
A Algorithm and Theory for Unobserved Confounder

In this section, we extend DOVI to handle the case where the confounders are unobserved in both the
online setting and the offline setting. We then characterize the regret of such an extension of DOVI,
namely DOVI+. In comparison with DOVI, DOVI+ additionally incorporates an intermediate state
at each step, which extends the length of each episode from H to 2H .

A.1 Algorithm

Frontdoor Adjustment. Since the confounders {wh}h∈[H] are unobserved in the offline setting,
the confounded observational data {(sih, aih, rih)}(i,h)∈[n]×[H] are insufficient for the identification
of the causal effect P(sh+1 | sh,do(ah)) [32, 33]. However, such a causal effect is identifiable if we
observe the intermediate states {mh}h∈[H] that satisfy the following frontdoor criterion.

Assumption A.1 (Frontdoor Criterion [32, 33]). In the SCM defined in §2, for all h ∈ [H], there
additionally exists an observed intermediate state mh that satisfies the frontdoor criterion, that is,

• mh intercepts every directed path from ah to sh+1,

• conditioning on sh, no path between ah and mh has an incoming arrow into ah, and

• conditioning on sh, ah d-separates every path between mh and sh+1 that has an incoming
arrow into mh.
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Figure 3: Causal diagrams of the h-th step of the confounded MDP with the intermediate state (a) in the offline
setting and (b) in the online setting, respectively.
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Figure 4: An illustration of the frontdoor criterion. The causal diagram corresponds to the h-th step of the
confounded MDP conditioning on sh. Here wh = {w1,h, w2,h, w3,h} is the confounder and the intermediate
state mh satisfies the frontdoor criterion.

See Figure 3 for the causal diagram that describes such an SCM and Figure 4 for an example that
satisfies the frontdoor criterion. Intuitively, Assumption A.1 ensures that, conditioning on sh, (i)
the intermediate state mh is caused by the action ah and the causal effect of the action ah on the
next state sh+1 is summarized by mh, while (ii) the action ah and the intermediate state mh are
not confounded. In the sequel, we denote byM the space of intermediate states and P̆h(· | ·, ·) the
transition kernel that determines mh given sh and ah. The causal effect P(sh+1 | sh,do(ah)) is
identified as follows.
Proposition A.2 (Frontdoor Adjustment [32]). Under Assumption A.1, it holds that

P
(
sh+1

∣∣ sh,do(ah)
)

= Emh,a′h
[
P(sh+1 | sh, a′h,mh)

]
,
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where the expectation Emh,a′h is taken with respect to mh ∼ P̆h(· | sh, ah) and a′h ∼
Ewh∼P̃h(· | sh)[νh(· | sh, wh)]. Here (sh+1, sh, ah,mh) follows the SCM define in §2 with the in-
termediate states {mh}h∈[H] in the offline setting.

Frontdoor-Adjusted Bellman Equation. In the sequel, we assume without loss of generality that
the reward rh is deterministic and only depends on the state sh and the action ah. In parallel to (3.3),
we have

Qπh(sh, ah) = rh(sh, ah) + Esh+1

[
V πh+1(sh+1)

]
, (A.1)

where the expectation Esh+1
is taken with respect to sh+1 ∼ P(· | sh,do(ah)). We define the the

following transition operators,

(Ph+1/2V )(sh,mh) = Esh+1∼P(· | sh,do(mh))

[
V (sh+1)

]
, ∀V : S 7→ R, (sh,mh) ∈ S ×M,

(PhṼ )(sh, ah) = Emh∼P(· | sh,do(ah))

[
Ṽ (sh,mh)

]
, ∀Ṽ : S ×M 7→ R, (sh, ah) ∈ S ×A.

We highlight that, under Assumption A.1, the causal effect P(mh | sh,do(ah)) coincides with the
conditional probability P(mh | sh, ah), since ah and mh are not confounded given sh. In the sequel,
we define the value function at the intermediate state by V πh+1/2(sh,mh) = (Ph+1/2V

π
h+1)(sh,mh).

We have the following Bellman equation,

Qπh(sh, ah) = rh(sh, ah) +
(
Ph(Ph+1/2V

π
h+1)

)
(sh, ah)

= rh(sh, ah) + (PhV πh+1/2)(sh, ah). (A.2)

Correspondingly, the Bellman optimality equation takes the following form,

Q∗h(sh, ah) = rh(sh, ah) + (PhV ∗h+1/2)(sh, ah),

V ∗h+1/2(sh,mh) = (Ph+1/2V
∗
h+1)(sh,mh), V ∗h (sh) = max

ah∈A
Q∗h(sh, ah). (A.3)

Linear Function Approximation. In parallel to Assumption 3.3, we focus on the following setting
with linear transition kernels and reward functions [7, 16, 42, 43], which corresponds to a linear
SCM [33].

Assumption A.3 (Linear Confounded MDP). We assume that

Ph(sh+1 | sh,mh, wh) = 〈ρh(sh,mh, wh), µh(sh+1)〉, ∀h ∈ [H], (sh,mh, wh) ∈ S ×M×W,

P̆h(mh | sh, ah) = 〈γh(sh, ah), µh(mh)〉, ∀h ∈ [H], (mh, sh, ah) ∈M× S ×A.

where ρh(·, ·, ·), γh(·, ·), µh(·) = (µ1,h(·), . . . , µd,h(·))>, and µh(·) = (µ1,h(·), . . . , µd,h(·))> are
Rd-valued functions. We assume that ‖ρh(sh,mh, wh)‖2 ≤ 1, ‖γh(sh, ah)‖2 ≤ 1,

∑d
i=1 ‖µi,h‖21 ≤

d, and
∑d
i=1 ‖µi,h‖21 ≤ d for all h ∈ [H] and (sh, ah,mh, wh) ∈ S × A ×M×W . Meanwhile,

we assume that

rh(sh, ah) = γh(sh, ah)>θh, ∀(h, k) ∈ [H]× [K],

where θh ∈ Rd and ‖θh‖2 ≤
√
d for all h ∈ [H].

Proposition A.4. We define ν̃h(ah | sh) = Ewh∼P̃h(· | sh)[νh(ah | sh, wh)], where ν = {νh}h∈[H]

is the behavior policy. With a slight abuse of notation, we define the frontdoor-adjusted feature as
follows,

φh(sh, ah,mh) =
Ewh∼P̃h(· | sh)

[
ρh(sh,mh, wh) · νh(ah | sh, wh)

]
ν̃h(ah | sh)

, ∀h ∈ [H]. (A.4)

Under Assumption A.3, it holds that

P(sh+1 | sh, ah,mh) = 〈φh(sh, ah,mh), µh(sh+1)〉. (A.5)

Proof. See §F.2 for a detailed proof.
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Algorithm 2 DOVI+ for Confounded MDP.

Require: Observational data {(sih, aih,mi
h, r

i
h)}i∈[n],h∈[H], tuning parameters λ, β > 0, features

{φh}h∈[H] and {ψh}h∈[H], which are defined in (A.4) and (A.6), respectively.
1: Initialization: Set {Q0

h, V
0
h+1/2, V

0
h }h∈[H] as zero functions and V kH+1 as a zero function for

k ∈ [K].
2: for k = 1, . . . ,K do
3: for h = H, . . . , 1 do
4: Update V kh+1/2:
5: Set ωk1,h ← argminω∈Rd

∑k−1
τ=1(V τh+1(sτh+1) − ω>ψh(sτh,m

τ
h))2 + λ‖ω‖22 + Lk1,h(ω),

where Lk1,h is defined in (A.9).
6: Set V kh+1/2(sh,mh) ← min{ψh(sh,mh)>ωk1,h + Γkh+1/2(sh,mh), H − h} for all

(sh,mh) ∈ S ×M, where Γkh+1/2 is defined in (A.12).
7: Update Qkh:
8: Set ωk2,h ← argminω∈Rd

∑k−1
τ=1(rkh + V kh+1/2(sτh,m

τ
h) − ω>γh(sτh, a

τ
h))2 + λ‖ω‖22 +

Lk2,h(ω), where Lk2,h is defined in (A.14).
9: Set Qkh(sh, ah)← min{γh(sh, ah)>ωk2,h + Γkh(sh, ah), H − h} for all (sh, ah) ∈ S ×A,

where Γkh is defined in (A.15).
10: Update πkh and V kh :
11: Set πkh(· | sh)← argmaxah∈AQ

k
h(sh, ah) for all sh ∈ S.

12: Set V kh (·)← 〈πkh(· | ·), Qkh(·, ·)〉A.
13: end for
14: Obtain sk1 from the environment.
15: for h = 1, . . . ,H do
16: Take akh ∼ πkh(· | skh). Obtain rkh = rh(skh, a

k
h), mk

h, and skh+1.
17: end for
18: end for

DOVI+: Update of V kh+1/2. With a slight abuse of notation, we define the following feature,

ψh(sh,mh) = Ewh∼P̃h(· | sh)

[
ρh(sh,mh, wh)

]
. (A.6)

Conditioning on the state sh, the confounder wh satisfies the backdoor criterion for identifying the
causal effect P(sh+1 | sh,do(mh)), although it is unobserved. In the sequel, we assume that either
the density of {P̃h(· | sh)}h∈[H] is known to us or the features {φh}h∈[H] and {ψh}h∈[H] are known
to us. Following from (A.6), Proposition 3.2, and Assumption A.3, it holds for all h ∈ [H] and
(sh+1, sh,mh) ∈ S × S ×M that

P
(
sh+1

∣∣ sh,do(mh)
)

= 〈ψh(sh,mh), µh(sh+1)〉. (A.7)

Hence, by the Bellman equation and the Bellman optimality equation in (A.2) and (A.3), respec-
tively, the value functions at the intermediate state V πh+1/2 and V ∗h+1/2 are linear in the feature ψh
for all π. To solve for V ∗h+1/2 in the Bellman optimality equation in (A.3), we minimize the follow-
ing empirical mean-squared Bellman error as follows at each step,

ωk1,h ← argmin
ω∈Rd

k−1∑
τ=1

(
V τh+1(sτh+1)− ω>ψh(sτh,m

τ
h)
)2

+ λ‖ω‖22 + Lk1,h(ω), h = H, . . . , 1,

(A.8)

where we set V kH+1 = 0 for all k ∈ [K] and V τh+1 is defined in Line 12 of Algorithm 2 for all
(τ, h) ∈ [K] × [H − 1]. Here k is the index of episode, λ > 0 is a tuning parameter, and Lk1,h is a
regularizer, which is constructed based on the confounded observational data. More specifically, we
define

Lk1,h(ω) =

n∑
i=1

(
V τh+1(sih+1)− ω>φh(sih, a

i
h,m

i
h)
)2
, ∀(k, h) ∈ [K]× [H], (A.9)
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which corresponds to the least-squares loss for regressing V τh+1(sih+1) against φh(sih, a
i
h,m

i
h) for

all i ∈ [n]. Here {(sih, aih,mi
h, r

i
h)}(i,h)∈[n]×[H] are the confounded observational data, where

sih+1 ∼ Ph(· | sih, aih, wih), mi
h ∼ P̆h(· | sih, aih), and aih ∼ νh(· | sih, wih) with ν = {νh}h∈[H] being

the behavior policy.

The update in (A.8) takes the following explicit form,

ωk1,h ← (Λk1,h)−1

( k−1∑
τ=1

ψh(sτh,m
τ
h) · V kh+1(sτh+1) +

n∑
i=1

φh(sih, a
i
h,m

i
h) · V kh+1(sih+1)

)
, (A.10)

where

Λk1,h =

k−1∑
τ=1

ψh(sτh,m
τ
h)ψh(sτh,m

τ
h)> +

n∑
i=1

φh(sih, a
i
h,m

i
h)φh(sih, a

i
h,m

i
h)> + λI. (A.11)

Meanwhile, we employ the following UCB of ψh(skh,m
k
h)>ωk1,h for all (skh,m

k
h) ∈ S ×M,

Γkh+1/2(skh,m
k
h) = β ·

(
log det

(
Λk1,h + ψh(skh,m

k
h)ψh(skh,m

k
h)>
)
− log det(Λk1,h)

)1/2

. (A.12)

The update of V kh+1/2 is defined in Line 6 of Algorithm 2.

DOVI+: Update of Qkh. Upon obtaining V kh+1/2, we solve for Qkh by minimizing the following
empirical mean-squared Bellman error as follows at each step,

ωk2,h ← argmin
ω∈Rd

k−1∑
τ=1

(
rkh + V kh+1/2(sτh,m

τ
h)− ω>γh(sτh, a

τ
h)
)2

+ λ‖ω‖22 + Lk2,h(ω), h = H, . . . , 1. (A.13)

Here Lk2,h is a regularizer, which is defined as follows,

Lk2,h(ω) =

n∑
i=1

(
rih + V kh+1/2(sih,m

i
h)− ω>γh(sih, a

i
h)
)2
, ∀(k, h) ∈ [K]× [H]. (A.14)

The update in (A.13) takes the following explicit form,

ωk2,h ← (Λk2,h)−1

( k−1∑
τ=1

γh(sτh, a
τ
h) ·

(
V kh+1/2(sτh,m

τ
h) + rτh

)
+

n∑
i=1

γh(sih, a
i
h) ·

(
V kh+1/2(sih,m

i
h) + rih

))
,

where

Λk2,h =

k−1∑
τ=1

γh(sτh, a
τ
h)γh(sτh, a

τ
h)> +

n∑
i=1

γh(sih, a
i
h)γh(sih, a

i
h)> + λI.

We employ the following UCB of γh(skh, a
k
h)>ωk2,h for all (skh, a

k
h) ∈ S ×A,

Γkh(skh, a
k
h) = β ·

(
log det

(
Λk2,h + γh(skh, a

k
h)γh(skh, a

k
h)>
)
− log det(Λk2,h)

)1/2

. (A.15)

The update of Qkh is defined in Line 9 of Algorithm 2.

A.2 Theory

In parallel to Theorem 3.5, the following theorem characterizes the regret of DOVI+, which is defined
in (2.3)

Theorem A.5 (Regret of DOVI+). Let β = CdH
√

log(d(T + nH)/ζ) and λ = 1, where C > 0
and ζ ∈ (0, 1] are absolute constants. Under Assumptions A.1 and A.3, it holds with probability at
least 1− 5ζ that

Regret(T ) ≤ C ′ · (∆1,H + ∆2,H) ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
,
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where C ′ > 0 is an absolute constant and

∆1,H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

1,h )− log det(Λ1
1,h)
)1/2

,

∆2,H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

2,h )− log det(Λ1
2,h)
)1/2

.

Proof. See §F.4 for a detailed proof.

See the discussion of Theorem 3.5 in §3, where ∆H corresponds to ∆1,H and ∆2,H in Theorem
A.5. In particular, ∆1,H and ∆2,H admit the same information-theoretic interpretation.

B Literature Review on Causal Bandit

In this section, we present literature review on causal bandit that are closely related to our work.
[26] propose the causal upper confidence bound (C-UCB) and causal Thompson Sampling (C-TS)
algorithms, which attain the

√
T -regret. [34] propose an algorithm based on importance sampling

in policy evaluation. In the pure offline setting, [17, 18] propose algorithms for contextual bandit
with confounders in the observational data. Their algorithms are based on the analysis of sensitivity
[3, 27, 38, 44], which characterizes the worst-case difference between the causal effect and the
conditional density obtained from the confounded observational data. In a combination of the online
setting and the offline setting, [11] study multi-armed bandit with both the interventional data and the
confounded observational data. In contrast to this line of work, we study causal RL in a combination
of the online setting and the offline setting. Causal RL is more challenging than causal bandit, which
corresponds to H = 1, as it involves the transition dynamics and is more challenging in exploration.

C Connection Between Confounded MDP and Other Extensions of MDP

In what follows, we discuss the connection between confounded MDP and other extensions of MDP
and SCM.

• Dynamic Treatment Regimes (DTR). In a DTR [45], all the states {sh}h∈[H] are con-
founded by a global confounder w, whereas in a confounded MDP, each state sh depends
on an individual confounder wh−1, which further depends on the previous state sh−1. If
wh−1 does not depend on sh−1, the confounded MDP reduces to a DTR by summarizing
the confounders into w = (w1, . . . , wH). In addition, we remark that our proposed DOVI
and DOVI+ can handle global confounders as long as the backdoor and frontdoor criterion
holds, respectively.

• Contextual MDP (CMDP). A confounded MDP is similar to a CMDP [12] if we cast the
confounders {wh}h∈[H] as the context therein. In a CMDP, which focuses on the online
setting, the context is fixed throughout an episode, whereas in a confounded MDP, the
confounders {wh}h∈[H] vary across the H steps. Moreover, in a CMDP, the goal is to
minimize the regret against the globally optimal policy that depends on the context, which
is a stronger benchmark than π∗ in (2.3), since π∗ does not depend on the confounders
{wh}h∈[H].

• Partially Observable MDP (POMDP). A confounded MDP is a simplified POMDP [39]
if we cast the confounders {wh}h∈[H] as the hidden states therein (assuming that the con-
founders are unobserved in the offline setting as in §A). A POMDP is more challenging to
solve, since marginalizing over the hidden states does not yield an MDP, which is the case
in a confounded MDP.

D Mechanism of Utilizing Confounded Observational Data

In this section, we discuss the mechanism of incorporating the confounded observational data.
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D.1 Partially Observed Confounder

Corresponding to Line 4 of Algorithm 1, DOVI effectively estimates the causal effect
P(· | sh,do(ah)) using

ψh(sh, ah)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) · δsτh+1

(·) +

n∑
i=1

φh(sih, a
i
h, u

i
h) · δsih+1

(·)
)
, (D.1)

where we denote by δs(·) the Dirac measure at s. To see why it works, let the tuning parameter λ be
sufficiently small. By the definition of Λkh in (3.10), we have

P
(
·
∣∣ sh,do(ah)

)
= 〈ψh(sh, ah), µh(·)〉

≈ ψh(sh, ah)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) · 〈ψh(sτh, a

τ
h), µh(·)〉

+

n∑
i=1

φh(sih, a
i
h, u

i
h) · 〈φh(sih, a

i
h, u

i
h), µh(·)〉

)
. (D.2)

Meanwhile, Assumption 3.3 and Proposition 3.4 imply

P
(
·
∣∣ sh,do(ah)

)
= 〈ψh(sh, ah), µh(·)〉,

Ph(· | sh, ah, uh) = 〈φh(sh, ah, uh), µh(·)〉,

which rely on the backdoor adjustment. Since sτh+1 and sih+1 in (D.1) are sampled following
P(· | sτh,do(aτh)) andPh(· | sih, aih, uih), respectively, (D.1) approximates the right-hand side of (D.2)
as its empirical version. As k, n → +∞, (D.1) converges to the right-hand side of (D.2) as well as
the causal effect P(· | sh,do(ah)).

D.2 Unobserved Confounder

If the confounders {wh}h∈[H] are unobserved in the offline setting, the backdoor adjustment in §3
is not applicable. Alternatively, the intermediate states {mh}h∈[H] allow us to estimate the causal
effect without observing the confounders. The key is that the frontdoor criterion in Assumption A.1
implies

P
(
sh+1

∣∣ sh,do(ah)
)

=

∫
M

P
(
sh+1

∣∣ sh,do(mh)
)
· P
(
mh

∣∣ sh,do(ah)
)
dmh. (D.3)

It remains to estimate P(sh+1 | sh,do(mh)) and P(mh | sh,do(ah)) on the right-hand side of (D.3).
Since ah and mh are not confounded given sh, the causal effect P(mh | sh,do(ah)) coincides with
the conditional distribution P(mh | sh, ah), which can be estimated based on the observational data.
To estimate the causal effect P(sh+1 | sh,do(mh)), we utilize the backdoor adjustment in Proposi-
tion 3.2 with uh replaced by ah, which is enabled by Assumption A.1. More specifically, it holds
that

P
(
sh+1

∣∣ sh,do(mh)
)

= Ea′h∼P(· | sh)

[
Ph(sh+1

∣∣ sh, a′h,mh)
]
. (D.4)

Correspondingly, we construct the value function at the intermediate state Vh+1/2 and adapt the
value iteration following the Bellman optimality equation in (A.3). To estimate the value functions
{V kh+1/2}h∈[H] based on the confounded observational data, we utilize the adjustment in (D.4). Cor-
responding to Line 5 of Algorithm 2, DOVI+ effectively estimates the causal effect P(· | sh,do(mh))
using

ψh(sh,mh)>(Λk1,h)−1

(k−1∑
τ=1

ψh(sτh,m
τ
h) · δsτh+1

(·) +

n∑
i=1

φh(sih, a
i
h,m

i
h) · δsih+1

(·)
)
, (D.5)
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To see why it works, let the tuning parameter λ be sufficiently small. By the definition of Λk1,h in
(A.11), we have

P
(
·
∣∣ sh,do(mh)

)
= 〈ψh(sh,mh), µh(·)〉

≈ ψh(sh,mh)>(Λk1,h)−1

(k−1∑
τ=1

ψh(sτh,m
τ
h) · 〈ψh(sτh,m

τ
h), µh(·)〉

+

n∑
i=1

φh(sih, a
i
h,m

i
h) · 〈φh(sih, a

i
h,m

i
h), µh(·)〉

)
. (D.6)

Meanwhile, Assumption A.3 and Proposition A.4 imply

P
(
·
∣∣ sh,do(mh)

)
= 〈ψh(sh,mh), µh(·)〉,

P(· | sh, ah,mh) = 〈φh(sh, ah,mh), µh(·)〉.

Since sτh+1 and sih+1 in (D.6) are sampled following P(· | sτh,do(mτ
h)) and P(· | sih, aih,mi

h), re-
spectively, (D.5) approximates the right-hand side of (D.6) as its empirical version. As k, n→ +∞,
(D.5) converges to the right-hand side of (D.6) as well as the causal effect P(· | sh,do(mh)).

E Limitation and Future Study

In this paper, we propose confounded MDP, which captures the data generating processes in both
the offline setting and the online setting as well as their mismatch due to the confounding issue. We
propose DOVI and DOVI+, which handles the confounding issue if backdoor or frontdoor criteria
hold, respectively. Nevertheless, our work requires knowing the linear features in the transition dy-
namics. Moreover, our work requires taking expectations over the feature embeddings with respect
to the variable for adjustment. In reality, such feature and expectation are in general unavailable. It
remains unknown if efficient reinforcement learning is possible without knowning the features a pri-
ori, which we left as our future study. Moreover, our study is restricted to two types of adjustment,
namely, the backdoor and frontdoor adjustment, respectively. The design of DOVI and DOVI+ is
tightly related to the estimation equation corresponding to the backdoor and frontdoor adjustments,
respectively, which estimates the counterfactual effect of actions on the cumulative rewards. In our
future study, we also want to generalize our work for general adjustment with estimation equations
given.

F Proof of Main Result

F.1 Proof of Proposition 3.4

Proof. Following from Assumption 3.3 and Proposition 3.2, it holds for all (sh, ah) ∈ S ×A that

P
(
sh+1 | sh,do(ah)

)
= Euh∼P̃h(· | sh)

[
Ph(· | sh, ah, uh)

]
= Euh∼P̃h(· | sh)

[
〈φh(sh, ah, uh), µh(sh+1)〉

]
= 〈ψh(sh, ah), µh(sh+1)〉,

where

ψh(sh, ah) = Euh∼P̃h(· | sh)

[
φh(sh, ah, uh)

]
, ∀(sh, aH) ∈ S ×A.

Similarly, following from Assumption 3.3 and Proposition 3.2, it holds for all (sh, ah) ∈ S ×A that

Rh(sh, ah) = E
[
rh
∣∣ sh,do(ah)

]
= Euh∼P̃h(· | sh)

[
φh(sh, ah, uh)>θh

]
= ψh(sh, ah)>θh.

Hence, following from the Bellman equations in (3.3) and (3.4), the action-value functions Qπh
and Q∗h are linear in the backdoor-adjusted feature ψh for all π. Thus, we complete the proof of
Proposition 3.4.
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F.2 Proof of Proposition A.4

Proof. It holds for all h ∈ [H] and (sh+1, sh, ah,mh) ∈ S × S ×A×M that

P(sh+1, sh, ah,mh)

=

∫
W
Ph(sh+1 | sh, au, wh) · νh(ah | sh, wh) · P̃h(wh | sh) · P̆h(mh | sh, ah) · P(sh)dwh.

Meanwhile, it holds for all h ∈ [H] and (sh, ah,mh) ∈ S ×A×M that

P(sh, ah,mh) =

∫
W
νh(ah | sh, wh) · P̃h(wh | sh) · P̆h(mh | sh, ah) · P(sh)dwh.

Hence, we have

P(sh+1 | sh, ah,mh) =
P(sh+1, sh, ah,mh)

P(sh, ah,mh)

=

∫
W Ph(sh+1 | sh, au, wh) · νh(ah | sh, wh) · P̃h(wh | sh)dwh∫

W νh(ah | sh, wh) · P̃h(wh | sh)dwh
. (F.1)

Meanwhile, following from Assumption A.3, we have

Ph(sh+1 | sh, ah, wh) = 〈ρh(sh, ah, wh), µh(sh+1)〉. (F.2)

Recall that we define ν̃h(ah | sh) = Ewh∼P̃h(· | sh)[π(ah | sh, uh)]. Hence, by plugging (F.2) into
(F.1), we obtain that

P(sh+1 | sh, ah,mh) = 〈φh(sh, ah,mh), µh(sh+1)〉,

where we define for all h ∈ [H] and (sh, ah,mh) ∈ S ×A×M that

φh(sh, ah,mh) =

∫
W ρh(sh, au, wh) · νh(ah | sh, wh) · P̃h(wh | sh)dwh∫

W νh(ah | sh, wh) · P̃h(wh | sh)dwh

=
Ewh∼P̃h(· | sh)

[
ρh(sh,mh, wh) · νh(ah | sh, wh)

]
ν̃h(ah | sh)

.

Thus, we complete the proof of Proposition A.4.

F.3 Proof of Theorem 3.5

Proof. We first define for all (k, h) ∈ [K]× [H] the model prediction error ιkh as follows,

ιkh(sh, ah) = −Qkh(sh, ah) +Rh(sh, ah) + (PhV kh+1)(sh, ah), ∀(sh, ah) ∈ S ×A. (F.3)

We define the filtrations associated with Algorithm 1 as follows.
Definition F.1 (Filtration). For all (k, h) ∈ [K]× [H], we define Fk,h,1 the σ-algebra generated by
the following set,

Bk,h,1 =
{

(sih, a
i
h, u

i
h, r

i
h)
}

(i,h)∈[n]×[H]
∪
{

(sτj , a
τ
j , r

τ
j )
}

(τ,j)∈[k−1]×[H]

∪
{

(skj , a
k
j , r

k
j )
}
j∈[h−1]

∪
{

(skh, a
k
h)
}
. (F.4)

Similarly, we define Fk,h,2 the σ-algebra generated by the following set,

Bk,h,2 = Bk,h,1 ∪ {skh+1} ∪ {rkh}. (F.5)

Moreover, we define F0,h,2 the σ-algebra generated by the set {(sih, aih, uih, rih)}(i,h)∈[n]×[H] for all
h ∈ [H]. We define the timestep index as follows,

t(k, h,m) = 2H · k + 2(h− 1) +m. (F.6)

It then holds for t(k, h,m) ≤ t(k′, h′,m′) that Fk,h,m ⊆ Fk′,h′,m′ . Hence, the set of σ-algebra
{Fk,h,m}(k,h,m)∈[K]×[H]×[2] is a filtration with the timestep index t(·, ·, ·) defined in (F.6).
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The following lemma characterizes the model prediction errors defined in (F.3).

Lemma F.2. Let β = CdH
√

log(d(T + nH)/ζ) and ζ ∈ (0, 1]. Under Assumption 3.3, it holds
with probability at least 1− 2ζ that

−2Γkh(sh, ah) ≤ ιkh(sh, ah) ≤ 0, ∀(k, h) ∈ [K]× [H], (sh, ah) ∈ S ×A.

Proof. See §G.1 for a detailed proof.

In the sequel, we define the following operators,

(Jhf)(s) = 〈f(s, ·), π∗h(· | s)〉A, (Jk,hf)(s) = 〈f(s, ·), πkh(· | s)〉A, ∀s ∈ S.

Meanwhile, recall that we define

(PhV )(sh, ah) = Esh+1∼P(· | sh,do(ah))

[
V (sh+1)

]
, ∀(sh, ah) ∈ S ×A.

We define the following martingale adapted to the filtration {Fk,h,m}(k,h,m)∈[K]×[H]×[2],

Mk,h,m =
∑

(τ,i,`)∈[K]×[H]×[2]
t(τ,i,`)≤t(k,h,m)

Dτ,i,`,

where

Dk,h,1 =
(
Jk,h(Qkh −Q

πk,k
h )

)
(skh)− (Qkh −Q

πk,k
h )

)
(skh, a

k
h), ∀(k, h) ∈ [K]× [H],

Dk,h,2 =
(
Ph(V kh+1 − V

πk,k
h+1 )

)
(skh, a

k
h)− (V kh+1 − V

πk,k
h+1 )(skh+1), ∀(k, h) ∈ [K]× [H].

The following lemma is adapted from [7].
Lemma F.3 (Lemma 4.2 of [7]). It holds that

Regret(T ) =

K∑
k=1

V π
∗

1 (xk1)− V πk1 (xk1)

= Y +MK,H,2 +

K∑
k=1

H∑
h=1

(
Eπ∗

[
ιkh(sh, ah)

∣∣ s1 = sk1
]
− ιkh(skh, a

k
h)
)
, (F.7)

where

Y =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)〉

∣∣ s1 = sk1
]
. (F.8)

Proof. See [7] for a detailed proof.

In what follows, we upper bound the right-hand side of (F.7) in Lemma F.3. By Algorithm 1, it holds
that πkh is the greedy policy with respect to the action-value function Qkh. Hence, for Y defined in
(F.8) of Lemma F.3, we have

Y =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)〉

∣∣ s1 = sk1
]
≤ 0. (F.9)

Meanwhile, following from the proof of Theorem 3.1 in [7], it holds with probability at least 1−ζ/2
that

MK,H,2 ≤ C0 ·
√
d3H3T ·

√
log(1/ζ), (F.10)

where C0 > 0 is an absolute constant. In addition, following from Lemma F.2, it holds with
probability at least 1− 2ζ that

K∑
k=1

H∑
h=1

(
Eπ∗

[
ιkh(sh, ah)

∣∣ s1 = sk1
]
− ιkh(skh, a

k
h)
)
≤ 2

K∑
k=1

H∑
h=1

Γkh(skh, a
k
h). (F.11)
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Recall that for all (sh, ah) ∈ S ×A, we define

Γkh(sh, ah) = β ·
(

log det
(
Λkh + ψh(sh, ah)ψh(sh, ah)>

)
− log det(Λkh)

)1/2

. (F.12)

Hence, by the Cauchy-Schwartz inequality, we obtain that
K∑
k=1

H∑
h=1

Γkh(skh, a
k
h) = β

K∑
k=1

H∑
h=1

(
log det

(
Λkh + ψh(skh, a

k
h)ψh(skh, a

k
h)>
)
− log det(Λkh)

)1/2

≤ β
H∑
h=1

(
K

K∑
k=1

(
log det(Λk+1

h )− log det(Λkh)
))1/2

= β
√
K

H∑
h=1

(
log det(ΛK+1

h )− log det(Λ1
h)
)1/2

. (F.13)

In what follows, we define

∆H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

h )− log det(Λ1
h)
)1/2

. (F.14)

Thus, by plugging (F.14) and β = CdH ·
√

log(d(T + nH)/ζ) into (F.13), it holds with probability
at least 1− 2ζ that,

K∑
k=1

H∑
h=1

Γkh(skh, a
k
h) ≤ C ·∆H ·

√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
, (F.15)

where recall that we define T = HK. By further plugging (F.15) into (F.11), it holds with probabil-
ity at least 1− 2ζ that,

K∑
k=1

H∑
h=1

(
Eπ∗

[
ιkh(sh, ah)

∣∣ s1 = sk1
]
− ιkh(skh, a

k
h)
)

≤ 2C ·∆H ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
. (F.16)

Finally, combining Lemma F.3, (F.9), (F.10), and (F.16), it holds with probability at least 1 − 5ζ/2
that

Regret(T ) ≤ C ′ ·∆H ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
,

where C ′ > 0 is an absolute constant and

∆H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

h )− log det(Λ1
h)
)1/2

.

Thus, we complete the proof of Theorem 3.5.

F.4 Proof of Theorem A.5

Proof. In the sequel, we define the following operators,

(Jhf)(s) = 〈f(s, ·), π∗h(· | s)〉A, (Jk,hf)(s) = 〈f(s, ·), πkh(· | s)〉A. (F.17)

Meanwhile, recall that we define the following transition operators,

Ph+1/2V (sh,mh) = E
[
V (sh+1)

∣∣∣ sh+1 ∼ P
(
·
∣∣ sh,do(mh)

)]
, ∀V : S 7→ R, (sh,mh) ∈ S ×M.

PhV ′(sh, ah) = E
[
V ′(sh,mh)

∣∣mh ∼ P̆h(· | s, a)
]
, ∀V ′ : S ×M 7→ R, (sh, ah) ∈ S ×A.

We further define for all (k, h) ∈ [K]× [H] the following transition operator,

P̃h+1/2V (sh, ah,mh) = E
[
V (sh+1)

∣∣ sh+1 ∼ P(· | sh, ah,mh)
]
, ∀V : S 7→ R, (sh, ah,mh) ∈ S ×A×M.
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We define the following model prediction errors,

ιkh(sh, ah) = −Qkh(sh, ah) + rh(sh, ah) + (PhV kh+1/2)(sh, ah), ∀(sh, ah) ∈ S ×A,

ιkh+1/2(sh,mh) = −V kh+1/2(sh,mh) + (Ph+1/2V
k
h+1)(sh,mh), ∀(sh,mh) ∈ S ×M. (F.18)

In parallel to Definition F.1, we define the following filtrations that correspond to Algorithm 2.

Definition F.4 (Filtration). For (k, h) ∈ [K]× [H], we define F ′k,h,1 the σ-algebra generated by the
following set,

B′k,h,1 =
{

(sih, a
i
h,m

i
h, r

i
h)
}

(i,h)∈[n]×[H]
∪
{

(sτj , a
τ
j ,m

τ
j , r

τ
j )
}

(τ,j)∈[k−1]×[H]

∪
{

(skj , a
k
j ,m

k
j , r

k
j )
}
j∈[h−1]

∪
{

(skh, a
k
h)
}
. (F.19)

Similarly, we define F ′k,h,2 the σ-algebra generated by the following set,

B′k,h,2 = B′k,h,1 ∪ {mk
h} ∪ {rkh}, (F.20)

and we define F ′k,h,3 the σ-algebra generated by the following set,

B′k,h,3 = B′k,h,2 ∪ {skh+1}, (F.21)

Moreover, we define F ′0,h,3 the σ-algebra generated by the set {(sih, aih,mi
h, r

i
h)}(i,h)∈[n]×[H] for

all h ∈ [H]. We define the timestep index as follows,

t′(k, h,m) = 3H · k + 3(h− 1) +m. (F.22)

It then holds for t′(k, h,m) ≤ t′(k′, h′,m′) that F ′k,h,m ⊆ F ′k′,h′,m′ . Hence, the set of σ-algebra
{F ′k,h,m}(k,h,m)∈[K]×[H]×[3] is a filtration with the timestep index t′(·, ·, ·) defined in (F.22).

The following lemma characterizes the model prediction errors defined in (F.18).

Lemma F.5. Let β = CdH
√

log(d(T + nH)/ζ) and ζ ∈ (0, 1]. Under Assumption A.3, it holds
with probability at least 1− 4ζ that

− 2Γkh+1/2(sh,mh) ≤ ιkh+1/2(sh,mh) ≤ 0, ∀(k, h) ∈ [K]× [H], (sh,mh) ∈ S ×M, (F.23)

− 2Γkh(sh, ah) ≤ ιkh(sh, ah) ≤ 0, ∀(k, h) ∈ [K]× [H], (sh, ah) ∈ S ×A. (F.24)

Proof. See §G.2 for a detailed proof.

Our goal is to upper bound the regret, which takes the following form,

Regret(T ) =

K∑
k=1

V π
∗

1 (sk1)− V π
k

1 (sk1)

=

K∑
k=1

(
V π
∗

1 (sk1)− V k1 (xk1)
)

︸ ︷︷ ︸
(i)

+

K∑
k=1

(
V k1 (sk1)− V π

k

1 (xk1)
)

︸ ︷︷ ︸
(ii)

, (F.25)

where {V kh }(k,h)∈[K]×[H] is the output of Algorithm 2. In what follows, we calculate terms (i) and
(ii) on the right-hand side of (F.25) separately.

Term (i). We now calculate term (i) on the right-hand side of (F.25). By (F.17), for all h ∈ [H], it
holds that

V π
∗

h − V kh = JhQπ
∗

h + Jk,hQkh = Jh(Qπ
∗

h −Qkh) + (Jh − Jk,h)Qkh. (F.26)

We first calculate the term Qπ
∗

h −Qkh on the right-hand side of (F.26). Recall that we define

ιkh = −Qkh + rh + PhV kh+1/2, ιkh+1/2 = −V kh+1/2 + Ph+1/2V
k
h+1.
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Meanwhile, following from the Bellman equation in (A.2), we obtain that

Qπ
∗

h = rh + PhV π
∗

h+1/2, V π
∗

h+1/2 = Ph+1/2V
π∗

h+1.

Thus, it holds that

Qπ
∗

h −Qkh = ιkh + Ph(V π
∗

h+1/2 − V
k
h+1/2) = ιkh + Phιkh+1/2 + PhPh+1/2(V π

∗

h+1 − V kh+1). (F.27)

Recall that we set V π
∗

H+1 = V kH+1 = 0. Hence, upon recursion, we obtain from (F.26) and (F.27)
that

V π
∗

1 − V k1 =

( H∏
h=1

JhPhPh+1/2

)
(V π

∗

H+1 − V kH+1) +

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
Jhιkh (F.28)

+

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
JhPhιkh+1/2 +

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
(Jh − Jk,h)Qkh

=

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
(Jhιkh + JhPhιkh+1/2) +

H∑
h=1

(h−1∏
i=1

JiPiPi+1/2

)
(Jh − Jk,h)Qkh.

By the definition of Jh and Jk,h in (F.17), we further obtain from (F.28) that

K∑
k=1

(
V π
∗

1 (sk1)− V k1 (sk1)
)

=

K∑
k=1

H∑
h=1

Eπ∗
[
ιkh(sh, ah) + ιkh+1/2(sh,mh)

∣∣ s1 = sk1
]

(F.29)

+

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)

∣∣ s1 = sk1
]
,

which completes the calculation of term (i) on the right-hand side of (F.25).

Term (ii). We now calculate term (ii) on the right-hand side of (F.25). By (F.17), for all h ∈ [H],
we have

V kh (skh)− V π
k

h (skh) =
(
Jk,h(Qkh −Qπ

k

h )
)
(skh). (F.30)

Meanwhile, by (F.18) it holds that

ιkh(skh, a
k
h) = rh(skh, a

k
h) + (PhV kh+1/2)(skh, a

k
h)−Qkh(skh, a

k
h)

= rh(skh, a
k
h)−Qπ

k

h (skh, a
k
h) + PhV kh+1/2(skh, a

k
h) + (Qπ

k

h −Qkh)(skh, a
k
h)(skh, a

k
h)

=
(
Ph(V kh+1/2 − V

πk

h+1/2)
)
(skh, a

k
h)− (Qkh −Qπ

k

h )(skh, a
k
h), (F.31)

where the second equality follows from the Bellman equation Qπ
k

h (sh, ah) = rh(sh, ah) +

(PhV π
k

h+1/2)(sh, ah). Similarly, we have

ιkh+1/2(skh,m
k
h) =

(
Ph+1/2(V kh+1 − V π

k

h+1)
)
(skh,m

k
h)− (V kh+1/2 − V

πk

h+1/2)(skh,m
k
h). (F.32)

Thus, by combining (F.30), (F.31), and (F.32), we have

(V kh − V π
k

h )(skh) + ιkh(skh, a
k
h) + ιkh+1/2(skh,m

k
h)

= (V kh+1 − V π
k

h+1)(skh+1) +
(
Jk,h(Qkh −Qπ

k

h )
)
(skh)− (Qkh −Qπ

k

h )(skh, a
k
h)︸ ︷︷ ︸

Dk,h,1

(F.33)

+
(
Ph(V kh+1/2 − V

πk

h+1/2)
)
(skh, a

k
h)− (V kh+1/2 − V

πk

h+1/2)(skh,m
k
h)︸ ︷︷ ︸

Dk,h,2

+
(
Ph+1/2(V kh+1 − V π

k

h+1)
)
(skh,m

k
h)− (V kh+1 − V π

k

h+1)(skh+1)︸ ︷︷ ︸
Dk,h,3

.
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Meanwhile, note that V π
k

H+1 = V kH+1 = 0. Hence, by recursively applying (F.33), we obtain that

(V k1 − V π
k

1 )(sk1)

=

H∑
h=1

(Dk,h,1 +Dk,h,2 +Dk,h,3)−
H∑
h=1

(
ιkh(skh, a

k
h) + ιkh+1/2(skh,m

k
h)
)
. (F.34)

By the definition of filtration in (F.4), for the terms Dk,h,1, Dk,h,2 and Dk,h,3 on the right-hand side
of (F.33), it holds for all (k, h) ∈ [K]× [H] that

Dk,h,1 ∈ Fk,h,1, Dk,h,2 ∈ Fk,h,2, Dk,h,3 ∈ Fk,h,3.

Moreover, it holds that

E[Dk,h,1 | Fk,h−1,3] = E[Dk,h,2 | Fk,h,1] = E[Dk,h,3 | Fk,h,2] = 0.

Hence, the termsDk,h,1,Dk,h,2 andDk,h,3 defines a martingaleM ′k,h,m with respect to the timestep
index t′(·, ·, ·) as follows,

M ′k,h,m =
∑

(τ,i,`)∈[K]×[H]×[3]
t′(τ,i,`)≤t′(k,h,m)

Dτ,i,`, (F.35)

where t′(·, ·, ·) is defined in (F.22) of Definition F.4. In specific, we have

M ′K,H,3 =

K∑
k=1

H∑
h=1

(Dk,h,1 +Dk,h,2 +Dk,h,3). (F.36)

By further taking sum of (F.34) over k ∈ [K], we obtain from (F.36) that

K∑
k=1

(V k1 − V π
k

1 )(sk1) = M ′K,H,3 −
K∑
k=1

H∑
h=1

(
ιkh(skh, a

k
h) + ιkh+1/2(skh,m

k
h)
)
, (F.37)

which completes the calculation of term (ii) on the right-hand side of (F.25).

Finally, by plugging (F.29) and (F.37) into (F.25), we conclude that

Regret(T ) =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)

∣∣ s1 = sk1
]

+M ′K,H,3 (F.38)

+

K∑
k=1

H∑
h=1

Eπ∗
[
ιkh(sh, ah) + ιkh+1/2(sh,mh)

∣∣ s1 = sk1
]

−
K∑
k=1

H∑
h=1

(
ιkh(skh, a

k
h) + ιkh+1/2(skh,m

k
h)
)
,

where M ′K,H,3 is defined in (F.36).

We now upper bound the right-hand side of (F.38). The following proof is similar to that of Theorem
3.5 in §F.3. In the sequel, we define

Y ′ =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)

∣∣ s1 = sk1
]
,

Z ′ =

K∑
k=1

H∑
h=1

Eπ∗
[
ιkh(sh, ah) + ιkh+1/2(sh,mh)

∣∣ s1 = sk1
]
−

K∑
k=1

H∑
h=1

(
ιkh(skh, a

k
h) + ιkh+1/2(skh,m

k
h)
)
.

It then follows from (F.38) that

Regret(T ) = Y ′ +M ′K,H,3 + Z ′. (F.39)
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Recall that we set πkh to be the greedy policy with respect to the action-value function Qkh. Thus, it
holds that

Y ′ =

K∑
k=1

H∑
h=1

Eπ∗
[
〈Qkh(sh, ·), π∗h(· | sh)− πkh(· | sh)

∣∣ s1 = sk1
]
≤ 0. (F.40)

Meanwhile, following from the truncation of Qkh in Algorithm 2 and the assumption that rh ∈ [0, 1],
for terms Dk,h,i defined in (F.33), we have

|Dk,h,i| ≤ 2H, ∀(k, h, i) ∈ [K]× [H]× [3].

Hence, by the Azumas-Hoeffding lemma, it holds with probability at least 1− ζ that

M ′K,H,3 ≤ C1 ·
√
d3H3T ·

√
log(dT/ζ), (F.41)

where M ′K,H,3 is the martingale defined in (F.35), C1 > 0 is an absolute constant, and T = HK.
Following from Lemma F.5, it holds with probability at least 1− 4ζ that

Z ′ ≤ 2

K∑
k=1

H∑
h=1

Γkh+1/2(skh,m
k
h) + 2

K∑
k=1

H∑
h=1

Γkh(skh, a
k
h). (F.42)

Following from the definition of Γkh+1/2 in (A.12), we obtain that

K∑
k=1

H∑
h=1

Γkh+1/2(skh,m
k
h) = 2β

K∑
k=1

H∑
h=1

(
log det

(
Λk1,h + ψh(skh,m

k
h)ψh(sh,mh)>

)
− log det(Λk1,h)

)1/2

= 2β

K∑
k=1

H∑
h=1

(
log det(Λk+1

1,h )− log det(Λk1,h)
)1/2

. (F.43)

Thus, by the Cauchy-Schwartz inequality, we obtain from (F.43) that

K∑
k=1

H∑
h=1

Γkh+1/2(skh,m
k
h) ≤ β

H∑
h=1

(
K ·

K∑
k=1

(
log det(Λk+1

1,h )− log det(Λ1
1,h)
))1/2

≤ β ·
√
K

H∑
h=1

(
log det(ΛK+1

1,h )− log det(Λ1
1,h)
)1/2

. (F.44)

Similarly, we obtain that
K∑
k=1

H∑
h=1

Γkh(skh, a
k
h) ≤ β ·

√
K

H∑
h=1

(
log det(Λk+1

2,h )− log det(Λ1
2,h)
)1/2

. (F.45)

In what follows, we define

∆1,H =
1√
dH2

H∑
h=1

(
log det(ΛK+1

1,h )− log det(Λ1
1,h)
)1/2

,

∆2,H =
1√
dH2

H∑
h=1

(
log det(Λk+1

2,h )− log det(Λ1
2,h)
)1/2

.

By plugging (F.44), (F.45), and β = CdH ·
√

log(d(T + nH)/ζ) into (F.42), we obtain that

Z ′ ≤ 2C · (∆1,H + ∆2,H) ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
, (F.46)

which holds with probability at least 1 − 4ζ. Here recall that we define T = HK. Finally, by
plugging (F.40), (F.41), and (F.46) into (F.39), it holds with probability at least 1− 5ζ that

Regret(T ) ≤ C ′ · (∆1,H + ∆2,H) ·
√
d3H3T ·

√
log
(
d(T + nH)/ζ

)
,

where C ′ > 0 is an absolute constant. Thus, we complete the proof of Theorem A.5.
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G Proof of Auxiliary Result

G.1 Proof of Lemma F.2

Proof. Recall that we define

(PhV )(sh, ah) = E
[
V (sh+1)

∣∣∣ sh+1 ∼ P
(
·
∣∣ sh,do(ah)

)]
= E

[
V (sh+1)

∣∣ sh+1 ∼ Ph(· | sh, ah, uh), uh ∼ P̃h(· | sh)
]
,

where the second equality follows from Proposition 3.2. In the sequel, we define

(P̃hV )(sh, ah, uh) = E
[
V (sh+1)

∣∣∣ sh+1 ∼ Ph
(
·
∣∣ sh, ah, uh)].

By Assumption 3.3, we obtain that

PhV kh+1 = ψ>h 〈µh, V kh+1〉 = ψ>h (Λkh)−1Λkh〈µh, V kh+1〉, P̃hV kh+1 = φ>h 〈µh, V kh+1〉. (G.1)
Recall that

Λkh =

k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)> +

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)> + λI.

Therefore, by (G.1), we obtain that

(PhV kh+1)(·, ·) = ψh(·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)>〈µh, V kh+1〉+ λ · 〈µh, V kh+1〉

+

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)>〈µh, V kh+1〉

)

= ψh(·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) · (PhV kh+1)(sτh, a

τ
h) + λ · 〈µh, V kh+1〉 (G.2)

+

n∑
i=1

φh(sih, a
i
h, u

i
h) · (P̃hV kh+1)(sih, a

i
h, u

i
h)

)
.

Recall that we define the counterfactual reward as follows,
Rh(sh, ah) = Euh

[
r(sh, ah, uh)

∣∣Sh = sh
]
, ∀(sh, ah) ∈ S ×A. (G.3)

It then follows from Assumption 3.3 and Proposition 3.4 thatRh(·, ·) = ψh(·, ·)>θh. Hence, it holds
for all h ∈ [H] that

rh(·, ·, ·) = φh(·, ·, ·)>θh = φh(·, ·, ·)>(Λkh)−1Λkhθh

= φh(·, ·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)>θh + λ · 〈µh, V kh+1〉

+

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)>θh

)

= φh(·, ·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) ·Rh(sτh, a

τ
h) + λ · θh

+

n∑
i=1

φh(sih, a
i
h, u

i
h) · E[rh | sih, aih, uih]

)
. (G.4)

Meanwhile, following from the explicit update of ωkh in (3.9), we obtain that

ψh(·, ·)>ωkh = ψh(·, ·)>(Λkh)−1

(k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
V kh+1(sτh+1) + rτh

)
(G.5)

+

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V kh+1(sih+1) + rih

))
.
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Hence, combining (G.2), (G.4), and (G.5), we obtain that

ψh(·, ·)>ωkh −Rh(·, ·)− (PhV kh+1)(·, ·)
= ψh(·, ·)>(Λkh)−1(S1,h + S2,h + S3,h + S4,h)− ψh(·, ·)>λ ·

(
〈µh, V kh+1〉+ θh

)
, (G.6)

where we define

S1,h =

k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
V kh+1(sτh+1)− (PhV kh+1)(sτh, a

τ
h)
)
, (G.7)

S2,h =

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V kh+1(sih+1)− (P̃hV kh+1)(sih, a

i
h, u

i
h)
)
,

S3,h =

k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
rτh −R(sτh, a

τ
h)
)
, and S4,h =

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
rih − E[rh | sih, aih, uih]

)
.

In what follows, we upper bound the right-hand side of (G.6). By the Cauchy-Schwartz inequality,
we obtain that

|ψh(·, ·)>ωkh −Rh(·, ·)− (PhV kh+1)(·, ·)| (G.8)

≤
(
ψh(·, ·)>(Λkh)−1ψh(·, ·)

)1/2 · (∥∥∥∥ 4∑
`=1

S`,h

∥∥∥∥
(Λkh)−1

+ λ ·
(
‖〈µh, V kh+1〉‖(Λkh)−1 + ‖θh‖(Λkh)−1

))
,

where S1,h, S2,h, S3,h, and S4,h are defined in (G.7). By Lemma H.6, for λ = 1, it holds with
probability at least 1− 2ζ that∥∥∥∥ 4∑

`=1

S`,h

∥∥∥∥
(Λkh)−1

≤ C ′dH
√

log
(
2(C + 1)d(T + nH)/ζ

)
, (G.9)

where C > 0 and C ′ > 0 are absolute constants. Meanwhile, by Assumption 3.3, it holds that

‖〈µh, V kh+1〉‖(Λkh)−1 ≤ ‖〈µh, V kh+1〉‖2/
√
λ

≤
( d∑
`=1

‖µ`,h‖21
)1/2

· ‖V hk+1‖∞/
√
λ ≤ H

√
d/λ, (G.10)

where the first inequality follows from the fact that Λkh � λI , the second inequality follows from the
Hölder’s inequality, and the third inequality follows from Assumption 3.3 and the fact that V hk+1 ≤
H . Similarly, it holds from Assumption 3.3 that

‖θh‖(Λkh)−1 ≤ ‖θh‖2/
√
λ ≤

√
d/λ. (G.11)

Finally, by plugging (G.9), (G.10), and (G.11) into (G.8) with λ = 1, it holds with probability at
least 1− 2ζ that

|ψh(·, ·)>ωkh −Rh(·, ·)− (PhV kh+1)(·, ·)| ≤ β/
√

2 ·
(
ψh(·, ·)>(Λkh)−1ψh(·, ·)

)1/2
, (G.12)

where we set β = C ′′dH
√

log(d(T + nH)/ζ) for a sufficiently large absolute constant C ′′ > 0.
By further applying Lemma H.7 to (G.12), for λ = 1, it holds with probability at least 1− 2ζ that

|ψh(·, ·)>ωkh −Rh(·, ·)− (PhV kh+1)(·, ·)|

≤ β ·
(

log det
(
Λkh + ψh(·, ·)ψh(·, ·)>

)
− log det(Λkh)

)1/2

= Γkh(·, ·). (G.13)

Recall that we set

Qkh(·, ·) = min
{
ψh(·, ·)>ωkh + Γkh(·, ·), H − h

}
.

Hence, by (G.13), it holds with probability at least 1− 2ζ that

−ιkh(·, ·) = Qkh(·, ·)−Rh(·, ·)− (PhV kh+1)(·, ·)
≤ ψh(·, ·)>ωkh + Γkh(·, ·)−Rh(·, ·)− (PhV kh+1)(·, ·) ≤ 2Γkh(·, ·),
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and

ιkh(·, ·) = −Qkh(·, ·) +Rh(·, ·) + (PhV kh+1)(·, ·)
≤ max

{
(PhV kh+1)(·, ·) +Rh(·, ·)− ψh(·, ·)>ωkh − Γkh, Rh(·, ·) + (PhV kh+1)(·, ·)−H + h

}
≤ 0,

where the second inequality follows from (G.13) the facts that V kh+1 ≤ H − h− 1 and Rh ≤ 1. In
conclusion, it holds with probability at least 1− 2ζ that

−2Γkh(·, ·) ≤ ιkh(·, ·) ≤ 0,

which concludes the proof of Lemma F.2.

G.2 Proof of Lemma F.5

Proof. Recall that we define the following transition operators,

Ph+1/2V (sh,mh) = E
[
V (sh+1)

∣∣∣ sh+1 ∼ P
(
·
∣∣ sh,do(mh)

)]
P̃h+1/2V (sh, ah,mh) = E

[
V (sh+1)

∣∣ sh+1 ∼ P(· | sh, ah,mh)
]
. (G.14)

Following from Assumption A.3 and (A.7), we have

Ph+1/2V
k
h+1 = ψ>h 〈µh, V kh+1〉 = ψ>h (Λk1,h)−1Λk1,h〈µh, V kh+1〉, (G.15)

P̃h+1/2V
k
h+1 = φ>h 〈µh, V kh+1〉, (G.16)

where we define

Λk1,h =

k−1∑
τ=1

ψh(sτh,m
τ
h)ψ(sτh,m

τ
h)> +

n∑
i=1

φh(sih, a
i
h,m

i
h)φh(sih, a

i
h,m

i
h)> + λI. (G.17)

Hence, following from (G.15), it holds for all (sh,mh) ∈ S ×M that

Ph+1/2V
k
h+1(sh,mh)

= ψh(sh,mh)>(Λk1,h)−1

(k−1∑
τ=1

ψh(sτh,m
τ
h)ψ(sτh,m

τ
h)>〈µh, V kh+1〉+ λ · 〈µh, V kh+1〉 (G.18)

+

n∑
i=1

φh(sih, a
i
h,m

i
h)φh(sih, a

i
h,m

i
h)>〈µh, V kh+1〉

)
.

By plugging (G.15) and (G.16) into (G.18), we further obtain that

Ph+1/2V
k
h+1(sh,mh)

= ψh(sh,mh)>(Λk1,h)−1

(k−1∑
τ=1

ψh(sτh,m
τ
h) · (Ph+1/2V

k
h+1)(sτh,m

τ
h) + λ · 〈µh, V kh+1〉 (G.19)

+

n∑
i=1

φh(sih, a
i
h,m

i
h) · (P̃h+1/2V

k
h+1)(sih, a

i
h,m

i
h)

)
.

Following from the update of ωk1,h in (A.10), it holds for all h ∈ [H] and (sh,mh) ∈ S ×M that

ψh(sh,mh)>ωk1,h = ψh(sh,mh)>(Λk1,h)−1

( k−1∑
τ=1

ψh(sτh,m
τ
h) · V kh+1(sτh+1) (G.20)

+

n∑
i=1

φh(sih, a
i
h,m

i
h) · V kh+1(sih+1)

)
.

Hence, combining (G.19) and (G.20), we obtain for all h ∈ [H] and (sh,mh) ∈ S ×M that

ψh(sh,mh)>ωk1,h − Ph+1/2V
k
h+1(sh,mh)

= ψh(sh,mh)>(Λk1,h)−1(S′1,h + S′2,h) + λ · ψh(s,m)>〈µh, V kh+1〉, (G.21)
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where we define

S′1,h =

k−1∑
τ=1

ψh(sτh,m
τ
h) ·

(
V kh+1(sτh+1)− (Ph+1/2V

k
h+1)(sτh,m

τ
h)
)
,

S′2,h = φh(sih, a
i
h,m

i
h) ·

(
V kh+1(sih+1)− (P̃h+1/2V

k
h+1)(sih, a

i
h,m

i
h)
)
.

We now upper bound the right-hand side of (G.21). By the Cauchy-Schwartz inequality, we obtain
from (G.21) that

|ψ>h ωk1,h − Ph+1/2V
k
h+1|

≤
(
ψ>h (Λk1,h)−1ψh

)1/2 · (‖S′1,h + S′2,h‖(Λkh)−1 + λ · ‖〈µh, V kh+1〉‖(Λkh)−1

)
. (G.22)

Following from similar analysis to the proof of Lemma H.6 in §H, for λ = 1, it holds with probability
at least 1− 2ζ that

‖S′1,h + S′2,h‖(Λkh)−1 ≤ C ′dH
√

log
(
2(C + 1)d(T + nH)/ζ

)
. (G.23)

Meanwhile, by Assumption A.3, we have

‖〈µh, V kh+1〉‖(Λkh)−1 ≤ ‖〈µh, V kh+1〉‖2/
√
λ

≤
( d∑
`=1

‖µ`,h‖21
)1/2

· ‖V hk+1‖∞/
√
λ ≤ H

√
d/λ, (G.24)

where the first inequality follows from the fact that Λk1,h � λI , the second inequality follows from
the Hölder’s inequality, and the third inequality follows from Assumption A.3 and the fact that
V hk+1 ≤ H . Finally, by plugging (G.23) and (G.24) into (G.22), we obtain for all (sh,mh) ∈ S×M
that

|ψh(sh,mh)>ωk1,h − (Ph+1/2V
k
h+1)(sh,mh)|

≤ β/
√

2 ·
(
ψh(sh,mh)>(Λk1,h)−1ψh(sh,mh)

)1/2
≤ β ·

(
log det

(
Λk1,h + ψh(sh,mh)ψh(sh,mh)>

)
− log det(Λk1,h)

)1/2

= Γkh+1/2(sh,mh), (G.25)

where we set β = C ′′dH
√

log(d(T + nH)/ζ) for a sufficiently large absolute constant C ′′ > 0

and the last inequality follows from Lemma H.7. Here Γkh+1/2 is the UCB defined in (A.12). Recall
that for all (sh,mh) ∈ S ×M, we define

V kh+1/2(sh,mh) = min
{
ψh(sh,mh)>ωk1,h + Γkh+1/2(sh,mh), H − h

}
.

Hence, by (G.25), for all (sh,mh) ∈ S ×M, it holds with probability at least 1− 2ζ that

−ιkh+1/2(sh,mh) = V kh+1/2(sh,mh)− (Ph+1/2V
k
h+1)(sh,mh)

≤ ψh(sh,mh)>ωkh + Γkh+1/2(sh,mh)− (Ph+1/2V
k
h+1)(sh,mh) ≤ 2Γkh+1/2(sh,mh),

and
ιkh+1/2(sh,mh) = −V kh+1/2(sh,mh) + (Ph+1/2V

k
h+1)(sh,mh)

≤ max
{

(Ph+1/2V
k
h+1)(sh,mh)− ψh(sh,mh)>ωk1,h − Γkh+1/2(sh,mh),

(Ph+1/2V
k
h+1)(sh,mh)−H + h

}
≤ 0,

where the second inequality follows from (G.25) and the fact that V kh+1 ≤ H−h−1. In conclusion,
it holds with probability at least 1− 2ζ that

−2Γkh+1/2(sh,mh) ≤ ιkh+1/2(sh,mh) ≤ 0.

Similarly, following from the proof of Lemma F.2 with Lemma H.5 in place of Lemma H.4, the
reward rh in place of Rh, and the feature γh in place of both ψh and φh, for all (sh, ah) ∈ S × A,
it holds with probability at least 1− 2ζ that

−2Γkh(sh, ah) ≤ ιkh(sh, ah) ≤ 0.

Thus, we complete the proof of Lemma F.5.
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H Auxiliary Lemma

Lemma H.1 (Concentration of Self-Normalized Process [1, 16]). Let {εt}∞t=1 be a real-valued
stochastic process adapted to the filtration {Ft}∞t=0. Let εt | Ft−1 be zero-mean and σ-sub-Gaussian.
Let {ψt}∞t=0 be an Rd-valued stochastic process with ψt ∈ Ft−1. Let Λt = Λ0 +

∑t
τ=1 ψτψ

>
τ ,

where Λ0 is a positive definite matrix. Let δ > 0 be an absolute constant. It then holds with
probability at least 1− δ that∥∥∥∥ t∑

τ=1

ψτ · ετ
∥∥∥∥2

Λ
−1
t

≤ 2σ2 · log
(√

det(Λt)/det(Λ0) · δ−1
)
, ∀t ≥ 0.

Proof. See [1] for a detailed proof.

Lemma H.2 (Lemma D.4 of [16]). Let {st}∞t=1 and {ψt}∞t=1 with ‖ψt‖2 ≤ 1 be S-valued and
Rd-valued stochastic processes adopted to the filtration {Ft}∞t=0, respectively. Let Λt = Λ0 +∑t
τ=1 ψτψ

>
τ , where Λ0 � λI is a positive definite matrix. Let sups∈S |V (s)| ≤ H for all V ∈ V .

Let δ > 0 be an absolute constant. It then holds with probability at least 1− δ that∥∥∥∥ t∑
τ=1

ψτ ·
(
V (sτ )− E

[
V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 4H2 ·
(
d/2 · log

(
det(Λt)/ det(Λ0)

)
+ log(Nε/δ)

)
+ 8t2ε2/λ.

HereNε is the ε-covering number of V with respect to the metric d(V, V ′) = sups∈S |V (s)−V ′(s)|
for all V, V ′ ∈ V .

Proof. The proof technique is similar to that of Lemma D.4 by [16]. For all V ∈ V , there exist an
element Ṽ in the ε-covering of V satisfying

d(V, Ṽ ) = sup
s∈S
|V (s)− Ṽ (s)| ≤ ε. (H.1)

In the sequel, we define

∆V (·) = V (·)− Ṽ (·). (H.2)

It then holds that ∥∥∥∥ t∑
τ=1

ψτ ·
(
V (sτ )− E

[
V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 2

∥∥∥∥ t∑
τ=1

ψτ ·
(
Ṽ (sτ )− E

[
Ṽ (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

(H.3)

+ 2

∥∥∥∥ t∑
τ=1

ψτ ·
(

∆V (sτ )− E
[
∆V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

.

Note that |Ṽ (s)| ≤ H for all s ∈ S. Hence, following from Lemma H.1 and a union bound
argument, it holds with probability at least 1− δ that

2

∥∥∥∥ t∑
τ=1

ψτ ·
(
Ṽ (sτ )− E

[
Ṽ (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 4H2 ·
(
d/2 · log

(
det(Λt)/det(Λ0)

)
+ log(Nε/δ)

)
, (H.4)

whereNε is the ε-covering number of V . Meanwhile, it follows from (H.1) and (H.2) that |∆V (s)| ≤
ε for all s ∈ S. Hence, we have

2

∥∥∥∥ t∑
τ=1

ψτ ·
(

∆V (sτ )− E
[
∆V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 8t2ε2/λ, (H.5)

31



where the inequality follows from the fact that Λt � λI . By plugging (H.4) and (H.5) into (H.3), it
holds with probability at least 1− δ that∥∥∥∥ t∑

τ=1

ψτ ·
(
V (sτ )− E

[
V (sτ )

∣∣ Fτ−1

])∥∥∥∥2

Λ
−1
t

≤ 4H2 ·
(
d/2 · log

(
det(Λt)/ det(Λ0)

)
+ log(Nε/δ)

)
+ 8t2ε2/λ,

which concludes the proof of Lemma H.2.

Lemma H.3 (Upper Bound of Parameter [16]). Under Assumption 3.3, It holds that

‖ωkh‖2 ≤ H
(
d(k + n)/λ

)1/2
, ∀(k, h) ∈ [K]× [H]. (H.6)

Proof. See [16] for a detailed proof.

Lemma H.4 (Covering Number of V [16]). Let V be a class of functions V satisfying
V (·) = min

{
max
a∈A

ψ(·, a)>ω + Γ(·, a), H − h
}
, (H.7)

where

Γ(·, ·) =
√

2β ·
(

log det
(
Λ + ψ(·, ·)ψ(·, ·)>

)
− log det(Λ)

)1/2

. (H.8)

Here the function V is parameterized by (ω,Λ) and the parameter β is fixed. Let ψ(·, ·) be an
Rd-valued function and Λ ∈ Rd×d. Let ‖ψ(s, a)‖2 ≤ 1 for all (s, a) ∈ S × A. For ‖ω‖2 ≤ L,
Λ � λI , β ∈ [0, B], and ε > 0, there exist an ε-covering of V with respect to the metric d(V, V ′) =
sups∈S |V (s)− V ′(s)|, such that the covering number Nε is upper bounded as follows,

logNε ≤ d · log(1 + 4L/ε) + d2 · log
(
1 + 16B2d1/2/(ε2λ)

)
.

Proof. The proof technique is similar to that of Lemma D.6 by [16]. Let V1 and V2 be the functions
defined in (H.7), which are parameterized by (ω1,Λ1) and (ω2,Λ2), respectively. Note that

d(V1, V2) ≤ sup
s∈S

∣∣min
{

max
a∈A

ψ(s, a)>ω1 + Γ1(s, a), H − h
}

−min
{

max
a∈A

ψ(s, a)>ω2 + Γ2(s, a), H − h
}∣∣

≤ sup
(s,a)∈S×A

|ψ(s, a)>(ω1 − ω2) + Γ1(s, a)− Γ2(s, a)|, (H.9)

where the second inequality follows from the fact that min{·, H − h} and maxa∈A are contraction
mappings. Here we define Γ1 and Γ2 in (H.8) with Λ = Λ1 and Λ = Λ2, respectively. Meanwhile,
following from the matrix determinant lemma, we have

Γ1(s, a) =
√

2β ·
(

log det
(
Λ1 + ψ(s, a)ψ(s, a)>

)
− log det(Λ1)

)1/2

=
√

2β ·
(

log
(
1 + ψ(s, a)>Λ−1

1 ψ(s, a)
))1/2

, ∀(s, a) ∈ S ×A.

Thus, following from the inequalities |
√
x−√y| ≤

√
|x− y| and | log(1+x)−log(1+y)| ≤ |x−y|

for all x, y ≥ 0, we have

|Γ1(s, a)− Γ2(s, a)| ≤
√

2β ·
(∣∣log

(
1 + ψ(s, a)>Λ−1

1 ψ(s, a)
)
− log

(
1 + ψ(s, a)>Λ−1

2 ψ(s, a)
)∣∣)1/2

≤
√

2β ·
(
|ψ(s, a)>(Λ−1

1 − Λ−1
2 )ψ(s, a)|

)1/2

. (H.10)

Combining (H.14) and (H.10), we have
d(V1, V2) ≤ sup

(s,a)∈S×A
|ψ(s, a)>(ω1 − ω2) + Γ1(s, a)− Γ2(s, a)|

≤ sup
‖ψ‖2≤1

|ψ>(ω1 − ω2)|+
√

2β · sup
‖ψ‖2≤1

(
|ψ>(Λ−1

1 − Λ−1
2 )ψ|

)1/2
= ‖ω1 − ω2‖2 + ‖2β2 · Λ−1

1 − 2β2 · Λ−1
2 ‖

1/2
OP

≤ ‖ω1 − ω2‖2 + ‖2β2 · Λ−1
1 − 2β2 · Λ−1

2 ‖
1/2
F , (H.11)
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where we denote by ‖ · ‖OP and ‖ · ‖F the operator norm and Frobenius norm, respectively. For
Λ � λI and β ∈ [0, B], it holds that ‖2β2 · Λ−1‖F ≤ 2B2d1/2λ−1. Meanwhile, let Nω,ε be
the ε/2-covering number of {ω ∈ Rd : ‖ω‖2 ≤ L}, and NA,ε be the ε2/4-covering number of
{A ∈ Rd×d : ‖A‖F ≤ 2B2d1/2λ−1}. It is known that [41]

Nω,ε ≤ (1 + 4L/ε)d, NA,ε ≤
(
1 + 16B2d1/2/(λε2)

)d2
.

Hence, by (H.11), we obtain that

logNε ≤ log(Nω,ε · NA,ε) ≤ d · log(1 + 4L/ε) + d2 · log
(
1 + 16B2d1/2/(ε2λ)

)
,

which concludes the proof of Lemma H.4.

Lemma H.5 (Covering Number of Q [16]). Let Q be a class of functions Q satisfying

Q(·, ·) = min
{
ψ(·, ·)>ω + Γ(·, ·), H − h

}
, (H.12)

where

Γ(·, ·) =
√

2β ·
(

log det
(
Λ + ψ(·, ·)ψ(·, ·)>

)
− log det(Λ)

)1/2

. (H.13)

Here the function Q is parameterized by (ω,Λ) and the parameter β is fixed. Let ψ(·, ·) be an Rd-
valued function and Λ ∈ Rd×d. Let ‖ψ(s,m)‖2 ≤ 1 for all (s,m) ∈ S ×M. For ‖ω‖2 ≤ L,
Λ � λI , β ∈ [0, B], and ε > 0, there exist an ε-covering ofQ with respect to the metric d(V, V ′) =
sup(s,m)∈S×M |Q(s,m)−Q′(s,m)|, such that the covering numberNε is upper bounded as follows,

logNε ≤ d · log(1 + 4L/ε) + d2 · log
(
1 + 16B2d1/2/(ε2λ)

)
.

Proof. The proof is similar to that of Lemma H.4. LetQ1 andQ2 be the functions defined in (H.12),
which are parameterized by (ω1,Λ1) and (ω2,Λ2), respectively. Note that

d(Q1, Q2) ≤ sup
min
{

(s,m)∈S×M

∣∣ψ(s,m)>ω1 + Γ1(s,m), H − h
}

−min
{
ψ(s,m)>ω2 + Γ2(s,m), H − h

}∣∣
≤ sup

(s,m)∈S×M
|ψ(s,m)>(ω1 − ω2) + Γ1(s,m)− Γ2(s,m)|, (H.14)

where the second inequality follows from the fact that min{·, H − h} is a contraction mapping.
Here we define Γ1 and Γ2 in (H.13) with Λ = Λ1 and Λ = Λ2, respectively. The rest of the proof
is the same as that of Lemma H.4. We omit the proof and refer to the proof of Lemma H.4 for the
details.

Lemma H.6 (Concentration of Self-Normalized Process). Let λ = 1 and β =
CdH

√
log(d(T + nH)/ζ). Let ζ > 0 be an absolute constant. It holds with probability at least

1− 2ζ that∥∥∥∥ 4∑
`=1

S`,h

∥∥∥∥
(Λkh)−1

≤ C ′dH
√

log
(
2(C + 1)d(T + nH)/ζ

)
, ∀(k, h) ∈ [K]× [H].

where C and C ′ are positive absolute constants and C ′ is independent of C.

Proof. Recall that we define

S1,h =

k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
V kh+1(sτh+1)− (PhV kh+1)(sτh, a

τ
h)
)
,

S2,h =

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
V kh+1(sih+1)− (P̃hV kh+1)(sih, a

i
h, u

i
h)
)
,

S3,h =

k−1∑
τ=1

ψh(sτh, a
τ
h) ·

(
rτh −R(sτh, a

τ
h)
)
, S4,h =

n∑
i=1

φh(sih, a
i
h, u

i
h) ·

(
rih − E[rh | sih, aih, uih]

)
.
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We define F−n+i the σ-algebra generated by the set {(s`h, a`h, u`h, r`h)}(`,h)∈[i]×[H] with timestep
index −n+ i. The set of σ-algebra {F−n+i}i∈[n] captures the data generation process in the offline
setting. We attach {F−n+i}i∈[n] to the σ-algebra {Fk,h,m}(k,h,m)∈[K,H,2] with timestep index t
defined in Definition F.1 to obtain the complete filtration. By Lemma H.1 with such a complete
filtration, it holds with probability at least 1− ζ that

‖S1,h + S2,h‖(Λkh)−1

≤ 4H2 ·
(
d/2 · log

(
det(Λkh)/ det(Λ0)

)
+ log(2Nε/ζ)

)
+ 8(n+ k)2ε2/λ, (H.15)

where Λ0 = λI and

Λkh =

k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)> +

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)> + λI.

Similarly, by Lemma H.1, it holds with probability at least 1− ζ that

‖S3,h + S4,h‖(Λkh)−1 ≤ 4H2 ·
(
d/2 · log

(
det(Λkh)/ det(Λ0)

))
. (H.16)

Note that

Λkh =

k−1∑
τ=1

ψh(sτh, a
τ
h)ψh(sτh, a

τ
h)> +

n∑
i=1

φh(sih, a
i
h, u

i
h)φh(sih, a

i
h, u

i
h)> + λI

� (k + n+ λ)I.

Meanwhile, recall that Λ0 = λI . Thus, we obtain that

det(Λkh)/ det(Λ0) ≤ (k + n+ λ)/λ. (H.17)

On the other hand, we obtain from Lemma H.3 and Lemma H.4 that

logNε ≤ d ·
(
1 + 4H

√
d(n+ k)/(ε

√
λ)
)

+ d2 · log
(
1 + 16β2

√
d/(ε2λ)

)
, (H.18)

where we set β = CdH
√

log(d(T + nH)/ζ). Finally, by setting ε = dH/(n + k) in (H.15),
plugging (H.17) and (H.18) into (H.15) and (H.16), respectively, and setting λ = 1, we obtain that∥∥∥∥ 4∑

`=1

S`,h

∥∥∥∥
(Λkh)−1

≤ ‖S1,h + S2,h‖(Λkh)−1 + ‖S3,h + S4,h‖(Λkh)−1

≤ C ′dH
√

log
(
2(C + 1)d(T + nH)/ζ

)
,

which holds with probability at least 1−2ζ. Here T = HK and C, C ′ are absolute constants, where
C ′ is independent of C. Thus, we complete the proof of Lemma H.6.

Lemma H.7. Let Λt ∈ Rd×d be a positive definite matrix satisfying Λt � I . Let ψt(·, ·) be a
Rd-valued function such that ‖ψt(·, ·)‖2 ≤ 1. Let Λt+1(·, ·) = Λt + ψt(·, ·)ψt(·, ·)>. It then holds
that

ψt(·, ·)>(Λt)
−1ψt(·, ·) ≤ 2 log det

(
Λt+1(·, ·)

)
− 2 log det(Λt).

Proof. Note that Λt � I . Thus, it holds that

0 ≤ ψt(·, ·)>(Λt)
−1ψt(·, ·) ≤ ‖ψt(·, ·)‖22 ≤ 1.

It then follows from the inequality x ≤ 2 log(1 + x) for all x ∈ [0, 1] that

ψt(·, ·)>(Λt)
−1ψt(·, ·) ≤ 2 log

(
1 + ψt(·, ·)>(Λt)

−1ψt(·, ·)
)
. (H.19)

Meanwhile, it follows from the matrix determinant lemma that

det
(
Λt+1(·, ·)

)
= det(Λt) ·

(
1 + ψt(·, ·)>(Λt)

−1ψt(·, ·)
)
. (H.20)

Finally, combining (H.19) and (H.20), we conclude that

ψt(·, ·)>(Λt)
−1ψt(·, ·) ≤ 2 log det

(
Λt+1(·, ·)

)
− 2 log det(Λt),

which concludes the proof of Lemma H.7.
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