
A Proofs

We present proofs of our propositions and theorem introduced in the main text. The numbers of
proposition, theorem and equations are reused in restated propositions.
Proposition 1. T : C 7→ C is a γ-contraction.

Proof. We consider the sup-norm contraction,∣∣T C(1)(s,u)− T C(2)(s,u)
∣∣ ≤ γ ∥∥C(1)(s,u)− C(2)(s,u)

∥∥
∞ ∀s ∈ S,u ∈ U . (9)

The sup-norm is defined as ‖C‖∞ = sups∈S,u∈U |C(s,u)| and C ∈ R.

In {Ci}Ni=1, the risk level is fixed and can be considered implicit input. Given two different return
distributions Z(1) and Z(2), we prove:∣∣T C(1) − T C(2)

∣∣ ≤ max
s,u

∣∣[T C(1)

]
(s,u)−

[
T C(2)

]
(s,u)

∣∣
= max

s,u

∣∣∣γ∑
s′
P(s′|s,u)

(
max
u′

C(1)(s
′,u′)−max

u′
C(2)(s

′,u′)
)∣∣∣

≤ γmax
s′

∣∣∣max
u′

C(1)(s
′,u′)−max

u′
C(2)(s

′,u′)
∣∣∣

≤ γmax
s′,u′

∣∣C(1)(s
′,u′)− C(2)(s

′,u′)
∣∣

= γ
∥∥C(1) − C(2)

∥∥
∞

(10)

This further implies that∣∣T C(1) − T C(2)

∣∣ ≤ γ ∥∥C(1) − C(2)

∥∥
∞ ∀s ∈ S,u ∈ U . (11)

Proposition 2. For any agent i ∈ {1, . . . , N}, ∃λ(τi, ui) ∈ (0, 1], such that Ci(τi, ui) =
λ(τi, ui)E [Zi(τi, ui)].

Proof. We first provide that given a return distribution Z, return random variable Z and risk level
α ∈ A, ∀z, ΠαZ can be rewritten as E [Z |Z < z] < E [Z]. This can be easily proved by following
[32]’s proof. Thus we can get ΠαZ < E [Z], and there exists λ(τi,ui) ∈ (0, 1], which is a value of
agent’s trajectories, such that ΠαZi(τi, ui) = λ(τi,ui)E [Zi(τi, ui)].

Proposition 2 implies that we can view the CVaR value as truncated values of Q values that are in the
lower region of return distribution Zi(τi, ui). CVaR can be decomposed into two factors: λ(τi,ui)

and E[Zi(τi, ui)].
Theorem 1. We summarize the following properties:
(1) Given α1 and α2 where α values in each set are identical, E[Ψα1

] ≤ E[Ψα2
] for 0 < α1 ≤

α2 ≤ 1, α1 ∈ α1 and α2 ∈ α2.
(2) ∃αi ∈ (0, 1] and α = {αi}Ni=1, E[Ψα] < 0.

Proof. We first consider the static risk level for each agent and the linear additivity mixer [43] of
individual CVaR values.

(1) Given α1 and α2 and the mixer is the additivity function, we derive E[Ψα] as follows

E[Ψα]
∆
= E

[
r + γmax

u′
Ctot (s′,u′)−

(
r + γmax

u′
Q (s′,u′)

)]
(12)

= E
[
γ
(

max
u′

Ctot (s′,u′)−max
u′

Q (s′,u′)
)]

(13)

= E
[
γ

(∑N

i=1
max
ui

Ci(τi, ui, α)−
∑N

i=1
max
ui

Qi(τi, ui)

)]
(14)

Following Proposition 2 and Eqn. 2, given α1 ≤ α2 and for any i ∈ N and u ∈ U , we can easily
derive

Ci(τi, ui, α1) ≤ Ci(τi, ui, α2) (15)

15

Thus,
max
ui

Ci(τi, ui, α1) ≤ max
ui

Ci(τi, ui, α2) (16)

Then, we can get

E[Ψα1] = E
[
γ

(∑N

i=1
max
ui

Ci(τi, ui, α1)−
∑N

i=1
max
ui

Qi(τi, ui)

)]
(17)

≤ E
[
γ

(∑N

i=1
max
ui

Ci(τi, ui, α2)−
∑N

i=1
max
ui

Qi(τi, ui)

)]
(18)

= E[Ψα2
] (19)

Finally, we get E[Ψα1
] ≤ E[Ψα2

].

Note that, it also applies when the mixer is the monotonic network by following the proof of Theorem
1 in [34]. Here we present the proof in RMIX for the convenience of readers.

With monotonicity network fm, in RMIX, we have

Ctot(s,u) = fm(C1(τ1, u1, α1), . . . , Cn(τn, un, αn)) (20)
Consequently, we have

Ctot(s, {arg max
u′

Ci(τi, u
′, αi)}Ni=1) = fm({max

u′
Ci(τi, u

′, αi)}Ni=1) (21)

By the monotonocity property of fm, we can easily derive that if j ∈ {1, . . . , N}, u∗j =
arg maxui

Cj(τj , uj , αj), αj ∈ (0, 1] is the risk level given the current return distributions and
historical return distributions, and actions of other agents are not the best action, then we have

fm({Cj(τj , uj , αj)}Ni=1) ≤ fm({Cj(τj , uj , αj)}Ni=1,i6=j , Cj(τj , u
∗
j , αj)). (22)

So, for all agents, ∀j ∈ {1, . . . , N}, u∗j = arg maxuj
Cj(τj , uj , αj), we have

fm({Cj(τi, ui, αi)}Ni=1) ≤ fm({Cj(τj , uj , αj)}n−1
i=0,i6=j , Cj(τj , u

∗
j)) (23)

≤ fm({Ci(τi, u∗i , αi)}Ni=1) (24)

= max
{ui}Ni=1

fm({Ci(τi, ui, αi)}Ni=1). (25)

Therefore, we can get

max
{ui}Ni=1

fm({Ci(τi, ui, αi)}Ni=1) = max
u

Ctot(s,u), (26)

which implies
max
u

Ctot(s,u) = Ctot(s, {arg max
u′

Ci(τi, u
′)}Ni=1). (27)

The Eqn. 26 can be used in Eqn. 13 to derive the above results.

(2) By following Proposition 2. We can get

E[Ψα] = E
[
γ

(∑N

i=1
max
ui

Ci(τi, ui, αi)−
∑N

i=1
max
ui

Qi(τi, ui)

)]
(28)

= E
[
γ

(∑N

i=1
max
ui

Ci(τi, ui, α2)−
∑N

i=1
max
ui

Qi(τi, ui)

)]
(29)

= E
[
γ

(∑N

i=1
max
ui

λ(τi,ui)Qi(τi, ui)−
∑N

i=1
max
ui

Qi(τi, ui)

)]
(30)

= E
[
γ

(∑N

i=1
max
ui

(
(λ(τi,ui) − 1)Qi(τi, ui)

))]
(31)

We can get that ∃αi ∈ (0, 1] and i ∈ {1, . . . , N}, E[Ψα] < 0.

16

B Environmental Settings

B.1 MACN

Figure 13: Multi-Agent Cliff Navigation.

We customize the cliff walking environment [44] in
single-agent domain and develop Multi-Agent Cliff
Navigation (MACN) for multi-agent navigation with
risk. In MACN, there are two agents whose task is to
complete the navigation from the starting position to
the goal. At each time step, each agent observes an
observation with a dimension of 3 × 3. Agents can
take an action at each time step and the action set is:
{UP,DOWN,LEFT,RIGHT}. The two agents share
the team reward. As depicted in Fig. 13, there are some regions that are dangerous and agents will be
rewarded with a −100 reward when any agent steps into these region, and consequently the episode
ends. Agents will receive a −1 reward at each time step when they are at the safe region. When one
agent reaches the goal, the agents will be rewarded with a −0.5 reward. If the two agents arrive at the
goal at the same time, agents will be rewarded with a 0 reward and the episode ends. The objective of
the agents is to maximize the accumulated rewards in each episode.

B.2 SCII

SMAC benchmark is a challenging set of cooperative StarCraft IITM4 maps for micromanagement
developed by Samvelyan et al. [39] built on DeepMind’s PySC2 [51]. We introduce states and
observations, action space and rewards of SMAC, and environmental settings of RMIX below.

States and Observations. At each time step, agents get local observations within their field of view,
which contains information (relative x, relative y, distance, health, shield, and unit type) about the
map within a circular area for both allied and enemy units and makes the environment partially
observable for each agent. The global state is composed of the joint observations, which could be
used during training. All features, both in the global state and in individual observations of agents,
are normalized by their maximum values.

Action Space. actions are in the discrete space. Agents are allowed to make move[direction],
attack[enemy id], stop and no-op. The no-op action is only legal action for dead agents. Agents can
only move in four directions: north, south, east, or west. The shooting range is set to for all agents.
Having a larger sight range than a shooting range allows agents to make use of the move commands
before starting to fire.

Rewards. At each time step, the agents receive a shared reward equal to the total damage dealt on the
enemy agents. In addition, agents receive a bonus of 10 points after killing each opponent, and 200
points after killing all opponents for winning the battle. The rewards are scaled so that the maximum
cumulative reward achievable in each scenario is around 20.

Environmental Settings of RMIX. The difficulty level of the built-in game AI we use in our
experiments is level 7 (very difficult) by default as many previous works did [35, 25]. The scenarios
used in Section 5 are shown in Table 2. We present the table of all scenarios in SMAC in Table
2 and the corresponding memory usage for training each scenario in Table 3. The Ally Units are
agents trained by MARL methods and Enemy Units are built-in game bots. For example, 5m_vs_6m
indicates that the number of MARL agent is 5 while the number of the opponent is 6. The agent
(unit) type is marine5. This asymmetric setting is hard for MARL methods. Asymmetric scenario
indicates the number of the ally units and that of the opponent are not equal. Heterogeneous scenario
means that ally units are from different categories whose action and observation spaces are different
while heterogeneous agents belong to the same category. The version of SCII simulator is 4.10. We
evaluate our method for every 10,000 training steps during training by running 32 episodes in which
agents trained with our method battle with built-in game bots. We report the mean test win rate
(percentage of episodes win of MARL agents) along with one standard deviation of test win rate
(shaded in figures).

4StarCraft II is a trademark of Blizzard Entertainment, Inc.
5A type of unit (agent) in StarCraft II. Readers can refer to https://liquipedia.net/starcraft2/

Marine_(Legacy_of_the_Void) for more information

17

https://liquipedia.net/starcraft2/Marine_(Legacy_of_the_Void)
https://liquipedia.net/starcraft2/Marine_(Legacy_of_the_Void)

Table 2: SMAC Environments

Name Ally Units Enemy Units Type
5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
8m_vs_9m 8 Marines 9 Marines homogeneous & asymmetric

10m_vs_11m 10 Marines 11 Marines homogeneous & asymmetric

MMM2
1 Medivac,

2 Marauders &
7 Marines

1 Medivac,
3 Marauders &

8 Marines
heterogeneous & asymmetric

1c3s5z
1 Colossi &
3 Stalkers &

5 Zealots

1 Colossi &
3 Stalkers &

5 Zealots
heterogeneous & symmetric

corridor 6 Zealots 24 Zerglings micro-trick: wall off

C Training Details

We use the same neural network architecture used by QMIX [35]. The trajectory embedding network
φi is similar to the network of the agent. The last layer of the risk level predictor generates the local
return distribution and shares the same weights with the last layer of the agent network. The QR
loss is minimized to periodically (empirically every 50 time steps) update the weights of the agent as
simultaneously updating the local distribution and the whole network can impede training. The QR
loss is used for updating the local distribution while the TD loss of centralized training is for the agent
network weights learning and credit assignment. In the QR loss, the Ci(·, ·, ·) is considered as scalar
value and gradients from Ci(·, ·, ·) are blocked. As the QR update relies on accurately estimation of
the dummy reward Ci, we start to update Ci when the test wining rate is over 35%, which means the
agents have grasped some strategies to win the game.

SCII. To make a fair comparison, we use episode (single-process environment for training,
compared with parallel) runner defined in PyMARL to run all methods. We use num_circle=1
to train QPLEX for fair training at the sample level for each update. We use Adam to optimize
the CVaR and QR loss as suggeted by QR-DQN [9] with a learning rate of 5 × 10−4. The batch
size is 32 and the replay buffer size is 5000. We use K = 10. We set M = 100 for 5m_vs_6m
and 8m_vs_9m. To trade off the experimental performance and the computation overhead, we use
M = 55 for corridor, and M = 65 for 10m_vs_11m, 1c3s5z and MMM2. In order to explore, we
use ε-greedy with ε annealed linearly from 1.0 to 0.05 over 50K time steps from the start of training
and keep it constant for the rest of the training for all methods. The discount factor γ = 0.99 and
we follow the default hyper-parameters used in the original papers of all baselines. The evaluation
interval is 10, 000 for all methods. We use uniform probability to estimate Zi(·, ·) for each agent.
Experiments are carried out on NVIDIA Tesla V100 GPU 16G and NVIDIA GeForce RTX 3090
24G. We also provide memory usage of baselines (given the current size of the replay buffer) for
training each scenario of SCII domain in SMAC as shown in Table 3.

MACN. We follow the same settings used in SCII to train RMIX and baselines in MACN scenarios.
M = 100 and K = 10.

Table 3: Memory usage (given the current size of the replay buffer) for the training of each method
(exclude COMA and DOP, which are on-policy methods without using replay buffers) on scenarios
of SCII domain in SMAC.

Scenario Memory Usage (GB)
5m_vs_6m 3
8m_vs_9m 4.9

10m_vs_11m 7.1
1c3s5z 8.6
MMM2 10.8
corridor 14.4

18

D Baseline Methods

We briefly introduce baselines evaluated in our experimental section and summarize them in Table 4.

IQL [46]. IQL is an independent Q-learning method for multi-agent RL. Each agent learns its
independent Q values via DQN [28].

VDN [43]. To address the credit assignment issue in Dec-POMDP MARL methods, VDN utilizes
a linear combination of individual Q values to represent the Qtot(τ ,u) as Qtot =

∑N
i=1Qi(τi, ui).

Then, TD-learning can be used to train Qtot.

QMIX [35]. Unlike the linear combination used in VDN, QMIX considers the monotonic constraint
on the relationship between Qtot and Qi, that is

∂Qtot(τ ,u)

∂Qi(τi, ui)
≥ 0,∀i ∈ {1, 2, . . . , N}

where Qtot(τ ,u) = fm(Q1(τ1, u1), . . . , QN (τN , uN)) and fm is a mixing network built on top of
a hyperntework [13] with (Q1(τ1, u1), . . . , QN (τN , uN)) as inputs. QMIX outperforms VDN on
various hard SCII challenges.

QTRAN [42]. QTRAN relaxes the constraints of VDN and QMIX and factorize the Qjt(τ ,u) with
transformation:

N∑
i=1

Qi (τi, ui)−Qjt(τ ,u) + Vjt(τ) =

{
0 u = u
≥ 0 u 6= u

where Vjt(τ) = maxuQjt(τ ,u) −
∑N
i=1Qi (τi, ui). QTRAN outperforms QMIX and VDN on

matrix game and struggles on high-dimension SCII tasks.

QPLEX [53]. Wang et al. utilize the dueling structure Q = V +A [55] and propose the following
factorization:

Joint Dueling: Qtot(τ ,u) = Vtot(τ) +Atot(τ ,u) and Vtot(τ) = maxu′ Qtot (τ ,u′)
Individual Dueling: Qi (τi, ai) = Vi (τi) +Ai (τi, ai) and Vi (τi) = maxa′i Qi (τi, a

′
i)

WQMIX [33]. QMIX restricts the joint action Q-values to be a monotonic mixing of each agent’s Q
values. However, such restriction prevents it from representing value functions in which nonmono-
tonicity occurs. To address this issue, Rashid et al. [33] propose the following QMIX operator Πw by
imposing weights w(τ ,u) on the TD-error:

ΠwQ := argmin
q∈Qmix

∑
u∈U

w(τ ,u)(Q(τ ,u)− q(τ ,u))2

LH-IQN [23]. LH-IQN was built on top of Hysteretic Q-Learning [27] and Lenient Q-Learning [31]
with IQN to trains independent learners. However, it performs poorly in complex scenarios, the
reason maybe LH-IQN is an independent learning method similar to IQL.

COMA [10]. Foerster et al. consider the credit assignment problem in policy graident methods and
propose the following counterfactual advantage function:

Ai(τ ,u) = Qtot(τ ,u)−
∑
u′i

πi
(
u′i | τ i

)
Qtot

(
τ ,
(
u−i, u′i

))
where Ai

(
τ , ui

)
is a separate baseline for each agent that uses the centralised critic to reason about

counterfactuals where only agent i’s action changes.

DOP [54]. Wang et al. find the centralized-decentralized mismatch (CDM) in MADDPG [22].
Inspired by the successes of value decomposition in VDN and QMIX, they propose Decomposed
Off-Policy policy gradient (DOP) method which decomposes the centralized Q value with a linear
combination of individual Q values:

Qtot(τ ,u) =
∑
i

ki(τ)Qi (τ , ui) + b(τ)

where ki is the weight and b is the bias which takes the global observation-action histories as inputs.

19

Table 4: Baseline algorithms
Algorithms Brief Description
IQL [46] Independent Q-learning

VDN [43] Value decomposition network
COMA [10] Counterfactual Actor-critic
QMIX [35] Monotonicity Value decomposition

QTRAN [42] Value decomposition with linear affine transform
LH-IQN [23] Likelihood Hysteretic with IQN (independent learning)

DOP [54] Policy Gradient method with a linear combination of individual Q values
WQMIX [33] Weighted TD-error of QMIX in centralized training.
QPLEX [53] Using a dueling network to represent the Qtot

E Results

E.1 Addtional Results.

We show the test return value in Figure 14 and RMIX outperforms baseline methods as well. As
shown in Figure 15, RDN shows convincing test return value over VDN on three scenarios.

0 200K 400K
0

5

10

15

20

Te
st

 R
et

ur
n

1c3s5z

0 0.5M 1M 1.5M 2M 2.5M 3M
0

5

10

15

20
MMM2

0 0.5M 1M 1.5M 2M
0

5

10

15

20
5m_vs_6m

0 200K 400K 600K 800K 1M
Steps

0

5

10

15

20

Te
st

 R
et

ur
n

8m_vs_9m

0 200K 400K 600K 800K 1M
Steps

0

5

10

15

20
10m_vs_11m

0 0.5M 1M 1.5M 2M 2.5M 3M
Steps

0

5

10

15

20
corridor

RMIX (ours) WQMIX QMIX QPLEX DOP IQL QTRAN VDN COMA LH-IQN

Figure 14: Test return for six scenarios.

0 100K 200K 300K 400K 0.5M
Steps

0

5

10

15

20

Te
st

 R
et

ur
n

1c3s5z

0 200K 400K 600K 800K 1M
Steps

0

5

10

15

20
8m_vs_9m

0 200K 400K 600K 800K 1M
Steps

0

5

10

15

20
10m_vs_11m

RMIX QMIX RDN VDN

Figure 15: Test return of RMIX, RDN, VDN, QMIX on three scenarios.

E.2 Results Analysis

We use the trained model of RMIX and run the model to collect one episode data including game
replay, states, actions, rewards and α values. As shown in Fig. 16, the first row shows the rewards of
one episode and the second row shows the α value each agent predicts per time step. There are eight
scenes in the third row to show how agents learn time-consistency α values. Scenes in Fig. 16 are
screenshots from the game replay.

We use trajectories of agent 0, 1 and 3 as examples in Fig. 16 for better visualization. Number
in the circle indicates the index of the agent. Scene (1): one episode starts, 6 Zealots consist of
RMIX agents and 24 Zerglings compose enemies; Scene (2): in order to win the game, agent 3
draws the attention of enemies and goes to the other side of the arena. The α value is 0.3 at step
2. Many enemies are chasing agent 3. The rest agents are combating with fewer number enemies;
Scene (3-4): at step 14, agent 3 is at the corner of the battlefield the α is decreasing. As being
outnumbered, agent 3 quickly dies and the α is zero; Meanwhile, agent 0 and 1 show similar α

20

6 Zealots:
RMIX agents

24 Zerglings:
enemies

(1) (2) (3)

3
3 0

(4)

1 0

1

(5)

0
1

(6)

0

1

(7) (8)

01

Agents are passing through
the corridor. Reward is zero

Figure 16: Results analysis of RMIX on corridor.

values as they are walking around and fighting with enemies from time step 22 to 30. Scene (5):
agent 0 (low health value) is walking through the corridor alone to draw enemies to come over.
To avoid being killed, α values are low (step 46-50) which means the policy is risk-averse. From
step 38 and step 51, reward is zero; Scene (6): agent 0 is facing many enemies and luckily its
teammates are coming to help. So, the α is increasing (step 50); Scene (7): as there are many
agents around and the number of enemies is small, agents are going to win. Agent 0 and agent 1
walk outside the range of the observations of enemies in order to survive. The α values of agent
0 and agent 1 are 1 (risk-neutral); Scene (8): agents win the game. The video is available in the
folder of supplementary materials. Interestingly, the result shows emergent cooperation strategies
between agents at different step during the episode, which demonstrates the superiority of RMIX.
We provide a link of the video for the result analysis discussed above. Readers can click this link:
https://www.dropbox.com/s/lrtdpkb45fs81ah/video.mp4?dl=0 to watch the video.

21

https://www.dropbox.com/s/lrtdpkb45fs81ah/video.mp4?dl=0

