi(θ) + (1− λ)max
i

γivi(θ).

Hence,
⟨max

i
(λβ + (1− λ)γ)vi, s⟩ ≤ λ⟨max

i
βivi, s⟩+ (1− λ)⟨max

i
γivi, s⟩.

Due to the strong convexity assumption in Theorem 2, we would need the function

β 7→
∑
i

Bi log βi

to be strongly convex on its domain. However, it is only strictly but not strongly convex on Rn
++. To

resolve this, we use the following lemma. It is similar to [24, Lemma 4] except that we non-uniform
supplies.

Lemma 1. Assume the normalizations in (h) in §2. Then, the equilibrium utilities satisfy Bi ≤ u∗
i ≤ 1

and hence Bi ≤ β∗
i = Bi/u

∗
i ≤ 1.

Proof. Since any buyer can get at most the entire set of items (given by the supply s),

u∗
i ≤ ⟨vi, s⟩ = 1,

where the last inequality is due to the normalization ⟨vi, s⟩ = 1 in (h) in §2. In any ME (x∗, p∗),
Theorem 1 implies

⟨p∗, x∗
i ⟩ = β∗

i ⟨vi, x∗
i ⟩ = β∗

i u
∗
i = Bi,

that is, each buyer i spends her entire budget. Hence, by the normalization ∥B∥1 = 1 and market
clearance ⟨p∗, s−

∑
i x

∗
i ⟩ = 0, we have

⟨p∗, s⟩ =
∑
i

⟨p∗, x∗
i ⟩ =

∑
i

Bi = ∥B∥1 = 1 ⇒ ⟨p∗, Bis⟩ = Bi.

In other words, given item price p∗, each buyer i can afford the proportional allocation x◦
i := Bis.

Hence, the buyer optimality property of ME implies that buyer i’s equilibrium utility is at least the
proportional share:

u∗
i ≥ ⟨vi, x◦

i ⟩ = Bi⟨vi, s⟩ = Bi.

Since Bi ≤ u∗
i ≤ 1 and β∗

i = Bi/u
∗
i at equilibrium (Theorem 1), we have

Bi ≤ β∗
i ≤ 1.

By Lemma 1, adding the constraints

Bi/(1 + δ0) ≤ βi ≤ 1 + δ0, ∀ i

to the convex program does not affect its optimal solution β∗. Here, δ0 > 0 is to ensure β∗
i ∈ (li, hi)

(the open interval), which facilitates the convergence analysis of cumulative utilities. To simplify
the constants, one can take δ0 = 1. Numerical experiments suggest that its value does not affect the
speeds of convergence of quantities of interest.

Combining the above yields the reformulation (3). To align (3) with (2), for each θ ∈ Θ (correspond-
ing to Z in §4) and β ∈ Rn

+ (corresponding to w in §4), let

fθ(β) := max
i

βivij .

Then,
f(β) := Efθ(β) = ⟨max

i
βivi, s⟩,

where the expectation is over θ ∼ s, i.e., a random variable with distribution s (corresponding to
z ∼ D in §4).

19



Proof of Theorem 3

It follows immediately from Theorem 2, as long as the function

Ψ(β) = −
∑
i

Bi log βi

is strongly convex modulo σ and E∥vit(θt)e(it)∥2 ≤ G2. We now show them. Note that Ψ is twice
differentiable and has a diagonal Hessian

∇2Ψ(β) =


B1

β2
1

. . .
Bn

β2
n


at any β > 0. Clearly, its smallest eigenvalue can be bounded as

λmin(∇2Ψ(β)) ≥ min
i

Bi

βi
.

Denote κ = 1/(mini Bi). For any β feasible to (3), by the constraints Bi/(1 + δ0) ≤ βi ≤ 1 + δ0,
we have

λmin(∇2Ψ(β)) ≥ min
i

min
βi∈[Bi/(1+δ0),1+δ0]

Bi

β2
i

= min
i

Bi

(1 + δ0)2
=

1

κ(1 + δ0)2
.

Therefore, Ψ is strongly convex on [B/(1 + δ0), (1 + δ0)1] with modulus σ = 1
κ(1+δ0)2

. Finally, we
have

E∥vite(it)∥2 ≤ max
i

Eθ∼s[vi(θ)
2] = G2 ≤ max

i
∥vi∥2∞.

Proof of Theorem 4

Intuitively, our proof uses the fact that if βt
i and β∗

i are near each other, then Bi

βt
i

will be near Bi

β∗
i
= u∗

i

as well. Recall that gti = ut
i (i.e., the subgradient of β 7→ maxi βivi(θt) that we choose corresponds

to the utility buyer i receives at time t) and hence ḡti = ūt
i. Since

βt+1 = Π[li,hi]

(
Bi

ḡti

)
,

we know that if no projection occurs (i.e., if Bi

ḡt
i
∈ [li, hi]) at iteration t, then

Bi

βt+1
i

= ḡti .

Thus, we split our proof into two cases: the case where projection occurs (i.e., Bi

ḡt
i
/∈ [li, hi]), and the

case where projection does not occur. As we will see, the probability of a projection at time step t
converges to 0 as t grows.

For each i, consider the event that no projection occurs:

At
i := {li ≤ Bi/ḡ

t
i ≤ hi}.

Conditioning on the complementary event (At
i)

c = {ḡti /∈ [li, hi]}, it holds that

|βt+1
i − β∗

i | > ϵi ⇒ E(βt+1
i − β∗

i )
2 ≥ P[(At

i)
c]ϵ2i ⇒ P[(At

i)
c] ≤ 1

ϵ2i
E(βt+1

i − β∗
i )

2.

Conditioning on At
i, we have Bi/ḡ

t
i = βt+1

i . Furthermore, since

0 ≤ ḡti =
1

t

t∑
τ=1

vijτ I{i = iτ} ≤ ∥vi∥∞
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and ∥vi∥∞ ≥ 1 ≥ u∗
i , we have the following upper bound on the difference between the time average

of realized utilities and the equilibrium utility of buyer i:

|ḡti − u∗
i | ≤ max{u∗

i , ∥vi∥∞} = ∥vi∥∞.

Now, splitting the expectation by the two complementary events At
i and (At

i)
c, we can apply the

above bounds to get

E(ḡti − u∗
i )

2 = E[I(At
i)

c · (ḡti − u∗
i )

2] +E

[
IAt

i
·
(

Bi

βt+1
i

− u∗
i

)2
]

≤ ∥vi∥2∞E[I(At
i)

c ] + (u∗
i )

2E

[
IAt

i
·
(

Bi

βt+1
i u∗

i

− 1

)2
]

≤ ∥vi∥2∞P[(At
i)

c] + (u∗
i )

2 ·E
(
βt+1
i − β∗

i

βt+1
i

)2

≤ ∥vi∥2∞
ϵ2i

E(βt+1
i − β∗

i )
2 +

(
(1 + δ0)u

∗
i

Bi

)2

·E(βt+1
i − β∗

i )
2

≤

(
∥vi∥2∞
ϵ2i

+

(
1 + δ0
Bi

)2
)
E(βt+1

i − β∗
i )

2.

Since Bi ≤ β∗
i ≤ 1, we have (κ := 1/(mini Bi))

ϵi ≥ Biδ0/(1 + δ0) > δ0/κ > 0.

Summing up across all i, using Theorem 3 and the above bound, we get

E∥ḡt − u∗∥2 ≤
∑
i

(
∥vi∥2∞
ϵ2i

+

(
1 + δ0
Bi

)2
)
E(βt+1

i − β∗
i )

2

≤

(
∥v∥2∞

(
κ

δ0

)2

+ ((1 + δ0)κ)
2

)∑
i

E(βt+1
i − β∗

i )
2

≤

(
∥v∥2∞

(
κ

δ0

)2

+ ((1 + δ0)κ)
2

)
(6 + log(t+ 1))G2

(t+ 1)σ2

= C · (6 + log(t+ 1))G2

(t+ 1)σ2
.

Proof of Theorem 5

First, note that b̄ti can be decomposed as follows.

b̄ti =
1

t

t∑
τ=1

βτ
i vijτ I{i = iτ}

= β∗
i · 1

t

t∑
τ=1

vijτ I{i = iτ}+
1

t

t∑
τ=1

(βτ
i − β∗

i )vijτ I{i = iτ}

= β∗
i ḡ

t
i +

1

t

t∑
τ=1

(βτ
i − β∗

i )vijτ I{i = iτ}.

Next, we bound the second term as follows, using convexity of (·)2 and ∥vijτ ∥ ≤ ∥vi∥∞:(
1

t

t∑
τ=1

(βτ
i − β∗

i )vijτ I{i = iτ}

)2

≤ 1

t

t∑
τ=1

(βτ
i − β∗

i )
2∥vi∥2∞.
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Then, we bound the square difference between expenditure and budget as follows, using (x+ y)2 ≤
2(x2 + y2) for any x, y ∈ R:

(b̄ti −Bi)
2 ≤ 2

(β∗
i ḡ

t
i −Bi)

2 +

(
1

t

t∑
τ=1

(βτ
i − β∗

i )vijτ I{i = iτ}

)2
 .

Combining the above two inequalities, taking expectation on both sides and using β∗
i = Bi/u

∗
i , we

have

E(b̄ti −Bi)
2 ≤ 2

[
(β∗

i )
2E(ḡti − u∗

i )
2 + ∥vi∥2∞

1

t

t∑
τ=1

E(βτ
i − β∗

i )
2

]
. (5)

When t ≥ 3, we have log(t+1)
t+1 < log t

t (since ( log t
t )′ = 1−log t

t2 < 0 for all t ≥ 3). By the proof of
[48, Corollary 4],

1

t

t∑
τ=1

(6 + log τ)G2

τσ2
≤ 1

t

(
6(1 + log t) +

(log t)2

2

)
G2

σ2
. (6)

Finally, summing up (5) across all i, using β∗
i ≤ 1, Theorems 3 and 4, and (6), we have

E∥b̄t −B∥2 ≤ 2

[
E∥ḡt − u∗∥2 + ∥v∥2∞

1

t

t∑
τ=1

E∥βτ − β∗∥2
]

≤ 2

[
C · (6 + log t)G2

tσ2
+ ∥v∥2∞

1

t

(
6(1 + log t) +

(log t)2

2

)
G2

σ2

]
=

2G2

tσ2

(
6(C + ∥v∥2∞) + (C + 6∥v∥2∞) log t+

∥v∥2∞
2

(log t)2
)
.

Proof of Theorem 6

For any θ ∈ Θ, since ∥ · ∥∞ is 1-Lipschitz continuous w.r.t. itself, we have∣∣∣p∗(θ)−max
i

βt
ivi(θ)

∣∣∣ ≤ ∣∣∣max
i

β∗
i vi(θ)−max

i
βt
ivi(θ)

∣∣∣
≤ max

i
|β∗

i vi(θ)− βt
ivi(θ)|

≤ ∥v∥∞∥βt − β∗∥∞. (7)

Analysis of regret rti . Let (zτi )τ∈[t] ∈ [0, 1]t be any feasible allocation on the arrived items θτ ,
τ ∈ [t] such that

1

t

t∑
τ=1

pτ (θt)z
τ
i ≤ Bi.

Using pτ (θτ ) = maxi β
τ
i vi(θτ ), we have

1

t

t∑
τ=1

p∗(θτ )z
τ
i =

1

t

t∑
τ=1

pτ (θτ )z
t
i +

1

t

t∑
τ=1

(p∗(θτ )− pτ (θτ ))z
τ
i

≤ Bi +
1

t
∥v∥∞

t∑
τ=1

∥βτ − β∗∥∞ [by (7) and 0 ≤ zτij ≤ 1] . (8)

Denote

γt =
1

t
∥v∥∞

t∑
τ=1

∥βτ − β∗∥∞.

In a static ME, by Theorem 1 and the constraints in (DEG), we have p∗ ≥ β∗
i vi. Hence,

1

t

t∑
τ=1

p∗(θτ )z
τ
i ≥ β∗

i

(
1

t

t∑
τ=1

vi(θτ )z
τ
i

)
. (9)
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By (8), (9), u∗
i = Bi/β

∗
i (Theorem 1) and the definition of ξti , we have

1

t

t∑
τ=1

vi(θτ )z
τ
i ≤ 1

β∗
i

(Bi + γt) = u∗
i

(
1 +

γt
Bi

)
≤ u∗

i +
γi
Bi

≤ ūt
i + ξti +

γt
Bi

.

Hence, the utility level Û t
i (Definition 3) satisfies

Û t
i ≤ ūt

i + ξti +
γt
Bi

. (10)

Note that E(γ2
t ) can be bounded as follows:

E(γ2
t ) ≤ ∥v∥2∞

1

t

t∑
τ=1

E∥βτ − β∗∥2 ≤ ∥v∥2∞
t

(
6(1 + log t) +

(log t)2

2

)
G2

σ2
= O

(
(log t)2

t

)
.

(11)

where the second inequality is due to Theorem 3 and (6). Combining (10), (11) and E(ξti)
2 =

O((log t)/t) (Theorem 4), we have

E(rti)
2 ≤ 2

(
E(ξti)

2 +
1

B2
i

E(γ2
t )

)
= O

(
(log t)2

t

)
.

Analysis of envy ρti. Let p∗ = maxi β
∗
i vi (a.e.) be the equilibrium prices. Similar to 8, for any i, we

have

1

t

t∑
τ=1

p∗(θτ )x
τ
i = b̄ti +

1

t

t∑
τ=1

(p∗(θτ )− βτ
i vi(θτ ))x

τ
i

≤ Bi +∆t
i + ηti . (12)

Using the above (replacing i with k) and p∗ ≥ β∗
i vi, we have

β∗
i ū

t
ik =

1

t

t∑
τ=1

β∗
i vi(θτ )x

τ
k ≤ 1

τ

t∑
τ=1

p∗(θτ )x
τ
k ≤ Bk +∆t

k + ηtk.

Hence, using u∗
i = Bi/β

∗
i ≤ 1 (Theorem 1 and Lemma 1),

ūt
ik

Bk
≤ 1

Bk
· 1

β∗
i

(Bk +∆t
k + ηtk)

≤ u∗
i

Bi

(
1 +

∆t
i + ηti
Bk

)
≤ ūt

i

Bi
+

ξti
Bi

+
∆t

i + ηti
BkBi

[by definition of ξti ].

Using the above inequality, we can bound the envy as follows:

ρti ≤
ξti
Bi

+
1

Bi
max

k

∆t
k + ηtk
Bk

≤ κξti + κ2 max
k

(∆t
k + ηtk). (13)

Next, we show the convergence of ηti . By (7), we have

|ηti | ≤
∑
ℓ

|ηtℓ| ≤
1

t

t∑
τ=1

|p∗jτ − βτ
iτ viτ jτ | ≤

1

t

t∑
τ=1

∥v∥∞∥βτ − β∗∥∞ = γt. (14)

Hence, same as (11),

E(ηti)
2 ≤ ∥v∥2∞

1

t

t∑
τ=1

E∥βτ − β∗∥2 ≤ ∥v∥2∞
1

t

(
6(1 + log t) +

(log t)2

2

)
G2

σ2
. (15)

By Theorems 3 and 5, we know that E(ξti)
2 = O ((log t)/t) and E(∆t

i)
2 = O

(
(log t)2/t

)
. Together

with (15) and (13), we have

E(ρti)
2 ≤ κE(ξti)

2 + κ2
∑
ℓ

(E(∆t
ℓ)

2 +E(ηtℓ)
2) = O

(
(log t)2

t

)
.
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C Extension to Quasilinear Utilities

We show that PACE can be easily extended to the case of a quasilinear (QL) market (i.e., where
buyers have QL utilities). We show that most of the convergence results in §5 still holds. The static
quasilinear market setup is the same as the linear case in §2 (which allows a possibly infinite item
space Θ), except the following:

• For given item prices p ∈ L1
+, each buyer i has a quasilinear utility function, i.e.,

ui(xi) = ⟨vi, xi⟩ − ⟨p, xi⟩.

• Without loss of generality, assume ∥B∥1 = 1 and all buyers’ valuations are nontrivial, i.e.,
⟨vi, s⟩ > 0 for all i. Due to the structure of QL utilities, we cannot normalize the valuations vi
and budgets Bi separately without loss of generality. Instead, they can only be scaled at the
same time by the same constant.

Same as before, each buyer i has a budget Bi > 0 and can only choose among budget-feasible
allocations, that is, xi such that ⟨p, xi⟩ ≤ Bi. In this case, an allocation-price pair (x∗, p∗) is a
quasilinear market equilibrium (QLME) if the following holds (see [24, §6] and [17, §4]):

• Buyers are optimal: x∗
i ∈ Di(p

∗) := argmax{⟨vi − p∗, xi⟩ : xi ∈ L∞
+ , ⟨p∗, xi⟩ ≤ Bi}.

• The market clears:
∑

i xi ≤ s and ⟨p∗, s−
∑

i x
∗
i ⟩ = 0.

As shown in [24, §6], the following pair of (possibly infinite-dimensional) convex programs capture
QLME:7

sup
∑
i

(Bi log ui − δi)

s.t.ui ≤ ⟨vi, xi⟩+ δi, ∀ i ∈ [n],∑
i

xi ≤ s,

ui ≥ 0, δi ≥ 0, xi ∈ L1(Θ)+, ∀ i ∈ [n].

(PQLEG)

inf ⟨p, s⟩ −
∑
i

Bi log βi

s.t.p ≥ βivi, βi ≤ 1, ∀ i ∈ [n],

p ∈ L1(Θ)+, β ∈ Rd
+.

(DQLEG)

In the sequel, we use (x∗, u∗, δ∗) to denote an optimal solution of (PQLEG) (in which u∗ and δ∗ are
unique) and (p∗, β∗) to denote the optimal solution of (DQLEG). As shown in [24, §6], the following
KKT conditions of (PQLEG) and (DQLEG) are necessary and sufficient for (x∗, p∗) being a QLME.

• δ∗i (1− β∗
i ) = 0 for all i (complementary slackness).

• u∗
i = Bi/β

∗
i for all i.

• p∗ = maxi β
∗vi (a.e.) for all j.

• ⟨p∗ − β∗
i vi, x

∗
i ⟩ = 0 for all i.

Let (x∗, p∗) denote a QLME. The equilibrium utility of buyer i (i.e., the amount of utility buyer i
receives at a QLME) is

uQLME
i := ⟨vi − p∗, x∗

i ⟩ = (1− β∗
i )⟨vi, x∗

i ⟩ = (1− β∗
i )(u

∗
i − δ∗i ),

which is unique and does not depend on the choice of the equilibrium allocation x∗. In general,
uQLME
i is not the same as u∗

i in the optimal solution of (PQLEG). In comparison, the term ⟨vi, x∗
i ⟩

7There, the authors assume s = 1, which is w.l.o.g. for static Fisher markets. Similar to the case of Theorem 1
for linear utilities, all results can be easily extended to the case of s ∈ L∞

+ .
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can be viewed as the equilibrium gross utility before subtracting the price ⟨p∗, x∗
i ⟩ of the allocation

x∗
i . The above equilibrium quantities satisfy the following [24, §6].

• If β∗
i = 1, then ⟨p∗ − β∗

i vi, x
∗
i ⟩ = 0 implies its gross utility and expenditure are equal, which

give an equilibrium utility of zero:

⟨vi, x∗
i ⟩ = β∗

i ⟨vi, x∗
i ⟩ = ⟨p∗, x∗

i ⟩ = u∗
i − δ∗i ⇒ uQLME

i = ⟨vi − p∗, x∗
i ⟩ = 0.

• If β∗
i < 1, then δ∗i = 0 by complementary slackness (the first KKT condition above). Hence,

the gross utility is ⟨vi, x∗
i ⟩ = u∗

i and

uQLME = ⟨vi − p∗, x∗
i ⟩ = (1− β∗

i )⟨vi, x∗
i ⟩ = (1− β∗

i )u
∗
i .

Similar to the proof of [23, Lemma 5], we can show that

u∗
i ≤ ⟨vi, s⟩+Bi.

Hence,

β∗ =
Bi

u∗
i

≥ Bi

⟨vi, s⟩+Bi
> βmin

i :=
Bi

⟨vi, s⟩+ 2Bi
> 0.

The choice of βmin
i is to ensure that β∗

i − βmin
i > 0, which simplifies the analysis of the dynamics.

Substituting p = maxi βivi and using the bounds βmin
i ≤ β∗

i ≤ 1, we can solve the following convex
program for the equilibrium utility prices β∗, where βmin := (βmin

1 , . . . , βmin
n ):

min
β∈[βmin,1]

⟨p, s⟩ −
∑
i

Bi log βi. (16)

Applying dual averaging to the convex program (16), we arrive at the following PACE dynamics for
an online QL market (i.e., an OFM with buyers having QL utilities). Set the initial pacing multipliers
are β1

i = 1 for all i. At time t, the following steps take place.

• An item θt ∈ Θ arrives, which determines a winner it = min argmaxi β
t
ivi(θt).

• The stochastic subgradient is gt = vit(θt)e
(it), or gti = vi(θt)I{i = it} for each i.

• Each buyer i pays a price (expenditure)

bti = βt
ivi(θt)I{i = it}

and receives a (net) utility of

ut
i = gti − bti = (1− βt

i )vi(θt)I{i = it}, (17)

which is is the value of the item minus the price paid. Here, only the winning buyer it may get a
potentially nonzero utility ut

it
; other buyers i ̸= it gets 0 (and pays zero).

• Update the dual average: for each i, ḡt = t−1
t ḡt−1+ 1

t g
t, which ensures ḡti =

1
t

∑t
τ=1 vijτ I{i =

iτ} for all i (same as in the linear case).

• Compute the next pacing multiplier (similar to the linear case, except the lower bound for βt
i

being βmin
i instead of Bi):

βt+1
i = argmin

βi∈[βmin
i ,1]

{
ḡtiβi −Bi log βi

}
⇒ βt+1

i = Π[βmin
i ,1]

(
Bi

ḡti

)
.

Same as in the linear case, we do not need any distributional assumption on the item arrivals to run
PACE. In subsequent convergence analysis, however, we assume that the items θt are drawn i.i.d.
from a distribution s (i.e., s ∈ L∞

+ and s(Θ) = 1). We also assume that vi ∈ L∞
+ for all i. Let

(x∗, p∗) denote a QLME of the underlying static QL market with supplies s.

Convergence of QL pacing multipliers. Analogous to Theorem 3, in the QL case, we can show that
the pacing multipliers βt converge to the equilibrium utility prices β∗ in mean square. It is a direct
consequence of the general convergence result of dual averaging (Theorem 2).
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Theorem 7. For t = 1, 2, . . . , it holds that

E∥βt − β∗∥2 ≤ (6 + log t)G2

tσ2
,

where G2, κ are the same as in Theorem 3 and

σ = min
i

min
βi∈[βmin

i ,1]

Bi

β2
i

= min
i

Bi =
1

κ
.

Convergence of QL utilities and expenditures. Next, we show mean-square convergence of time-
averaged utilities ūt = 1

t

∑t
τ=1 u

t
i and expenditures b̄t = 1

t

∑t
τ=1 β

τ
i vijτ I{i = iτ}. In the QL case,

the dual average gti can also be viewed as the per-period gross utility before subtracting the price
βt
ivi(θt). In this way, ḡti is the time-averaged gross utility of buyer i.

Theorem 8. For t = 1, 2, . . . and each i, the following holds.

• If β∗
i = 1, then uQLME

i = 0 and Bi = u∗
i . In this case,

E
(
ut
i − uQLME

i

)2
= E|ut

i|2 ≤ ∥vi∥2∞E(1− βt
i )

2 = O

(
log t

t

)
. (18)

• If β∗
i < 1, then uQLME

i > 0, δ∗i = 0 and uQLME = (1− β∗
i )u

∗
i . In this case, the gross utility

ḡti , realized (net) utility ūt
i and expenditures b̄ti converge as follows:

E(ḡti − u∗
i )

2 ≤ CiE(βt+1
i − β∗

i )
2 = O

(
log t

t

)
,

E
(
ūt
i − uQLME

i

)2
≤ Rt

i, E(b̄ti −Bi)
2 ≤ Rt

i,

where

Ci =
∥vi∥2∞
ϵ2i

+

(
∥vi∥1

m + 2Bi

)4
B2

i

, ϵi = min{1− β∗
i , β

∗
i − βmin

i },

Rt
i = 2

[
E(ḡti − u∗

i )
2 +

∥vi∥2∞
t

t∑
τ=1

E(βτ
i − β∗

i )
2

]
, ERt

i = O

(
(log t)2

t

)
.

Hence, the mean-square error E
∥∥ūt − uQLME

∥∥2 is either O((log t)2/t) (when some β∗
i < 1) or

O((log t)/t) (when all β∗
i = 1).

Proof. The β∗
i = 1 case is clear. We prove the β∗

i < 1 case.

Convergence of ḡti . Denote the event At
i = {Bi ≤ ḡti ≤ Bi/β

min
i }. Then, (At

i)
c means Bi/ḡ

t
i /∈

[βmin
i , 1] and hence |βt+1 − β∗

i | > ϵi. Similar to the linear case, we deduce

E(βt+1
i − β∗

i )
2 ≥ P[(At

i)
c]ϵ2i ⇒ P[(At

i)
c] ≤ 1

ϵ2i
E(βt+1

i − β∗
i )

2.
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Furthermore, since 0 ≤ ḡti ≤ ∥vi∥∞ (same as in the linear case) and u∗
i ≤ ⟨vi, s⟩+Bi, we have

E(ḡti − u∗
i )

2 = E[I(At
i)

c · (ḡti − u∗
i )

2] +E

[
IAt

i
·
(

Bi

βt+1
i

− u∗
i

)2
]

≤ ∥vi∥2∞E[I(At
i)

c ] + (u∗
i )

2E

[
IAt

i
·
(

Bi

βt+1
i u∗

i

− 1

)2
]

≤ ∥vi∥2∞P[(At
i)

c] + (u∗
i )

2 ·E
(
βt+1
i − β∗

i

βt+1
i

)2

≤ ∥vi∥2∞
ϵ2i

E(βt+1
i − β∗

i )
2 +

(
u∗
i

βmin
i

)2

·E(βt+1
i − β∗

i )
2

≤

(
∥vi∥2∞
ϵ2i

+

(
(⟨vi, s⟩+Bi) (⟨vi, s⟩+ 2Bi)

Bi

)2
)
E(βt+1

i − β∗
i )

2

= CiE(βt+1
i − β∗

i )
2 = O

(
log t

t

)
.

Convergence of expenditures b̄ti. Similar to the linear case, note that b̄ti can be decomposed as
follows (where xτ

i := I{i = iτ} denotes whether buyer i wins at time step τ ):

b̄ti :=
1

t

t∑
τ=1

βτ
i vi(θτ )x

τ
i = β∗

i ḡ
t
i +

1

t

t∑
τ=1

(βτ
i − β∗

i )vi(θτ )x
τ
i .

Hence, using β∗
i = Bi/u

∗
i ≤ 1, (x + y)2 ≤ 2(x2 + y2), convexity of (·)2 and vi(θt)x

τ
i ≤ ∥vi∥∞,

we have

E(b̄ti −Bi)
2 ≤ 2

E(β∗
i ḡ

t
i −Bi)

2 +E

(
1

t

t∑
τ=1

(βτ
i − β∗

i )vi(θτ )x
τ
i

)2


≤ 2

[
(β∗

i )
2E(ḡti − u∗

i )
2 +

∥vi∥2∞
t

t∑
τ=1

E(βτ
i − β∗

i )
2

]

≤ 2

[
E(ḡti − u∗

i )
2 +

∥vi∥2∞
t

t∑
τ=1

E(βτ
i − β∗

i )
2

]
= Rt

i. (19)

The order of ERt
i is given by those of E(ḡti − u∗

i )
2 and

∑t
τ=1 E(βτ

i − β∗
i ), which are O((log t)/t)

and O((log t)2/t), respectively.

Convergence of utilities ūt
i. For a buyer i with β∗

i < 1, let

ϵi = min{1− β∗
i , β

∗
i − βmin

i } > 0.8

Express ūt
i as follows:

ūt
i =

1

t

t∑
τ=1

(1− βτ
i )vi(θτ )x

τ
i

= (1− β∗
i )ḡ

t
i +

1

t

t∑
τ=1

(βτ
i − β∗

i )vi(θτ )x
τ
i .

8The analysis of this case also works for β∗
i = 0 but its resulting bound is not as tight as the above one for

the case β∗
i = 1.
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Since uQLME
i = (1− β∗

i )u
∗
i , similar to (19), we have

E
(
ūt
i − uQLME

i

)2
≤ 2

(1− β∗
i )E(ḡti − u∗

i )
2 +E

(
1

t

t∑
τ=1

(βτ
i − β∗

i )vi(θτ )x
τ
i

)2


≤ 2

[
E(ḡti − u∗

i )
2 +

∥vi∥2∞
t

t∑
τ=1

E(βτ
i − β∗

i )
2

]
= Rt

i.

Finally, if all β∗
i = 1, (18) implies that E∥ūt − ūQLME∥2 = O((log t)/t). It some β∗

i < 1, since
ERt

i = O((log t)2/t), so is E∥ūt − ūQLME∥2.

D More Details on the Experiments

In each experiment, we will have some underlying valuations, items will be drawn one-at-a-time,
uniformly at random, from the set of possible items, on which we run the PACE dynamics. We
have several outcome measures of interest for asking how close we are to the static equilibrium
quantities at each point. First, we look at convergence of realized utilities. In each case we consider
the realized utilities up to time t and look at the deviation from equilibrium utility normalized by
the equilibrium utility level. We look at both the average and the worst-case deviations. Formally
these are calculated as ∥(ūt − u∗)/u∗∥1/n for the average deviation and ∥(ūt − u∗)/u∗∥∞ for the
maximum (over buyers) deviation. We also measure deviations of the pacing multiplier βt from β∗

and deviations of time-averaged cumulative expenditure b̄t from buyers’ budgets B = (B1, . . . , Bn)
using analogous normalizations. In the plots, we add horizontal lines for the same error measures for
the proportional shares of the static underlying Fisher market (each buyer receiving Bi of each item),
a ‘baseline’ solution.

We consider 3 different market datasets. The first two datasets are recommender systems which we
turn into markets. The final is taken from a survey experiment. We point the reader to [31] for a
more in-depth discussion and exploratory data analysis of these 3 datasets. The first dataset uses
MovieLens [27]. MovieLens is a dataset of individual ratings of movies, [31] turn it into a market by
using matrix completion to fill in missing user-movie ratings, they then take the top 1500 most active
users and 1500 most rated movies and set the valuations vij as the predicted ratings from the matrix
completion. We also use the Jester Jokes dataset [26]. Here, we have 7200 individuals that have rated
100 jokes. We treat the jokes as the item to be allocated.Finally, we use the Household Items dataset
introduced in [31]. Here we have 2876 survey takes entering a willingness to pay for 50 household
items (vacuum cleaners, toasters, gas grills, etc.). For each dataset, we first rescale (w.l.o.g.) buyer
valuations as described in §5.

We also consider an experiment on a simple infinite-dimensional market instance (which we refer to
as “Inf-Dim”) of n = 100 buyers and item space Θ = [0, 1], similar to the examples in [24, §4.2]. Let
each buyer valuation vi be normalized linear functions on [0, 1], that is, vi(θ) = ci(θ) + di such that
vi(Θ) :=

∫
Θ
vidµ =

∫ 1

0
vi(θ)dθ = 1 ⇔ ci

2 + di = 1. We randomly generate (ci, di), i = 1, . . . , n
and run the dynamics for T = 100n time steps.

For the finite dimensional datasets we compute equilibrium utilities u∗ and utility prices β∗ by solving
the corresponding static instances using standard methods. For the infinite dimensional synthetic
instance, we use the approach based on convex conic reformulation [24, §4] to compute β∗.

Figure 1 in §6 contains the plots for the MovieLens, Household Items and Inf-Dim datasets. Figure 2
contains the plots for the Jokes dataset.

Since items arrive one at a time, t = 100 time steps in a market with n = 10 buyers is very different
from the same number of time steps in a market with n = 1000 buyers. To deal with this, we run
PACE for T = 100n time steps, referring to each n time steps as an epoch.

We record the average and maximum values of relative errors of the pacing multipliers βt, time-
averaged cumulative utilities ūt and time-averaged expenditures b̄t.
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Figure 2: Results for the same experiments as in Figure 1 (convergence of pacing multipliers, utilities
and expenditures) on the Jokes dataset.

Convergence of expenditures to total budget. For each i, the quantity∣∣∣∣ b̄ti −Bi

Bi

∣∣∣∣ =
∣∣∣∣∣
∑t

τ=1 b
t
i − tBi

tBi

∣∣∣∣∣
can be viewed as the relative deviation of current cumulative expenditure at time t from the total
budget tBi available up to t. Hence, the residuals

∥∥(b̄ti −B)/B
∥∥ /n and

∥∥(b̄ti −B)/B
∥∥
∞ are the

average and maximum such deviations across all buyers. For each dataset (MovieLens, Household,
Jokes and Inf-Dim), we plot the various quartiles of these residuals across all seeds, as shown in
Figure 3.
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Figure 3: The PACE cumulative expenditure
∑t

τ=1 b
t
i of each buyer are close to the total amount of

budget tBi, as the quartile plots show. Vertical lines indicate when t is a multiple of 10n.

30


	Introduction
	Static and Online Fisher Markets
	The PACE Dynamics
	Dual Averaging
	Convergence Analysis of the PACE dynamics
	Experiments
	Conclusion
	Related Work
	Proofs, Derivations and Examples
	Extension to Quasilinear Utilities
	More Details on the Experiments

