
A Experimental Setup522

Here, we discuss the implementation details of the experiments in Section 5. Source code is included523

in the supplementary materials.524

A.1 Batch Learning from Logged Compression Data525

In our experiments, we found that initializing the compression model such that it outputs uniform-526

random mask probabilities, collecting a batch of 1000 tuples (T = 1,x, x̂,a) using this random527

compression model, and training the models D�, D , and f✓ to convergence on this data yielded528

a high-performing compression model f✓. In other words, rather than alternating one step of data529

collection with one gradient step as in Algorithm 1, we used batch learning. The initial random530

compression model explored the structured output space of feature masks well enough to generate531

useful training data for our models, so we did not need to learn from on-policy data generated532

by partially-trained compression models. This approach illustrates how PICO can be practically533

deployed in real-world applications where other compression algorithms are already in use and have534

generated large amounts of offline data D, and where online learning may be difficult to implement.535

In the digit identification, car shopping and survey, and car racing experiments, we set the compression536

rate hyperparameter � (see Section 4) to 0.5 during training. In the photo verification experiments,537

we set � = 0.25 during training.538

A.2 Measuring Bitrates539

For the digit identification, car racing, and car shopping and survey experiments, we use the following540

procedure to measure compression rates. To estimate the prior distribution (introduced in Section541

4), we fit a multivariate Gaussian distribution to the latent embeddings of the images in our training542

set. To measure the number of bits needed to encode a given latent embedding, we normalize the543

latent feature values to their z-scores, discretize the z-scores into bins of width 0.1, and sum the544

negated base-2 log-probabilities of the discretized values under the prior distribution. For the photo545

verification experiments, we use the base-2 KL-divergence between the latent posterior and prior in546

the NVAE model [35].547

In the digit identification experiments in Figure 3, we sweep � 2 {0, 0.1, 0.2, 0.3, 0.4, 0.5, 1} and548

measure the resulting bitrates (the hyperparameter � is defined in Section 4). In the car shopping549

experiments in Figure 4, we sweep � 2 {0, 0.375, 0.5, 0.625, 1}. In the car survey experiments in550

Figure 4, we sweep � 2 {0, 0.25, 0.5, 0.75, 1}. In the photo verification experiments in Figure 5,551

we sweep � 2 {0, 0.25, 0.375, 0.5, 0.625, 0.75, 1}. In the car racing experiments in Figure 6, we set552

� = 0.5.553

A.3 Network Architectures and Training554

We use stochastic gradient descent – in particular, Adam [51] – to perform the optimization steps in555

Algorithm 1.556

In the car racing and digit identification experiments, we use a feedforward network with 2 layers of557

256 units to represent the discriminators; to represent the compression model, the same architecture,558

but with 64 instead of 256 units. In the car shopping and survey experiments, we use the same559

architecture, but with 64 instead of 256 units, for the discriminators. In the photo verification ex-560

periment, we combine the convolutional network architecture from https://github.com/yzwxx/561

vae-celebA/blob/master/model_vae.py with 2 additional fully-connected layers of 256 units562

to represent the discriminators and the compression model.563

A.4 Compressing Images using a Generative Model564

Following up on the discussion in Section 4 about structuring the compression model f✓(ẑ|z), let565

ẑ = [z1 z2] denote the decomposition of ẑ into masked features z1 and transmitted features z2. In566

the digit identification, photo verification, and car racing experiments, we set the masked features to567
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follow the distribution z1 ⇠ N (µ̄, ⌃̄), where568

µ̄ = µ1 +⌃12⌃
�1
22 (z2 � µ2),

⌃̄ = ⌃11 �⌃12⌃
�1
22 ⌃21.

We estimate µ and ⌃ empirically, from the data used to train the generative model. In the car racing569

experiments, at each timestep t, we set the prior mean µ to the transmitted feature values at the570

previous timestep t� 1, and estimate the prior covariance ⌃ empirically from state transition data.571

In the car shopping and survey experiments, we sample the masked features from the StyleGAN2572

prior – i.e., by feeding Gaussian noise input to the StyleGAN2 mapping network, and computing the573

intermediate latents w.574

To make exploration easier (see Section 4 for discussion), we reduce the dimensionality d of the575

mask output space by grouping together consecutive latent features. In the car racing experiments,576

we train a VAE with 32 latent features using prior methods [52], and reduce the dimensionality of the577

compression model’s output space from 32 to d = 8 by creating 8 groups of 4 latent features each –578

where group 1 contains latent features 1-4, group 2 contains features 5-8, etc. – and masking groups579

instead of masking individual features. In the car shopping experiments, we use a StyleGAN2 model580

with 16 style layers – trained on the LSUN Car dataset using prior methods [34] – and reduce the581

dimensionality to d = 8 by dividing the 16 style layers into 8 groups. In the car survey experiments,582

we reduce to d = 4 using the same method. To encode images into the StyleGAN2 latent space, we583

use the optimization-based projection method described in Section 5 of [34]. In the photo verification584

experiments, we use the NVAE model for CelebA 64x64 described in Table 6 of [35]. We always585

sample the latents in the second and third scales from the prior. For the latents in the first scale,586

we reduce the dimensionality of the mask output space from d = 5 · 82 to d = 8 by applying the587

same mask to all 5 groups, and dividing the 64 latents into groups of 8. In the digit identification588

experiments, we use a �-VAE with 10 latent features, which we do not group together as in the other589

experiments.590

In the digit identification, car shopping and survey, and car racing experiments, we use the latent591

embedding z instead of the full image x as input to the discriminators – i.e., we set D�(a,x)  592

D�(a, z) and D (p,x) D (p, z).593

A.5 Positive Examples for Discriminator Training594

In the digit identification experiments, we treat 63,000 labeled images from the MNIST training set as595

positive examples of user behavior without compression. In the photo verification experiments, we do596

the same with 202,397 examples from the labeled CelebA training set – in particular, the Eyeglasses597

and Hat labels. In the car shopping experiments, we automatically label the Ferrari, Bugatti, McLaren,598

Aston Martin, Lamborghini, Spyker, and Porsche categories as unaffordable, and the Wagon, Minivan,599

and Van categories as affordable, discard images belonging to any other categories, and treat 1,507600

of the remaining labeled images as positive examples. In the car survey experiments, we collect601

positive examples by eliciting 1,507 binary labels of “dark-colored” vs. “light-colored” on Amazon602

Mechanical Turk.603

A.6 Prompts for Amazon Mechanical Turk Participants604

For the photo verification experiment in Figure 5 in which users check if eyes are covered:605

In this task, you will examine photos of people and check if their eyes are covered.606

Photos of people wearing eyeglasses or sunglasses should be classified as covered.607

Choose the appropriate label that best suits the image: ‘Eyes are not covered’ or608

‘Eyes are covered’.609

For the photo verification experiment in Figure 5 in which users check if heads are covered:610

In this task, you will examine photos of people and check if their head is covered.611

Photos of people wearing hats or caps should be classified as covered. Choose612

the appropriate label that best suits the image: ‘Head is not covered’ or ‘Head is613

covered’.614

For the car shopping experiments in Figure 4:615
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In this task, you will examine photos of cars and guess if they are affordable for616

someone with a budget of approximately $20,000. Choose the appropriate label617

that best suits the image: ‘Affordable’ or ’Not affordable’.618

For the car survey experiments in Figure 4:619

In this task, you will examine photos of cars and determine if they are dark-colored620

(black, dark blue, dark red, etc.) or light-colored (white, silver, light red, yellow,621

etc.). Choose the appropriate label that best suits the image: ‘Dark-colored car’ or622

’Light-colored car’.623

For the handwritten digit identification experiments in Figure 3:624

Choose the appropriate label that best suits the image: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9625

A.7 Subject Allocation626

Amazon Mechanical Turk experiments. In the car shopping and survey tasks, we assigned 10627

users to label each of the 100 held-out images, in order to reduce the variance introduced by our628

intentionally-vague prompts (see previous section). For the other AMT experiments, we only assigned629

one user to each image, since we found that behavior did not vary substantially across users.630

Car racing video game experiment. We recruited 10 male and 2 female participants, with an631

average age of 25. Each participant was provided with the rules of the game and played 5 practice632

episodes to familiarize themselves with the controls. To generative positive and negative examples633

for training the PICO discriminator, we had a pilot user play 10 episodes without compression and 15634

episodes with a compression model that outputs uniform-random mask probabilities. Each of the 12635

participants played in both experimental conditions: with the non-adaptive compression baseline, and636

with the trained compression model from PICO. To avoid the confounding effect of users learning to637

play the game better over time, we counterbalanced the order of the two conditions. Each condition638

lasted 15 episodes, with 100 timesteps (10 seconds) per episode.639

B Subjective Evaluations in Car Racing Experiment640

After evaluating the non-adaptive compression baseline:641

It was quite hard to understand where the car/road were when the video got hazy642

by the end of the training, the delay felt less significant. I almost didn’t notice it. I643

had difficulty figuring out what the environment wanted me to do when it would644

bend the road far ahead of me but not near me.645

It was often hard to tell if the car was moving or not, and the road sometimes646

disappeared, which also made it hard to tell when steering was needed647

Often the task wasn’t too hard, but it was most challenging when the scene geometry648

would suddenly shift and I couldn’t anticipate how to react with my controls.649

After evaluating PICO:650

It was a lot more predictable and the blur was very infrequent. The road did behave651

pretty unpredictably sometimes and I could not control652

This environment was a lot easier. It felt more consistent. I felt like we had a653

mutual understanding of when I would turn and what it would show me to make654

me turn.655

After model training much easier than before model training656

This time around the task was a lot easier – the fact that the scene geometry changed657

more naturally, and the fact that the effects of any delayed actions were predictable,658

made it easier to decide how to steer659
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Table 1: Subjective Evaluations in the Car Racing User Study
p-value Non-Adaptive PICO

I was able to keep the car on the road < .0001 3.45 5.64
I could anticipate the consequences of my steering actions < .01 3.82 5.36
I could tell when the car was about to go off road < .01 3.55 5.36
I could tell when I needed to steer to keep the car on the road < .01 4.09 5.73
I was often able to determine the car’s current position < .001 4.00 5.82

Means reported for responses on a 7-point Likert scale, where 1 = Strongly Disagree, and 7 = Strongly Agree.
p-values from a one-way repeated measures ANOVA with the use of PICO as a factor influencing responses.

Figure 7: Experiments with simulated and pilot users show that PICO outperforms both baselines, and that the
perceptual similarity baseline only performs better than the non-adaptive baseline on the digit identification task
(top left).

C Simulation Experiments660

To determine which baseline methods to compare with PICO in the user studies in Section 5, we ran661

preliminary experiments in which we simulated user behavior. In the digit identification and photo662

verification tasks, we simulated the user’s policy by training a classifier on labeled data (see Appendix663

A.5 for a description of the labeled data in each domain). In the car shopping, car surveying, and car664

racing tasks, we did not have enough labeled data to train a policy that qualitatively matched real user665

behavior. Hence, in the car racing task, we conducted a small-scale experiment with a single pilot666

user; and in the car shopping and surveying tasks, we perform a qualitative analysis of compressed667

image samples.668

Figure 7 shows that PICO outperformed both the non-adaptive and perceptual similarity baselines669

in all domains. Furthermore, the perceptual similarity baseline only performed better than the non-670

adaptive baseline in the digit identification task; hence, our decision to omit the perceptual similarity671

baseline from the other user studies in Section 5. Figure 8 shows that, while PICO learns to preserve672

the perceived price of the car in the shopping task, and to preserve the color of the car in the survey673

task, the perceptual similarity baseline does not preserve either of the two features.674
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Figure 8: While PICO learns to preserve the perceived price of the car in the shopping task (second column),
and to preserve the color of the car in the survey task (third column), the perceptual similarity baseline fails to
preserve either of the two features (fourth column).

D Failure Cases675

There are several ways in which PICO can fail to match the user’s actions with and without com-676

pression. For example, the latent embedding z produced by the pre-trained generative model (see677

Section 4) may lack the necessary features for performing the downstream task: the yellow sports678

car in rows 7-8 of Figure 10 gets distorted when encoded into the StyleGAN2 latent space, even679

without any additional compression. Another failure mode is for the latent features to be entangled,680

causing the structured mask output space of the compression model (see Section 4) to be insufficiently681

expressive for learning an effective compression policy: many of the compressed faces in Figure 9682

are visually distorted, most likely because the true prior distribution over latent embeddings is not683

modeled accurately by a Gaussian (see Appendix A.4).684

E Examples of Compression at Different Bitrates685

Figures 9 and 10 show that PICO tends to preserve task-relevant features like digit number, eyeglasses686

and hats, and the price and color of a car, more often than the non-adaptive baseline, and especially687

at lower bitrates. As the bitrate decreases, PICO discards task-irrelevant features before discarding688

task-relevant features. At extremely low bitrates (e.g., zero), PICO gracefully degrades to sampling a689

random image from the pre-trained generative model (see the right-most columns in Figures 9 and690

10), instead of, e.g., transmitting a heavily-distorted image with visual artifacts that make it difficult691

for the user to even attempt to perform their task.692
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Figure 9: Additional samples from the non-adaptive compression baseline and PICO drawn at varying bitrates.
Left: digit identification experiments from Section 5.1 and Figure 3. Right: photo verification experiments from
Section 5.2 and Figure 5.
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Figure 10: Additional samples from the non-adaptive compression baseline and PICO drawn at varying bitrates,
for the car shopping experiments in Section 5.1 and Figure 4.
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