
Appendix
A Sparsity Scheme

We use Figure A.1 to illustrate existing weight sparsity schemes, where grey represents the zero
weights and colored parts are for remaining non-zero weights in a sparse model. In Figure A.1
(a)⇠(c), the GEMM matrix format is used for demonstrating the sparsity schemes. Figure A.1 (d)
illustrates directly on the weight tensor.

Figure A.1 (a) is the unstructured sparsity [16, 1], where zero weights are distributed at arbitrary
locations. The unstructured sparsity can achieve a high sparsity ratio with negligible effect on
accuracy, but is not compatible with data-parallel executions on computing devices.

Figure A.1 (b) shows a type of structured sparsity [24, 2, 25, 26, 17, 3, 27, 28, 29, 30, 31, 18],
called channel sparsity, where the weights of entire channels are set to zeros. The other type of
structured sparsity is the filter sparsity [24, 28, 30, 29]. These two types of structured sparsity are
somewhat equivalent, because if some filters are removed in one layer, the corresponding channels of
the next layer become invalid. The structured sparsity preserves regularity on the sparse models, but
suffers from significant accuracy loss.

Figure A.1 (c) and (d) show two types of fine-grained structured sparsity [19, 34, 35, 36, 37]:
block-based sparsity and pattern-based sparsity.

For block-based sparsity, weights are partitioned into blocks with the same size. Figure A.1 (c)
illustrates an example block size of (4, 1). In the block-based sparsity, weights in the same block are
either set to zeros or remaining together. Since block-based sparsity uses a much finer granularity
compared with structured sparsity, it is considered as a fine-grained structured sparsity.

......

Fi
lte
rs

Channels
......
......

......
..

......

......

......

(a) Unstructured sparsity

Fi
lte
rs

Channels
......
......

......
..

......

......

......

(b) Structured sparsity (channel sparsity)

Fi
lte
rs

Channels
......
......
......

..

......

......

......

(c) Fine-grained structured sparsity (block-based sparsity)
Channels

Fi
lte
rs

......

......

......

(d) Fine-grained structured sparsity (pattern-based sparsity)

......

......

......

Figure A.1: (a) Unstructured sparsity; (b) structured sparsity (channel); (c) fine-grained structured
sparsity (block); and (d) fine-grained structured sparsity (pattern).

Figure A.1 (d) shows the pattern-based sparsity, which is a combination of kernel pattern sparsity
and connectivity sparsity. In kernel pattern sparsity, for each kernel in a filter, a fixed number of

14

weights are set to zeros, and the remaining weights form specific kernel patterns. The example in
Figure A.1 (d) is defined as 4-entry kernel pattern, since every kernel preserves 4 non-zero weights
out of the original 3⇥3 kernels. Besides that, the connectivity sparsity cuts the connections between
some input and output channels, which is equivalent to removing corresponding whole kernels.

Table A.1: The impacts of sparsity schemes on the memory footprint in sparse training.
Scheme Memory Footprint Approximation

Dense 2N · bw 2N · bw
Structured (1� s) · (2N · bw) (1� s) · (2N · bw)
Unstructured (1� s) · (2N · bw +N · bindex) +

P
l((Fl + 1) · bindex) (1� s) · (2N · bw +N · bindex)

Pattern (1� s) · (2N · bw + 1
4N · bindex) +

P
l((Fl + 1) · bindex) (1� s) · (2N · bw + 1

4N · bindex)
Block (1� s) · (2N · bw + 1

BN · bindex) +
P

l((
1
mFl + 1) · bindex) (1� s) · (2N · bw + 1

BN · bindex)

B Memory Footprint

Consider a sparse model with a sparsity ratio s 2 [0, 1] obtained from a dense model with a total of N
weights. A higher value of s denotes fewer non-zero weights in the sparse model. Suppose weights
are represented as bw-bit numbers. Each gradient is therefore represented with bw bits. For sparse
models, we need indices for denoting the sparse topology of weights/gradients within the dense
model. Indices are represented as bindex-bit numbers. Generally, mobile edge devices can support
8-bit fixed-point, 16-bit floating-point, and 32-bit floating-point numbers. Weights and gradients
are usually using 16-bit or 32-bit. Due to the data storage format on edge devices, 8-bit or 16-bit is
preferred for indices.

Table A.1 lists the memory footprint of sparse training in relevance to the sparsity scheme. In
the structured sparsity scheme, where entire filters/channels are zeros, the sparse model can be
reconstructed into a smaller dense model without indices. Thus, the memory footprint is determined
by the number of non-zero weights plus the number of corresponding gradients i.e., (1� s) · 2N .

For unstructured sparsity scheme, each non-zero weight and its gradient require indices to denote the
corresponding location within the dense matrix. Compressed sparse row (CSR) format is commonly
used for sparse storage. More specifically, consider the weights of a l-th CONV layer reshaped from
4-D tensor to a 2-D weight matrix, where each row represents the weights from a filter. We use Fl,
Chl, and Kl to denote the number of filters (output channels), number of channels (input channels),
and kernel size, respectively. Thus, there are Fl rows and Chl ·K2

l columns in a weight matrix. In
CSR format, each non-zero weight requires a column index i.e., col_index to denote its location
within the column. The number of column indices is equal to the number of non-zero weights. Also,
the number of non-zero weights in each row (filter) should be denoted by row_index, which is a
vector with Fl + 1 elements. The difference between two adjacent elements in row_index denotes
the number of non-zero weights in each row. Thus, the total number of indices of the entire network
for the unstructured sparsity scheme is (1 � s) · N +

P
l(Fl + 1). And the memory footprint of

model representation together with gradients for unstructured sparsity is shown in Table A.1. Note
that the number of filters (i.e., Fl) is much smaller than the total number of weights, and therefore the
last term can be ignored as an approximate.

For pattern-based sparsity scheme, each kernel with non-zero weights requires a kernel_index
to represent the kernel location in a filter. For the case of 4-entry kernel pattern used in Figure A.1
(d), it is equivalent to every 4 non-zero weights sharing a kernel_index. Similar as the unstructured
sparsity, the row_index is also needed.

For block-based sparsity scheme, consider the block size of B = m⇥n, since all the weights within
a block will be either zero or non-zero together, it is equivalent to every B non-zero weights sharing
a block_index. As for the row_index vector, a total of 1

mFl + 1 elements are needed.

For the pruning-at-initialization algorithms, SNIP and GraSP involve several dense training iterations
to determine the importance of initial weights. When under the end-to-end edge training scenario,
their peak memory footprint is considered the same as the dense training: 2N · bw.

15

On the other hand, the sparse training work such as SNFS [12] and RigL [11], which requires the
sparse weights (unstructured) and dense gradients during the sparse training to evaluate the weight
importance, the memory footprint is in between dense training and full sparse training and can be
approximated as: (2� s) ·N · bw + (1� s) ·N · bindex.

C Compiler-Level Optimizations for Training Acceleration

C.1 How Does Sparsity Accelerate Training?

The training process consists of two phases, the forward propagation and the backward propagation.
Considering the l-th convolutional (CONV) layer in the neural network, the forward propagation
phase during training, which is the same as the inference process, can be formulated as:

al = �
�
zl
�
= �

�
W l ⇤ al�1 + bl

�
, (3)

where W , b, and z represent the weights, biases, and output before activation, respectively; �(·)
denotes the activation function; a is the activations; ⇤ means convolution operation. Many previous
works [28, 30, 29, 34, 35, 37] have proved that the sparse weight matrices (tensors) can result in
inference acceleration by effectively reducing the number of multiplications in convolution operation.
Thus, the sparsity can inherently accelerate the forward propagation phase in the training process.

On the other hand, the goal of the backward propagation phase is to obtain the gradients of the
weights, so as to update the weights. The two main calculation steps are as follows:

�l = �l+1 ⇤ rotate 180�
�
W l+1

�
� �0 �zl

�
, (4)

Gl = al�1 ⇤ �l, (5)

where �l is the error associated with the l-th layer; and Gl denotes the gradients. In the above equa-
tions, � represents element-wise product, �0(·) denotes the derivative of activation, and rotate 180�(·)
means rotating matrix 180 degrees.

It can be observed that the computations in both two steps are essentially based on convolution (i.e.,
matrix multiplication). The former uses sparse weight matrix (tensor) as the operand, and therefore
can be accelerated in the same way as the forward propagation. The latter allows a sparse output
result since the gradients have the same sparsity topology as the weights. Thus, both two steps have
reduced computations, which are roughly proportional to the sparsity ratio, and therefore can be
accelerated in the back propagation.

C.2 Compiler Optimizations

In previous works such as PatDNN [35], compiler-level optimizations are used for accelerating
inference. We extend those compiler optimizations and incorporate various sparsity schemes for ac-
celerating the sparse training computation in both the forward-propagation and backward-propagation
on edge devices. We adopt several compiler optimization techniques, including sparse model storage,
matrix reorder, and parameter auto-tuning to relieve the poor memory performance, heavy control-
flow instructions, thread divergence, and load imbalance caused by sparse computation, and thus
achieving the sparse training acceleration.

Sparse Model Storage. Based on the CSR format for unstructured sparse model representation,
we use more compact model storage formats delicately designed for pattern-based sparsity and
block-based sparsity, which can better compress the storage for indices by leverage the structural
regularity of the sparsity schemes and save memory-bandwidth of edge devices. Moreover, the data
locality is further improved, enabling later branch-less execution.

Matrix Reorder. For the computation during the forward- and backward- propagation for each layer,
the matrix multiplication is executed by multiple GPU threads simultaneously. Since the weight
matrix is highly sparsified, and the non-zero weights are not evenly distributed across the whole
weight matrix, the threads may execute the patterns/blocks with significantly divergent computations if
the computation follows the original matrix order. Thus, we introduce the matrix reorder optimization
to group the rows (filters) in the weight matrix that have similar computation patterns together (i.e.,
grouping the rows containing a similar number of non-zero patterns/blocks to be computed.) After

16

reordering the matrix, the rows in each group are assigned to multiple threads to achieve balanced
processing.

Parameter Auto-tuning. Sparse training on edge devices involves many execution-related and
performance-critical tunable parameters such as the memory data placement, matrix tiling sizes,
looping unrolling factors, etc. These parameters will significantly vary the computation efficiency as
well as the training speed. The best-suited configuration of the parameters is hard to be determined
manually. Thus, We introduce the parameter auto-tuning technique to search the parameters in an
automatic manner.

D Elastic Mutation for Pattern-based and Block-based Sparsity Schemes

Unlike the unstructured sparsity scheme, the mutation processes of pattern-based and block-based
sparsity schemes are required to satisfy the structural constraints of those sparsity schemes.

Pattern-based sparsity: We perform ArgRemoveTo(·) by removing the least important convolution
kernels to meet the sparsity ratio setting. Note that the importance of a specific convolution kernel
can be obtained by summing up weight importance in the kernel. For ArgGrowTo(·), we randomly
select empty kernels (i.e., all weights in kernel are zeros) and set a random pattern style to them.
The newly activated weights can be trained from their initial values, which are zeros. The total
activated weights should meet the ArgGrowTo(·) sparsity setting. Please note that ArgRemoveTo(·)
and ArgGrowTo(·) select the same number of kernels to remove or grow in a convolution filter within
each layer for a balanced computation regime [34, 36].

Block-based sparsity: We perform ArgRemoveTo(·) by removing the least important blocks to
meet the sparsity ratio setting. Note that the importance of a specific block can be obtained by
summing up weigh importance in the block. For ArgGrowTo(·), we randomly select empty blocks
(i.e., all weights in block are zeros) and grow the whole block from zero values. The total activated
weights should meet the ArgGrowTo(·) sparsity setting.

E Weight Importance Estimation

In MEST+EM(&S), besides the weight magnitude, we also consider the weight’s current gradient as
an indicator for its changing trend to estimate its importance. Because the weight with relatively large
magnitude may become smaller, indicating it is becoming unimportant, while the small-magnitude
weights can become larger as well. According to the Equation (1) in the main paper, we consider
three types of weights are relatively important in our mutation process, which are the weights with 1)
large weight magnitude but small gradient, 2) small weight magnitude but large gradient, and 3) large
weight magnitude and large gradient.

Figure E.1: MEST+EM accuracy with varying � coefficient using ResNet-32 on CIFAR-100.

Figure E.1 shows the sparse trained model accuracy under different � values. We use ResNet-32 on
CIFAR-100 as an example. When � is set to 0.01 or 0.1, the accuracy can be improved compared to
only considering the weight magnitude (i.e., � = 0).

17

F Data-Efficient Training

F.1 Basic Concepts

To explore the data efficiency in DNN training, measuring the effective information of a training
sample for a network is a very important aspect. In [23], the number of forgetting events of a training
example during the training process is used as an indicator to reflect the amount of information and
the complexity of an example.

Learning event. A learning event occurs when a training sample goes from being misclassified to
being correctly classified by a network in two consecutive training epochs.

Forgetting event. A Forgetting event occurs when a training sample goes from being correctly
classified to being misclassified by a network in two consecutive training epochs.

Unforgettable example. Throughout the entire training process, if an example will never be
misclassified after it has been correctly classified, the example is considered an unforgettable example.
The examples that have never been correctly classified are not considered to be unforgettable.

According to prior works [20, 21, 22, 23], the unforgettable examples are generally considered
as less informative and easy to be learned. The figure shows a example of unforgettable training
examples and training examples with the highest forgetting event counts obtained using ResNet-32
on CIFAR-10 dataset. It can be observed that the unforgettable examples are intuitively much easier
to recognize, which preserve distinctive object features and the objects have high contrast to the
background. On the contrary, the most forgettable examples are clearly more complex compared to
the unforgettable examples.

airplain

unforgettable

most forgettable

automobile bird cat deer dog frog horse ship truck

Figure F.1: Visualization of unforgettable examples and the most forgettable examples obtained using
ResNet-32 on CIFAR-10.

F.2 More Results for Final Accuracy using Different Number of Phase-1 Epochs

Figure F.2 shows the final accuracy status obtained using different number of first training phase
epochs. The results include ResNet-32 on CIFAR-100, VGG-19 on CIFAR-10, and VGG-19 on
CIFAR-100. The yellow grids stand for using that number of epoch for the first training phase can
achieve similar accuracy as using a full dataset for the entire training process. Compared to the
results on the CIFAR-10 dataset, the networks generally require more first training phase epochs on
the CIFAR-100 to achieve similar accuracy as the full dataset training. This phenomenon can be
observed for all pretraining and sparse training methods.

End with lower accuracy End with similar accuracy

pretrain
1st phase epochs

ResNet-32 CIFAR-100 VGG-19 CIFAR-10 VGG-19 CIFAR-100

sparsity=90%, th=0

block
pattern

unstructured

unstructured

block
pattern

60 70 80 90 100 110 120130 140 60 70 80 90 100110 120130 140

sparsity=95%, th=0

sparsity=90%, th=1

sparsity=95%, th=1
End with lower accuracy End with similar accuracy

sparsity=90%, th=0

60 70 80 90 100110 120130 140 60 70 80 90 100110 120130 140

sparsity=95%, th=0

sparsity=90%, th=1

sparsity=95%, th=1

block
pattern

unstructured

unstructured

block
pattern

M
ES
T+
EM

M
ES
T+
EM

&
S

M
ES
T+
EM

M
ES
T+
EM

&
S

30

End with lower accuracy End with similar accuracy

sparsity=90%, th=0

40 6050 70 80 100 12020

sparsity=95%, th=0

30

sparsity=90%, th=1

40 6050 70 80 100 12020

sparsity=95%, th=1

Figure F.2: The epoch number used for the first training phase and its corresponding final accuracy
status under sparsity ratios of 90% and 95% and threshold of 0 and 1.

18

F.3 Impact of Mutation on Unforgettable Examples

Figure F.3 shows the trend of the number of unforgettable examples throughout the entire training
process, and we name it the forgetting curve. Note that different from the MEST(vanilla) method, the
vanilla method here stands for a static sparse training method, which randomly pruned weights at
initialization and without any mutation along the training process. Compared to the methods without
mutation (i.e., pretrain and vanilla), the forgetting curve of the mutation methods (i.e., MEST+EM
and MEST+EM&S) do not show severe fluctuations throughout the entire training process, indicating
that our mutation method will not cause a notable increase in forgetting. This is because the mutated
weights are least important, which only have a minor impact on the model performance. And our
elastic mutation also gradually decreases the mutation rate, which further enhance the network
stability. We can also observe that our MEST methods can increase the number of unforgettable
examples compared to the vanilla method, which provides the potential of removing a larger portion
of training examples and hence a higher acceleration.

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100 120 140 160

pretrain vanilla MEST+EM MEST+EM&S

N
um

be
r o

f u
nf

or
ge

tta
bl

e
ex

am
pl

es

Epoch

Figure F.3: The trend of the number of unforgettable examples throughout the entire training process.

19

G Experiment Setup

We list hyperparameter settings for the proposed MEST+EM and MEST+EM&S in Table G.1.

Table G.1: Hyperparameter settings.
Experiments VGG-19 on CIFAR ResNet-32 on CIFAR ResNet-50/34 on ImageNet

Regular hyperparameter settings

Training epochs (⌧end) 160 160 150

Batch size 64 64 2048

Learning rate scheduler cosine cosine cosine

Initial learning rate 0.1 0.1 2.048

Ending learning rate 4e-8 4e-8 0

Momentum 0.9 0.9 0.875

`2 regularization 5e-4 1e-4 3.05e-5

Warmup epochs 5 0 8
MEST hyperparameter settings

Number of epochs do EM (⌧stop) 130 130 120

EM frequency (�⌧) 5 5 2

MEST+EM schedule 0 - 100: RM (s + 0.05) 0 - 100: RM (s + 0.05) 0 - 90: RM (s + 0.05)
ArgRemoveTo sparsity (RM) GR (s) GR (s) GR (s)
ArgGrowTo sparsity (GR) 100 - 130: RM (s + 0.025) 100 - 130: RM (s + 0.025) 90 - 120: RM (s + 0.025)

GR (s) GR (s) GR (s)
130 - 160: No EM 130 - 160: No EM 120 - 150: No EM

MEST+EM&S schedule 0 - 100: GR (s - 0.05) 0 - 100: GR (s - 0.05) 0 - 90: GR (s - 0.05)
ArgRemoveTo sparsity (RM) RM (s) RM (s) RM (s)
ArgGrowTo sparsity (GR) 100 - 130: GR (s - 0.025) 100 - 130: GR (s - 0.025) 90 - 120: GR (s - 0.025)

RM (s) RM (s) RM (s)
130 - 160: No EM 130 - 160: No EM 120 - 150: No EM

Importance coefficient (�) 0.01 0.01 0.001

H Accuracy Results of ResNet-32 on CIFAR-10, VGG-19 on CIFAR-10 and
CIFAR-100, and ResNet-34 on ImageNet-2012

The MEST accuracy results for ResNet-32 on CIFAR-10 is shown in Figure H.1. When incorporating
the data-efficient (DE) training, 29.5% ⇠ 30% training examples are removed without decreasing the
accuracy. We also validate our MEST on VGG-19 using CIFAR-10 and CIFAR-100. The results are
shown in Table H.1 and Figure H.2. For the ImageNet dataset, we also show MEST accuracy results
on ResNet-34. Since the size of the ImageNet dataset itself is about 150GB and a ResNet50 requires
more than 1 day to train on a 8 x 2080Ti GPU server, it is impractical to be trained on current edge
devices such as mobile phones. Therefore, we mainly use ImageNet dataset to show the accuracy
results and validate the effectiveness of our MEST. Table H.2 shows the accuracy results with both
regular training effort (i.e., 150 epochs) and 1.7⇥ effort (i.e., 250 epochs). When incorporating the
data-efficient (DE) training, 9.3% ⇠ 10.7% training examples are removed.

0.5
0.75

1
1.25
1.5

1.75
2

2.25
2.5

92 92.2 92.4 92.6 92.8 93 93.2 93.4

A
cc

el
er

at
io

n
ra

te
 (t

im
es

)

ResNet-32 on CIFAR-10

Unstructured

Unstructured

Pattern Pattern

BlockBlock

SNIP

GraSP

DSRSET

SNIP GraSP DSR
SET MEST+EM&S MEST+EM&S+DE

MEST+EM+DE
MEST+EM

2.77

Reference Works
Ours

(a) (b) (c)

Figure H.1: Results obtained using ResNet-32 on CIFAR-10. We choose the reference works
that can maintain both sparse weights and gradients along the entire training process. (a) and (b)
Accuracy results of the proposed MEST framework using different sparsity schemes and sparsity. (c)
Comparison with representative SOTA works in accuracy, training acceleration rate, and memory
footprint. Sparsity ratio is 90% for all results. The acceleration rate is normalized with respect to
dense training. The size of the circles represents the relative cost of the memory footprint. We use
th = 0 as the threshold for DE.

20

Table H.1: Accuracy comparison with SOTA works using VGG-19 on CIFAR-10 and CIFAR-100.
Dataset Memory CIFAR-10 CIFAR-100

Footprint (Dense: 94.20) (Dense: 74.17)

Sparsity ratio 90% 95% 98% 90% 95% 98%

LT [49] dense 93.51 92.92 92.34 72.78 71.44 68.95

SNIP [9] dense 93.63 93.43 92.05 72.84 71.83 58.46
GraSP [10] dense 93.30 93.04 92.19 71.95 71.23 68.90

DeepR [15] sparse 90.81 89.59 86.77 66.83 63.46 59.58
SET [14] sparse 92.46 91.73 89.18 72.36 69.81 65.94
DSR [13] sparse 93.75 93.86 93.13 72.31 71.98 70.70

MEST (vanilla) sparse 91.73±0.27 90.43±0.33 87.82±0.27 68.57±0.38 65.01±0.32 60.88±0.36
MEST+EM sparse 93.07±0.49 92.59±0.36 90.55±0.37 71.23±0.33 69.08±0.46 64.92±0.42
MEST+EM&S sparse 93.61±0.36 93.46±0.41 92.30±0.44 72.52±0.37 71.21±0.41 69.02±0.34

Table H.2: Accuracy with ResNet-34 on ImageNet.

Method Top-1 accuracy (%)

Dense 74.08

Sparsity ratio 60% 70% 80% 90%

MEST (vanilla) 73.08 70.71 69.74 65.68
MEST+EM 74.10 73.66 72.83 70.38
MEST+EM&S 74.12 73.81 73.57 72.10
MEST+EM&S+DE 74.17 73.83 73.48 72.03
MEST1.7⇥ (vanilla) 73.21 70.79 69.92 65.77
MEST1.7⇥+EM 74.30 73.89 73.12 70.76
MEST1.7⇥+EM&S 74.34 73.97 73.86 72.25
MEST1.7⇥+EM&S+DE 74.37 73.93 73.79 72.13

(a) Accuracy comparison on VGG-19 using CIFAR-10 dataset.

(b) Accuracy comparison on VGG-19 using CIFAR-100 dataset.

Figure H.2: Accuracy of the proposed MEST framework using different sparsity schemes on VGG-19.

21

I MEST Accuracy on Compact Model MobileNet-V2 and Deeper Model
ResNet-110

We also evaluate our MEST+EM&S on MobileNet-V2 as the representative of compact models and
on ResNet-110 as the representative of deep models. Table I.1 shows the accuracy achieved by our
MEST+EM&S method on CIFAR10 under different sparsity ratios, and Table I.2 shows the overall
training FLOPs (⇥e12) and number of model parameters (M). The MobileNet-V2 is more sensitive
to sparsity compared to ResNet-32 and ResNet-110, as shown in Table I.1. Actually, the ResNet-32
(as well as ResNet-20, ResNet-110) are the lightweight ResNet version dedicated to CIFAR tasks,
while the ResNet-18, ResNet-34, and ResNet-101 are the large versions for the ImageNet. So, as we
can see from Table I.2, the ResNet-32 is even smaller than MobileNet-V2 (1.86M parameters v.s.
2.3M parameters.), while the computation cost of ResNet-32 is higher than MobileNet-V2 due to
the depth-wise separable CONV. Note that the ResNet-32 here (and in the paper) is a (2⇥) widened
version, which is consistent with the reference works cited in the paper (all as shown in Table 1).
This is the reason that the number of parameters and training cost of ResNet-32 is similar to the
ResNet-110 as shown in Table I.2.

It is interesting to see that, under 90% sparsity, ResNet-32 has a similar accuracy and training FLOPs
as the MobileNet-V2 under 60% sparsity, while the number of parameters of ResNet-32 is 4.8⇥
less than MobileNet-V2. For this case, the ResNet-32 will be more desired than MobileNet-V2.
Moreover, MobileNet-V2 is much deeper (57 CONV layers) than ResNet-32, which will require
more data movement among memory and cache for reading and writing intermediate results and lead
to a higher execution overhead.

Table I.1: Accuracy comparison on ResNet-32, MobileNet-V2, and ResNet-110 on CIFAR-10 using
MEST+EM&S.

Sparsity Dense 50% 60% 70% 80% 90%
ResNet-32 94.88 94.41 94.05 94.14 93.70 93.27
MobileNet-V2 94.08 94.06 93.32 93.05 92.38 90.61
ResNet-110 94.64 93.47 93.73 93.62 93.26 92.29

Table I.2: Comparison of train FLOPs (⇥e12) and number of parameters (M) on ResNet-32,
MobileNet-V2, and ResNet-110 on CIFAR-10 using MEST+EM&S.

Sparsity Dense 50% 60% 70% 80% 90%
ResNet-32 6.38 / 1.86 3.30 / 0.93 2.68 / 0.74 2.07 / 0.56 1.45 / 0.37 0.83 / 0.19
MobileNet-V2 2.11 / 2.30 1.09 / 1.15 0.88 / 0.92 0.68 / 0.69 0.48 / 0.46 0.28 / 0.23
ResNet-110 5.74 / 1.70 2.97 / 0.85 2.41 / 0.68 1.86 / 0.51 1.31 / 0.34 0.75 / 0.17

J Why Does Memory-Economic Critical for Training on Edge Devices?

The availability of edge devices for training requires consideration of two aspects: (1) whether the
dataset and model can be accommodated by a mobile device; (2) whether the free space of device
memory (RAM) is sufficient for the required training memory footprint.

The current mobile devices generally have memory in GB levels. For example, current general mobile
devices such as Samsung Galaxy A20s, Google Pixel 3, and Samsung S20 have 2GB or more memory.
However, unlike the training on a high-end GPU cluster where all the memory can be reserved for
training, the memory on mobile devices will also be partially occupied by the operating system and
other backend applications. This puts an even greater strain on the memory of mobile devices. Thus,
having a smaller memory footprint will always benefit the training on mobile devices.

We use ResNet-32 and VGG-19 as examples. Assume 32 bits weights, 8 bits indices are used with
batch size of 64. For ResNet-32, the dense model and the methods that involve dense computations
require a 462MB memory footprint for model size, while our sparse model with unstructured sparsity
requires 46MB (69MB) and 23MB (46MB) under 90% and 95% sparsity for MEST+EM(&S),
respectively. For VGG-19, a significant reduction can be obtained, where the dense model requires
4964MB memory footprint, while our sparse model with unstructured sparsity requires 494MB
(744MB) and 247MB (494MB) under 90% and 95% sparsity for MEST+EM(&S), respectively.

22

MEST successfully reduces the memory footprint (to less than 100M and 800M for ResNet-32
and VGG-19) while maintaining a similar or higher accuracy than prior works, while the reference
methods either require a dense memory footprint (LT, SNIP, GraSP, RigL) or suffer a severer accuracy
degradation.

K Layer-wise Sparsity Scheme and Sparsity Ratio

As shown in the main paper, different sparsity schemes have different performance in accuracy and
acceleration rate. Moreover, pattern-based sparsity is only applicable to 3⇥3 CONV layers, while
many popular networks contain a large portion of 1⇥1 CONV layers or FC layers. Therefore, hybrid
sparsity schemes may be a better option, although the pattern-based sparsity is still preferred for
3⇥3 CONV layers. On the other hand, different types and different sizes of layers inherently exhibit
different weight redundancy and therefore deserve non-uniform sparsity ratios among layers.

In this section, we further investigate the performance when using a layer-wise sparsity scheme and
sparsity ratio assignment. We use ResNet-50 on CIFAR-100 as an example, and Table K.1 shows the
results of accuracy and training speed when using a single sparsity scheme or using different sparsity
schemes on different types of layers. The training speed is the time of a training iteration in seconds
while using a batch size of 64 and measured on a Samsung smartphone using the mobile GPU. For
ResNet-50, over 50% of weights and computations are contributed by the 1⇥1 CONV layers. If we
only adopt pattern-based sparsity, which is only applicable to 3⇥3 CONV layers, the overall sparsity
ratio is 44% under a 90% sparsity on the 3⇥3 CONV layers. Therefore, only use pattern-based
sparsity is not able to achieve a high sparsity ratio and hence lower training acceleration. Block-based
sparsity can be adopted across the entire network. But both the accuracy and training speed are lower
than using hybrid sparsity schemes, i.e., adopting pattern-based sparsity to 3⇥3 CONV layers and
block-based sparsity to 1⇥1 CONV layers, respectively.

We also explore different sparsity ratio strategies by comparing three sparsity ratio settings, including
1) the uniform sparsity ratio (90%) on all the layers, 2) a fixed ratio (1.12:1) between 3⇥3 CONV
layers and 1⇥1 CONV layers in the entire network (i.e., 95% pattern-based sparsity for all 3⇥3
CONV layers and 85% block-based sparsity for 1⇥1 CONV layers), and 3) a layer-wise ratio
assignment proportional to the layer size. All three strategies are hybrid sparsity schemes and have
the same overall sparsity ratio (90%).

Table K.1: Comparison of accuracy and training speed using different sparsity schemes and different
layer-wise sparsity ratios on ResNet-50 using CIFAR-100.

Scheme Sparsity Accuracy Training
Ratio (%) Speed (s/iter)

Dense 0% 77.18 11.92

MEST+EM

Pattern 44% (90%) 75.36 8.18
Block 90% 72.82 6.25
Hybrid (uniform) 90% 72.87 5.39
Hybrid (1.12:1) 90% 73.24 5.55
Hybrid (proportional) 90% 73.56 5.62

MEST+EM&S

Pattern 44% (90%) 75.88 8.36
Block 90% 73.68 6.79
Hybrid (uniform) 90% 73.72 5.99
Hybrid (1.12:1) 90% 73.98 6.08
Hybrid (proportional) 90% 74.12 6.15

It can be observed that the three strategies have similar training speed, where the uniform sparsity
ratio is the fastest since the acceleration rate is not linearly increased along with the increased sparsity
ratio, as shown in Figure 2 in the main paper. On the other hand, when using non-uniform sparsity
ratios, the accuracy can be improved, which indicates the larger layers have more redundant weights
compared to smaller layers, and can tolerant a higher sparsity ratio.

23

L Combinations of Dataset Compression and Model Sparsity

In our work, we intend to incorporate dataset-efficient training on top of the sparse training and
without further decreasing the accuracy. However, when a minor accuracy drop is allowed, selecting
the best-suited combination of dataset compression and model sparsity to achieve a higher acceleration
while maintaining a higher accuracy is an interesting topic that can be further studied.

Table L.1: Comparison of accuracy results on different dataset compression and model sparsity
combinations. The results are obtained by using MEST+EM&S with unstructured sparsity on ResNet-
32 and CIFAR-10 dataset.

Scheme baseline ¨ ≠
Sparsity 90% 95% 90%
Removed examples 0 0 17900
Phase-1 epochs - - 40
Final accuracy (%) 93.27 92.44 93.02

For example, as shown in Table L.1, we consider the MEST+EM&S result under 90% unstructured
sparsity as the baseline scheme. If we intend to further increase the acceleration rate, we can choose
two different schemes, including ¨ further increasing the sparsity or ≠ incorporating data-efficient
training (i.e., compress the dataset). Based on our measurements, the scheme ¨ and ≠ provide the
same acceleration rate (1.27⇥) on top of the baseline scheme. But we observe that incorporating
data-efficient training instead of further increasing the model sparsity can deliver higher accuracy.
Therefore, we may hypothesize that when the model sparsity goes beyond a certain degree, to further
increase the acceleration rate while preserving a higher accuracy, it is more desired to compress the
dataset than compress the model. Since both the number of removed examples and the removing
epoch will affect the final model accuracy, it is a complicated problem that is worth to be further
studied in the future.

24

