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Abstract

A fundamental assumption of most machine learning algorithms is that the training
and test data are drawn from the same underlying distribution. However, this as-
sumption is violated in almost all practical applications: machine learning systems
are regularly tested under distribution shift, due to changing temporal correlations,
atypical end users, or other factors. In this work, we consider the problem setting
of domain generalization, where the training data are structured into domains and
there may be multiple test time shifts, corresponding to new domains or domain
distributions. Most prior methods aim to learn a single robust model or invariant
feature space that performs well on all domains. In contrast, we aim to learn models
that adapt at test time to domain shift using unlabeled test points. Our primary
contribution is to introduce the framework of adaptive risk minimization (ARM),
in which models are directly optimized for effective adaptation to shift by learning
to adapt on the training domains. Compared to prior methods for robustness, in-
variance, and adaptation, ARM methods provide performance gains of 1-4% test
accuracy on a number of image classification problems exhibiting domain shift.

1 Introduction

The standard assumption in empirical risk minimization (ERM) is that the data distribution at test
time will match the training distribution. When this assumption does not hold, i.e., when there is
distribution shift, the performance of standard ERM methods can deteriorate significantly [54, 38].

Figure 1: An example of ambiguous data
points in handwriting classification, eval-
uated quantitatively in Section 5.

As an example which we study quantitatively in Section 5,
consider a handwriting classification model that, after
training on data from past users, is deployed to new end
users. Each new user represents a new test distribution that
differs from the training distribution. Thus, each test set-
ting involves dealing with shift. In Figure 1, we visualize
a batch of 50 examples from a test user, and we highlight
an ambiguous example which may be either a “2” (written
with a loop) or an “a” (in the double-storey style) depend-
ing on the user’s handwriting. Due to the biases in the
training data, an ERM trained model incorrectly classifies
this example as “2”. However, we can see that the batch of
images from this test user contains other examples of “2”
(written without loops) and “a” (also double-storey) from
this user. Can we somehow leverage this unlabeled data
to better handle test shifts caused by new users?
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Any framework that aims to address this question must use additional assumptions beyond the ERM
setting, and many such frameworks have been proposed [54]. One commonly used assumption within
several frameworks, such as domain generalization [7, 23], is that the training data are provided in
domains and distributions at test time will represent new domains. The example above neatly fits
this description if we equate users with domains – we would be assuming that the training data are
organized by users and that the model will be tested separately on new users, and these are reasonable
assumptions. Constructing training domains in practice is generally accomplished by using meta-data,
which exists for many commonly used datasets. Thus, this domain assumption is applicable for a
wide range of realistic distribution shift problems (see, e.g., Koh et al. [35]).

However, prior benchmarks for domain generalization and similar settings typically center around
invariances – i.e., in these benchmarks, there is a consistent input-output relationship across all
domains, and the goal is to learn this relationship while ignoring the spurious correlations within the
domains (see, e.g., Gulrajani and Lopez-Paz [23]). Thus, prior methods aim for generalization to
shifts by discovering this relationship, through techniques such as robust optimization and learning
an invariant feature space [41, 3, 60]. These methods are appealing in that they make minimal
assumptions about the information provided at test time – in particular, they do not require test labels,
and the learned model can be immediately applied to predict on a single point. Nevertheless, these
methods also have limitations, such as in dealing with problems where the input-output relationship
varies across domains, e.g., the handwriting classification example above.

In this paper, we instead focus on methods that aim to adapt at test time to domain shift. To do so, we
study problems in which it is both feasible and helpful (and perhaps even necessary) to assume access
to a batch or stream of inputs at test time. Leveraging this test assumption does not require labels for
any test data and is feasible in many practical setups. For example, for handwriting classification,
we do not access only single handwritten characters from an end user, but rather collections of
characters such as sentences or paragraphs. Unlabeled adaptation has been shown empirically to be
useful for distribution shift problems [69, 63, 75], such as for dealing with image corruptions [25].
Taking inspiration from these findings, we propose and evaluate on a number of problems, detailed in
Section 5, for which adaptation is beneficial in dealing with domain shift.

Our main contribution is to introduce the framework of adaptive risk minimization (ARM), which
proposes the following objective: optimize the model such that it can maximally leverage the
unlabeled adaptation phase to handle domain shift. To do so, we instantiate a set of methods that,
given a set of training domains, meta-learns a model that is adaptable to these domains. These methods
are straightforward extensions of existing meta-learning approaches, thereby demonstrating that
tools from the meta-learning toolkit can be readily adapted to tackle domain shift. Our experiments
in Section 5 test on several image classification problems, derived from benchmarks for federated
learning [9] and image classifier robustness [25], in which training and test domains share structure
that can be leveraged for improved performance. These testbeds are also a contribution of our work,
as we believe these problems can supplement existing benchmarks which, almost exclusively, are
designed with invariance in mind [3, 53, 23]. We also evaluate on the WILDS suite of distribution
shift problems [35], which have been curated to faithfully represent important real world problems.
Empirically, we demonstrate that the proposed ARM methods, by leveraging meta-training and test
time adaptation, are often able to outperform prior state-of-the-art methods by 1-4% test accuracy.

2 Related Work

A number of prior works have studied distribution shift in various forms [54]. In this section, we
review prior work in domain generalization, group robustness, meta-learning, and adaptation.

Invariance and robustness to domains. As discussed above, a number of frameworks leverage
training domains to address test time shift. The terminology in prior work is scattered and, depending
on the application, includes terms such as “groups”, “datasets”, “subpopulations”, and “users”; in this
work, we adopt the term “domains” which we believe is an appropriate unifying term. A number of
testbeds for this problem setting have been proposed for image classification, including generalizing
to new datasets [17], new image types [39, 53], and underrepresented demographics [60].

Prior benchmarks typically assume the existence of a consistent input-output relationship across
domains that is learnable by the specified model, thus motivating methods such as learning an
invariant feature space [41, 44, 3] or optimizing for worst case group performance [30, 60]. In
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particular, methods for domain generalization – sometimes referred to as multi-source domain
adaptation [68] or zero shot domain adaptation [78] – have largely focused on learning invariant
features [19, 67, 41, 44, 53]. Gulrajani and Lopez-Paz [23] provide a comprehensive survey of
domain generalization benchmarks and find that, surprisingly, ERM is competitive with the state of
the art across all the benchmarks considered. In Appendix C, we discuss this finding as well as the
performance of an ARM method on this benchmark suite. In Section 5, we identify different problems
for which adaptation is helpful, and we find that, on these problems, ARM methods consistently
outperform ERM and other non adaptive methods for robustness and invariance.

Meta-learning. Meta-learning [62, 6, 71, 27] has been most extensively studied in the context of few
shot labeled adaptation [61, 74, 55, 18, 65]. Our aim is not to address few-shot recognition problems,
nor to propose a novel meta-learning algorithm, but rather to extend meta-learning paradigms to
problems requiring unlabeled adaptation, with the primary goal of tackling distribution shift. This aim
differs from previous work in meta-learning for domain generalization [40, 15], which seek to meta-
train models for non adaptive generalization performance. We discuss in Section 4 how paradigms
such as contextual meta-learning [20, 57] can be readily extended using the ARM framework.

Some other meta-learning methods adapt using both labeled and unlabeled data, either in the semi
supervised learning setting [56, 81, 42] or the transductive learning setting [51, 46, 2, 29]. These
works all assume access to labeled data for adaptation, whereas we propose methods and problems for
purely unlabeled adaptation. Prior works in meta-learning for unlabeled adaptation include Yu et al.
[80], who adapt a policy to imitate human demonstrations in the context of robotic learning; Metz
et al. [48], who meta-learn an update rule for unsupervised representation learning, though they still
require labels to learn a predictive model; and Alet et al. [1], who meta-learn adaptive models based
on task specific unsupervised objectives. Unlike these prior works, we propose a general framework
for tackling distribution shift problems by meta-learning unsupervised adaptation strategies. This
framework simplifies the extension of meta-learning paradigms to these problems, encapsulates
previous approaches such as the gradient based meta-learning approach of Yu et al. [80], and sheds
light on how to improve existing strategies such as adaptation via batch normalization [43].

Adaptation to shift. Unlabeled adaptation has primarily been studied separately from meta-learning.
Domain adaptation is a prominent framework that assumes access to test examples at training

time [13, 76], similar to transductive learning [73]. As such, most domain adaptation methods
consider the problem setting where there is a single test distribution [64, 14, 22, 19, 72, 10], and
some of these methods are difficult to apply to problems where there are multiple test distributions.
Certain domain adaptation methods have also been applied in the domain generalization setting, such
as methods for learning invariant features [19, 67, 41], and we compare to these methods in Section 5.

Adaptive methods for domain generalization include Muandet et al. [49] and Kumagai and Iwata [37],
who propose a method similar to one of the ARM methods described below. We compare to a version
of this method in Appendix E. Blanchard et al. [7] and Blanchard et al. [8] provide a theoretic study
of domain generalization and establish favorable generalization bounds for models that can adapt
to domain shift at test time. We summarize some of these results in Section 3. In comparison, our
work establishes a framework that makes explicit the connection between adaptation to domain shift
and meta-learning, allowing us to devise new methods in a straightforward and principled manner.
These methods are amenable to expressive models such as deep neural networks, which enables us to
propose and evaluate on problems with raw image observations.

Test time adaptation has also been studied for dealing with label shift [59, 45, 66] and crafting
favorable inductive biases for the domain of interest. For image classification, techniques such as
normalizing via the test inputs [43] and optimizing self-supervised surrogate losses [69] have proven
effective for adapting to image corruptions [25]. We compare to these prior methods in Section 5 and
empirically demonstrate the advantage of using training domains to learn how to adapt.

3 Preliminaries and Notation

In this section, we discuss the domain generalization problem setting and formally describe adaptive
models. In Section 4, we discuss how adaptive models can be meta-trained via the ARM objective
and approach, and we instantiate ARM methods which we empirically evaluate in Section 5.
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Let x 2 X and y 2 Y represent the input and output, respectively. We can formalize the domain
generalization problem setting using the following data generation process [8]: first, a joint data
distribution pxy is sampled from a set of distributions Pxy, and then some data points are sampled
from pxy.1 We refer to each pxy as a domain, e.g., a particular dataset or user, thus Pxy represents
the set of all possible domains. We assume that the training dataset is composed of data from S
runs of this generative process, organized by domain. An equivalent characterization which we will
use for clarity is that, within the training set, there are S domains, and each data point (x(i), y(i))
is annotated with a domain label z(i). Each z(i) is an integer that takes on a value between 1 and
S, indicating which pxy generated the i-th training point (though, of course, we do not have access
to, or knowledge of, pxy itself). At test time, there may be multiple evaluation settings, where each
setting is considered separately and contains only unlabeled data sampled via a new run of the same
generative process. This data may represent, e.g., a new dataset or user, and the test domains are
likely to be distinct from the training domains when |Pxy| is large or infinite.

Our formal goal is to optimize for expected performance, e.g., classification accuracy, at test time. To
do so, let us first consider predictive models of the form f : X ⇥ Px ! Y , where the model f takes
in not just an input x but also the marginal input distribution px 2 Px that x was sampled from. We
refer to f as an adaptive model, as it has the opportunity to use px to adapt its predictions on x. The
underlying assumption is that px provides information about py|x, i.e., px is used as a surrogate input
in place of pxy . In the worst case, if px and py|x are sampled independently, then the model does not
benefit at all from knowing px. In many problems, however, we expect knowledge about px to be
useful, e.g., for resolving ambiguity as in the handwriting classification example in Section 1.

Theoretically, when px provides information about py|x, and when training and test domains are
drawn from the same distribution over Pxy , we can establish favorable generalization bounds for the
expected performance of f in adapting to domain shift at test time. We can formalize this as follows.
First, define a prediction model to be a non adaptive model of the form g : X ! Y , and define the
risk for a prediction model g and loss function `, under a data distribution pxy , as

R(g, pxy) , Epxy [`(g(x), y)] .

Further, define the Bayes optimal risk for ` under pxy as

R?(pxy) , min
g

R(g, pxy) .

Let µ denote the distribution on Pxy from which training and test domains pxy are sampled. To avoid
overlapping terms, define the adaptive risk for an adaptive model f and `, under µ, to be

E(f, µ) , Eµ

⇥
Epxy [`(f(x, px), y)]

⇤
. (1)

We state the following result from Blanchard et al. [8], which details a condition on µ under which E
is a strongly principled objective for learning adaptive models.

Lemma 9 from Blanchard et al. [8]. Let f? denote a minimizer of E for the given µ. If µ is a
distribution on Pxy such that µ-almost surely it holds that py|x = M(px) for some deterministic
mapping M , then for µ-almost all pxy , we have

R(f?(·, px), pxy) = R?(pxy) =) E(f?, µ) = Eµ [R?(pxy)] .

In other words, an adaptive model which minimizes the adaptive risk E coincides with a Bayes
optimal decision function for pxy , for µ-almost all domains pxy .

Remark. The required condition on µ – that py|x is determined by px – holds if, and only if, an
expert (or oracle) is able to correctly label inputs from a given domain provided only information about
the input distribution. This condition holds for the testbeds proposed in this paper, those in Gulrajani
and Lopez-Paz [23], and those in WILDS [35]. The condition does not hold for, e.g., standard few
shot learning testbeds, where it is possible for two domains with identical input distributions to shuffle
their label orderings differently [74]. Thus, these problems are outside the scope of this work.

This result provides strong justification for learning adaptive models f by minimizing the adaptive
risk E . However, a practical instantiation of this approach requires some approximations. First, we

1Formally, the number of points sampled is another random variable with support over the positive integers.
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do not know and cannot input px to f in most cases. Instead, we instantiate f such that it takes in a
batch of inputs x1, . . . ,xK , all from the same domain, where K can vary. f makes predictions on
the whole batch, which also serves as an empirical approximation (i.e., a histogram) p̂x of px [8]. In
our exposition, we will assume that a batch of unlabeled points is available at test time for adaptation.
However, we also experiment in Section 5 with the streaming setting where the test inputs are
observed one at a time and adaptation occurs incrementally.

Notice that, if we instead passed in an approximation p̂xy of pxy to the model, such as a batch of
labeled data (x1, y1), . . . , (xK , yK), then this setup would resemble the standard few shot meta-
learning problem [74]. Formally, a meta-learning model takes in both an input x and p̂xy, which
approximates the distribution that x was sampled from and thus can be used to adapt the prediction
on x. Compared to our problem setting, the meta-learning formalism can tackle a wider range of
problems but also requires more restrictive assumptions, specifically, labels at test time via p̂xy.
Transductive meta-learning methods further assume that, in addition to p̂xy, a full batch of inputs
x1, . . . ,xK is passed into the model, which allows for better estimation of the input distribution
px [51, 46, 29]. The model then makes predictions on this entire batch. In meta-learning terminology,
p̂xy and x1, . . . ,xK are often referred to as the support and query, respectively. Therefore, another
interpretation of the adaptive models that we study in this work is that they resemble transductive
meta-learning models, but they are given only the unlabeled query and not the labeled support set.

In the next section, we expand on this connection to develop the ARM framework, which then allows
us to bring forward tools from meta-learning to tackle domain shift problems.

4 Adaptive Risk Minimization

In this section, we formally describe the ARM framework, which defines an objective for training
adaptive models to tackle domain shift. Furthermore, we propose a general meta-learning algorithm
as well as specific methods for optimizing the ARM objective. In Section 5, we test these ARM
methods on problems for which unlabeled adaptation can be leveraged for better test performance.

4.1 Devising the ARM objective

We wish to learn an adaptive model f : XK ! YK to tackle domain shift. As noted, meta-learning
methods for labeled adaptation study a similar form of model, and a common approach in many of
these methods is to define f such that it is composed of two parts: first, a learner which ingests the
data and produces parameters, and second, a prediction model which uses these parameters to make
predictions [74, 18]. We will follow a similar strategy which, as we will discuss in subsection 4.2,
allows us to easily extend and design meta-learning methods towards our goal.

In particular, we will decompose the model f into two modules: a standard prediction model
g(· ; ✓) : X ! Y , that is parameterized by ✓ 2 ⇥ and predicts y given x, and an adaptation

model h(· , · ;�) : ⇥ ⇥ XK ! ⇥, which is parameterized by �. h takes in the prediction model
parameters ✓ and K unlabeled data points and uses the K points to produce adapted parameters ✓0.
This is analogous to the learner in meta-learning, however, h adapts the model parameters using only
unlabeled data. We defer the discussion of how to instantiate h to subsection 4.2.2

The ARM objective is to optimize � and ✓ such that h can adapt g using unlabeled data sampled
according to a particular domain z. This can be expressed as the optimization problem

min
✓,�

Ê(✓,�) = Epz

"
Epxy|z

"
1

K

KX

k=1

`(g(xk; ✓
0), yk)

##
, where ✓0 = h(✓,x1, . . . ,xK ;�) . (2)

Note that Ê is the empirical form of the adaptive risk in Equation 1 for the form of f we have defined.
Mimicking the generative process from Section 3 that we assume generated the training data, pz is
a categorical distribution over {1, . . . , S} which places uniform probability mass on each training
domain, and pxy|z assigns uniform probability to only the training points within a particular domain.
As we have established theoretically, we expect the trained models to perform well at test time if the

2For some meta-learning methods, the learner does not take as input the unadapted model parameters [74],
and we also devise some methods of this form. In the formalism above, these methods simply ignore the input ✓.
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test domains are sampled independently and identically – i.e., from the same distribution over Pxy –
as the training domains. In practice, similar to how meta-learned few shot classification models are
evaluated on new and unseen meta-test classes [74, 18], we empirically show in Section 5 that the
trained models can generalize to test domains that are not sampled identically to the training domains.

4.2 Optimizing the ARM objective

Algorithm 1 Meta-Learning for ARM
// Training procedure
Require: # training steps T , batch size K, learning rate ⌘

1: Initialize: ✓,�
2: for t = 1, . . . , T do
3: Sample z uniformly from training domains
4: Sample (xk, yk) ⇠ p(· , · |z) for k = 1, . . . ,K

5: ✓0  h(✓,x1, . . . ,xK ;�)

6: (✓,�) (✓,�)� ⌘r(✓,�)

PK
k=1 `(g(xk; ✓

0), yk)

// Test time adaptation
procedure
Require: ✓, �, test batch x1, . . . ,xK

7: ✓0  h(✓,x1, . . . ,xK ;�)

8: ŷk  g(xk; ✓
0) for k = 1, . . . ,K

Algorithm 1 presents a general meta-learning
approach for optimizing the ARM objective.
As described above, h outputs updated pa-
rameters ✓0 using an unlabeled batch of data
(line 5). This mimics the adaptation proce-
dure at test time, where we do not assume
access to labels (lines 7-8). However, the
training update itself does rely on the labels
(line 6). We assume that h is differentiable
with respect to its input ✓ and �, thus we use
gradient updates on both ✓ and � to optimize
for post adaptation performance on a mini
batch of data sampled according to a partic-
ular domain z. In practice, we also sample
mini batches of domains, rather than just one
domain (as written in line 3), to provide a
better gradient signal for optimizing � and ✓.

Together, Equation 2 and Algorithm 1 shed light on a number of ways to devise methods for solving
the ARM problem. First, we can extend meta-learning paradigms to the ARM problem setting,
and any paradigm in which the adaptation model h can be augmented to operate on unlabeled data
is readily applicable. As an example, we propose the ARM-CML method, which is inspired by
recent works in contextual meta-learning (CML) [20, 57]. Second, we can enhance prior unlabeled
adaptation methods by incorporating a meta-training phase that allows the model to better leverage
the adaptation. To this end, we propose the ARM-BN method, based on the general approach of
adapting using batch normalization (BN) statistics of the test inputs [43, 63, 33, 50]. Third, we can
incorporate existing methods for meta-learning unlabeled adaptation to solve domain shift problems.
We demonstrate this by proposing the ARM-LL method, which is based on the robotic imitation
learning method from Yu et al. [80] which adapts via a learned loss (LL). All of these methods are
straightforward extensions of existing meta-learning and adaptation methods, and this is intentional –
we aim to show how existing tools can be readily adapted to tackle domain generalization problems.
We summarize the methods here and refer the reader to Appendix B for complete details.

ARM-CML. In ARM-CML, the parameters � of h define the weights of a context network

fcont(· ;�) : X ! RD, parameterized by the adaptation model parameters �. We also instantiate
the model with a prediction network fpred(· , · ; ✓) : X ⇥ RD ! Y , parameterized by ✓. When given
a mini batch of inputs, fcont processes each example xk in the mini batch separately and outputs
ck 2 RD for k = 1, . . . ,K, which are averaged together into a context c = 1

K

PK
k=1 ck. D is a

hyperparameter, and in our experiments, we choose D to be the dimensionality of x, such that we
can concatenate each image xk and the context c along the channel dimension to produce the input to
fpred. In other words, fpred processes each xk separately to produce an estimate of the output ŷk, but it
additionally receives c as input. In this way, fcont can provide information about the entire batch of K
unlabeled data points to fpred for predicting the correct outputs.

Note that the difference between ARM-CML and prior contextual meta-learning approaches is that,
in prior approaches, the context network processes both inputs and outputs to produce each ck.
ARM-CML is designed for the domain generalization setting in which we do not assume access to
labels at test time, thus we meta-train for unlabeled adaptation performance at training time.

ARM-BN. ARM-BN is a particularly simple method that is applicable for any model g that has BN
layers [31]. Practically, training g via ARM-BN follows the same protocol as Ioffe and Szegedy
[31] except for two key differences: first, the training batches are sampled from a single domain,
rather than from the entire dataset, and second, the normalization statistics are recomputed at test
time rather than using a training running average. As noted, this second difference has been explored
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by several works as a method for test time adaptation, but the first difference is novel to ARM-BN.
Following Algorithm 1, ARM-BN defines a meta-training procedure in which g learns to adapt
– i.e., compute normalization statistics – using batches of training points sampled from the same
domain. We empirically show in Section 5 that, for problems where BN adaptation already has a
favorable inductive bias, such as for image classification, further introducing meta-training boosts its
performance. We believe that other test time adaptation methods, such as those based on optimizing
surrogate losses [69, 75], may similarly benefit from their corresponding meta-training procedures.

Figure 2: In the contextual approach (top),
x1, . . . ,xK are summarized into a context c, and
we propose two methods for this summarization,
either through a separate context network or us-
ing batch normalization activations in the model
itself. c can then be used by the model to infer
additional information about the input distribution.
In the gradient based approach (bottom), an unla-
beled loss function L is used for gradient updates
to the model parameters, in order to produce pa-
rameters that are specialized to the test inputs and
can produce more accurate predictions.

At a high level, ARM-BN operates in a simi-
lar fashion to ARM-CML, thus we group these
methods together into the umbrella of contextual
approaches, shown in Figure 2 (top). The inter-
pretation of ARM-BN through the contextual
approach is that h replaces the running statistics
used by standard BN with statistics computed
on the batch of inputs, which then serves as the
context c. Thus, for ARM-BN, there is no con-
text network, and h has no parameters beyond
the model parameters ✓ involved in computing
BN statistics. The model g is again specified via
a prediction network fpred, which must have BN
layers. BN typically tracks a running average of
the first and second moments of the activations
in these layers, which are then used at test time.
ARM-BN defines h such that it swaps out these
moments for the moments computed via the acti-
vations on the test batch, thus giving us adapted
parameters ✓0 if we view the moments as part of
the model parameters. This method is remark-
ably simple, and in deep learning libraries such
as PyTorch [52], implementing ARM-BN in-
volves changing a single line of code. However,
as shown in Section 5, this method also performs
very well empirically, and the adaptation effec-
tiveness is further boosted by meta-training.

ARM-LL. ARM-LL, depicted in Figure 2 (bottom), follows the gradient based meta-learning
paradigm [18] and learns parameters ✓ that are amenable to gradient updates on a loss function in order
to quickly adapt to a new problem. In other words, h produces ✓0 = ✓ � ↵r✓L(✓,x1, . . . ,xK ;�),
where ↵ is a hyperparameter. Note that the loss function L used in the gradient updates is different
from the original supervised loss function `, in that it operates on only the inputs x, rather than the
input output pairs that ` receives. We follow the general implementation of this approach proposed in
Yu et al. [80]. We define g to produce output features o 2 R|Y| that are used as logits when making
predictions. We then define the unlabeled loss function L to be the composition of g and a loss

network floss(· ;�) : R|Y| ! R, which takes in the output features from g and produces a scalar. We
use the `2-norm of these scalars across the batch of inputs as the loss for updating ✓. In other words,

h(✓,x1, . . . ,xK ;�) = ✓ � ↵r✓kvk2 , where v = [floss(g(x1; ✓);�), . . . , floss(g(xK ; ✓);�)] .

5 Experiments

Our experiments are designed to answer the following questions:
1. Do ARM methods learn models that can leverage unlabeled adaptation to tackle domain shift?
2. How do ARM methods compare to prior methods for robustness, invariance, and adaptation?
3. Can models trained via ARM methods adapt successfully in the streaming test setting?

5.1 Evaluation domains and protocol

We propose four image classification problems, which we present below and describe in full detail in
Appendix D. We also present results on datasets from the WILDS benchmark [35] in subsection 5.4.
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We believe that the problems we propose in this paper can supplement existing benchmarks for
domain shift, which, as discussed above, are designed to test invariances. A key characteristic of
the problems presented here is the potential for adaptation to improve test performance, and this
differs from prior benchmarks such as the problems compiled by DomainBed [23]. In Appendix C,
we compare our testbeds to DomainBed and group robustness benchmarks, and we briefly discuss the
results in Gulrajani and Lopez-Paz [23], which also evaluate ARM-CML.

Rotated MNIST. We study a modified version of MNIST where images are rotated in 10 degree
increments, from 0 to 130 degrees. We treat each rotation as a separate domain, i.e., a different value
of z. We use only 108 training data points for each of the 2 smallest domains (120 and 130 degrees),
and 324 points each for rotations 90 to 110, whereas the overall training set contains 32292 points. In
this setting, we hypothesize that adaptation can specialize the model to specific domains, in particular
the rare domains in the training set. For each test evaluation, we generate images from the MNIST
test set with a certain rotation. We measure both worst case and average accuracy across domains.

Federated Extended MNIST (FEMNIST). The extended MNIST (EMNIST) dataset consists of
images of handwritten uppercase and lowercase letters, in addition to digits [12]. FEMNIST is the
same dataset, but it also provides the meta-data of which user generated each data point [9]. We
treat each user as a domain. We measure each method’s worst case and average accuracy across 35
test users, which are held out and thus disjoint from the training users. As discussed in Section 1,
adaptation may help for this problem for specializing the model and resolving ambiguous data points.

Corrupted image datasets. CIFAR-10-C and Tiny ImageNet-C [25] augment the CIFAR-10 [36]
and Tiny ImageNet test sets with common image corruptions that vary in type and severity. The
original goal of these augmented test sets was to benchmark how well methods could handle these
corruptions without access to any corruptions during training [25]. Thus, successful methods for
these problems typically have relied on domain knowledge and heuristics designed specifically for
image classification. For example, prior work has shown that carefully designed test time adaptation
procedures are effective for these problems [69, 63, 75]. One possible reason for this phenomenon is
that convolutional networks are biased toward texture [21], which is distorted by corruptions, thus
adaptation can help the model recover its performance for each corruption type.

We study whether meta-training for adaptation performance can improve upon these results. To do
so, we modify the protocol from Hendrycks and Dietterich [25] to fit into the ARM problem setting
by applying a set of 56 corruptions to the training data, and we define each corruption to be a domain.
We use a disjoint set of 22 corruptions for the test data, which are mostly of different types from the
training corruptions (thus, not sampled identically), and we measure worst case and average accuracy
across the test corruptions. This modification allows us to study, for both ARM and prior methods,
whether seeing corruptions at training time can help the model deal with new corruptions at test time.

5.2 Comparisons and ablations

We compare the ARM methods against several prior methods designed for robustness, invariance,
and adaptation. We describe the comparisons here and provide additional details in Appendix D.

Test time adaptation. We evaluate the general approach of using test batches to compute BN statis-
tics [43, 63, 33, 50], which we term BN adaptation. We also compare to test time training (TTT) [69],
which adapts the model at test time using a self-supervised rotation prediction loss. These meth-
ods have previously achieved strong results for image classification, likely because they constitute
favorable inductive biases for improving on the true classification task [69].

Ablations. We also include ablations of the ARM-CML and ARM-LL methods, which sample
training batches of unlabeled examples uniformly from the entire training set, rather than sampling
from a single domain.3 These “context ablation” and “learned loss ablation” are similar to test
time adaptation methods in that they do not require training domains, thus they allow us to evaluate
whether or not meta-training on domain shifts is important for improved performance.

Group robustness and invariance. Sagawa et al. [60] recently proposed a state-of-the-art method
for group robustness, and we refer to this approach as distributionally robust neural networks (DRNN).
Their work also evaluates a strong upweighting (UW) baseline that samples uniformly from each
group, and so we also evaluate this approach in our experiments. Additionally, we compare to

3Note that the corresponding ablation of ARM-BN is simply the BN adaptation method.
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Table 1: Worst case (WC) and average (Avg) top 1 accuracy on all testbeds, where means and
standard errors are reported across three separate runs of each method. Horizontal lines separate
methods that make use of (from top to bottom): neither, training domains, test batches, or both. ARM
methods consistently achieve greater robustness, measured by WC, and Avg performance compared
to prior methods. ⇤UW is identical to ERM for CIFAR-10-C and Tiny ImageNet-C.

These results have been updated from an earlier version of the paper, primarily for CIFAR-
10-C, due to significant refactoring of the code, additional hyperparameter tuning for both the
ARM methods and the prior methods, and efforts to standardize results across the authors’ different
computing environments and library versions. These results are reproducible from the publicly
available code: https://github.com/henrikmarklund/arm.

MNIST FEMNIST CIFAR-10-C Tiny ImageNet-C
Method WC Avg WC Avg WC Avg WC Avg
ERM 74.5± 1.4 93.6± 0.4 62.4± 0.4 79.1± 0.3 54.1± 0.3 70.4± 0.1 20.3± 0.5 41.9± 0.1

UW⇤ 80.3± 1.2 95.1± 0.1 65.7± 0.7 80.3± 0.6 — — — —
DRNN 79.9± 0.7 94.9± 0.1 57.5± 1.7 76.5± 1.2 49.3± 0.9 65.7± 0.5 14.2± 0.2 31.6± 1.0
DANN 78.8± 0.8 94.9± 0.1 65.4± 1.0 81.7± 0.3 53.9± 2.2 69.8± 0.3 20.4± 0.7 40.9± 0.2
MMD 82.4± 0.9 95.3± 0.3 62.4± 0.7 79.8± 0.4 52.2± 0.3 69.5± 0.1 19.7± 0.2 40.1± 0.1

BN adaptation 78.0± 0.3 94.4± 0.1 65.7± 1.5 80.0± 0.5 60.6± 0.3 70.9± 0.1 26.5± 0.3 42.8± 0.0
TTT 81.1± 0.3 95.4± 0.1 68.6± 0.4 84.2± 0.1 61.5± 0.3 71.7± 0.5 27.6± 0.5 37.7± 0.3
CML ablation 63.5± 1.8 90.1± 0.2 61.8± 0.8 81.6± 0.5 58.8± 0.1 69.6± 0.2 26.3± 0.6 42.5± 0.1
LL ablation 79.9± 1.1 95.0± 0.3 64.1± 1.6 80.8± 0.2 60.9± 0.4 71.3± 0.0 21.6± 2.1 32.6± 3.2

ARM-CML 88.0± 0.8 96.3± 0.4 70.9± 1.4 86.4± 0.3 61.2± 0.4 70.3± 0.2 29.1± 0.4 43.3± 0.1
ARM-BN 83.3± 0.5 95.6± 0.1 64.5± 3.2 83.2± 0.5 61.7± 0.3 72.4± 0.3 28.3± 0.3 43.3± 0.1
ARM-LL 88.9± 0.8 96.9± 0.2 67.0± 0.9 84.3± 0.7 61.2± 0.7 72.5± 0.4 25.4± 0.1 35.7± 0.4

domain adversarial neural networks (DANN) [19] and maximum mean discrepancy (MMD) feature
learning [41], two state-of-the-art methods for adversarial learning of invariant predictive features.
For the WILDS datasets, we include the numbers reported in Koh et al. [35] for DRNN and two other
invariance methods, correlation alignment (CORAL) [67] and invariant risk minimization (IRM) [3].

Robustness and invariance methods assume access to training domains but not test batches, whereas
adaptation methods assume the opposite. Thus, at a high level, we can view the comparisons to these
methods as evaluating the importance of each of these assumptions for the specified problems.

5.3 Quantitative evaluation and comparisons

The results for the four proposed benchmarks are presented in Table 1. The best results, stratified by
classes of methods, are bolded, with the single best result across all methods underlined. Across all of
these problems, ARM methods increase both worst case and average accuracy compared to all other
methods. ARM-CML performs well across all tasks, and despite its simplicity, ARM-BN achieves the
best performance overall on the corrupted image testbeds, demonstrating the effectiveness of meta-
training on top of an already strong adaptation procedure. BN adaptation and TTT are the strongest
prior methods, as these adaptation procedures constitute inductive biases that are generally well
suited for image classification. However, ARM methods are comparatively less reliant on favorable
inductive biases and consistently attain better results. In general, we observe poor performance
from robustness methods, varying performance from invariance methods, strong performance from
adaptation methods, and the strongest performance from ARM methods.

When we cannot access a batch of test points all at once, and instead the points are observed in a
streaming fashion, we can augment the proposed ARM methods to perform sequential model updates.
For example, ARM-CML and ARM-BN can update their average context and normalization statistics,
respectively, after observing each new test point. In Figure 3, we study this test setting for the Tiny
ImageNet-C problem. We see that both models trained with ARM-CML and ARM-BN are able to
achieve near their original worst case and average accuracy within observing 50 data points, well
before the training batch size of 100. This result demonstrates that ARM methods are applicable for
problems where test points must be observed one at a time, provided that the model is permitted to
adapt using each point. We describe in detail how each ARM method can be applied to the streaming
setting in Appendix B, and we provide streaming results on rotated MNIST in Appendix E.
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Figure 3: In the streaming setting, ARM methods reach strong performance on Tiny ImageNet-C
after fewer than 50 data points, despite using training batch sizes of 100. This highlights that the
trained models are able to adapt successfully in the standard streaming evaluation setting.

Table 2: Results on the WILDS image testbeds. Different methods are best suited for different
problems, motivating the need for a wide range of methods. ARM-BN struggles on FMoW but
performs well on the other datasets, in particular RxRx1.

iWildCam Camelyon17 RxRx1 FMoW PovertyMap
Method Acc Macro F1 Acc Acc WC Acc Avg Acc WC Pearson r Pearson r
ERM 71.6± 2.5 31.0± 1.3 70.3± 6.4 29.9± 0.4 32.3± 1.25 53.0± 0.55 0.45± 0.06 0.78± 0.04
DRNN 72.7± 2.0 23.9± 2.1 68.4± 7.3 23.0± 0.3 30.8± 0.81 52.1± 0.5 0.39± 0.06 0.75± 0.07
CORAL 73.3± 4.3 32.8± 0.1 59.5± 7.7 28.4± 0.3 31.7± 1.24 50.5± 0.36 0.44± 0.06 0.78± 0.05
IRM 59.8± 3.7 15.1± 4.9 64.2± 8.1 8.2± 1.1 30.0± 1.37 50.8± 0.13 0.43± 0.07 0.77± 0.05
BN adaptation 46.4± 1.0 13.8± 0.3 88.6± 1.4 20.0± 0.2 30.2± 0.26 51.6± 0.16 0.39± 0.17 0.82± 0.06
ARM-BN 70.3± 2.4 23.2± 2.7 87.2± 0.9 31.2± 0.1 24.6± 0.04 42.0± 0.21 0.49± 0.21 0.84± 0.05

5.4 WILDS results

Finally, we present results on the WILDS benchmark [35] in Table 2. We evaluate BN adaptation and
ARM-BN on these testbeds. We see that, on these real world distribution shift problems, different
methods perform well for different problems. CORAL, a method for invariance [67], performs best
on the iWildCam animal classification problem [5], whereas no methods outperform ERM by a
significant margin on the FMoW [11] or PovertyMap [79] satellite imagery problems. ARM-BN
performs particularly poorly on the FMoW problem. However, it performs well on PovertyMap
and significantly improves performance on the RxRx1 [70] problem of treatment classification from
medical images. On the other medical imagery problem of Camelyon17 [4] tumor identification,
adaptation in general boosts performance dramatically. These results indicate the need to consider a
wide range of tools, including meta-learning and adaptation, for combating distribution shift.

6 Discussion and Future Work

We presented adaptive risk minimization (ARM), a framework and problem formulation for learning
models that can adapt in the face of domain shift at test time using only a batch of unlabeled test
examples. We devised an algorithm and instantiated a set of methods for optimizing the ARM
objective that meta-learns models that are adaptable to different domains of training data. Empirically,
we observed that ARM methods consistently improve performance in terms of both average and
worst case metrics, as compared to a number of prior approaches for handling domain shift.

Though we provided contextual meta-learning as a concrete example, a number of other meta-learning
paradigms would also be interesting to extend to the ARM setting. For example, few shot generative
modeling objectives would be a natural fit for unlabeled adaptation [16, 26, 77]. Another exciting
direction for future work is to explore the problem setting where domains are not provided at training
time. As discussed in Appendix E, in this setting, we can instead construct domains via unsupervised
learning techniques. Similar to Hsu et al. [28], one promising approach is to generate a diverse set of
domains in order to learn generally effective adaptation strategies. Robustness and invariance methods
cannot be used easily with multiple different groupings, learned or otherwise, as techniques such as
group weighted loss functions [60] and domain classifiers [19] are not immediately extendable to this
setup. Thus, ARM methods may be uniquely suited to be paired with domain learning.
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