A Appendix

A.1 Neural Network Architecture

A neural network is used to estimate the subgoal properties for each subgoal independently. The
neural network architecture is similar to that of [3] and implemented in PyTorch [20]. The network
takes as input an RGB panoramic image of size 512 x 128 x 3, a relative goal position image of size
128 x 32 and a relative subgoal position image of size 128 x 32. For both relative position images,
the value as each pixel encode the relative position to the target in the frame of an agent oriented
in the direction specified by the column in which the pixel is located; we additionally divide those
distance values by 100, so as to keep them of manageable size without needing to use batch norm,
which would remove absolute scale.

The network begins with a convolutional encoder block architecture. Each block consists of 2
convolution operations, each followed by a Batch Norm operation (BatchNorm2d in PyTorch) with
momentum 0.01 and a Leaky ReL.U (with “leaky factor” 0.1). Each block concludes with a Max
Pooling operation (MaxPool2d in PyTorch) of kernel size 2 and stride 2. Six such blocks are used
to process the images, with output channel count: [16, 16, 32, 32, 32, 32]. Additionally, the relative
position images are concatenated (in channel space) after application of the second convolutional
encoder block, which is how knowledge of the goal and subgoal location is injected into the system;
the image therefore undergoes two convolution block operations without knowledge of the location of
the goal/subgoal, and then the remaining operations having received that knowledge. A single 1 x 1
convolution operation (followed by a single batch norm and leaky ReL U operation) is used to reduce
the number of channels from 32 to 4 before flattening into a 64-element vector. Two fully-connected
layers are then applied to the vector (each followed by a batch norm and a leaky ReL.U) reducing the
size of the vector to 32 and 16 elements respectively. A final fully connected operation is applied to
map those 16 values to 3, which correspond to the logits of success, the expected cost of success Rg,
and the expected cost of exploration (failure) Rr. We apply a logistic sigmoid to the logits, to obtain
the likelihood of successfully reaching the goal Ps.

A.2 Training Details and Hyperparameters

As mentioned in Sec. 4, the objective function for training consists of three terms: Lcomp (defined in
full above), Lupervised> and Lyoundgs. The supervised learning term is a weighted binary cross entropy
loss Lgupervised = Bsupervised BCELOS S, (Ps, £g0al ); for all experiments, we use a positive weight of 2.0,
which approximately compensates for the dataset imbalance in the training data, in which roughly
half as many subgoals lead to the goal as those that do not. As mentioned in the text, Lyoungs imposes
losses (either via a ReLLU activation function or its smoothed variant the softplus function) to penalize
negative values of the Rr and Rg subgoal properties and to impose heuristic bounds on the value
of () derived from the performance of the non-learned baseline during data collection. The bounds
losses are defined as follows:

»Cbounds - Z ﬁnegSOftplus(_RE) + Z Bnegsoftplus(—RS)
Rp Rs )]

+ /BlowerReLU(Qlower - Q) + ﬁupperReLU(Q - Qupper)

The weights as follows: Bepervised = [1/10 for University Building Environment, 1/400 for Guided
Maze Environments |, Sneg = Biower = 1/50, Bupper = 1/500. As discussed in Sec. 4, for high values
of Bsupervised, the agent can already perform well on the less complex Guided Maze environments and
so the supervised loss weight is decreased for the Guided Maze environments so as to allow us to
demonstrate the effectiveness of our training-via-explaining approach. Hyperparameters were chosen
primarily via interaction with the Guided Maze environment. We sought a parameter regime in
which the comparison objective Lcomp Was by far the largest loss term in general, yet where the other
training objectives (Lsupervised and Lopounds) Were sufficiently large so as to avoid issues with vanishing
gradients and non-physical parameter values that they are included to overcome. We reiterate that the
auxiliary losses exist to help stabilize training; without these losses, training is sometimes ineffective
and the performance of the cannot reliably exceed the performance of the non-learned baseline. For
example, preliminary experiments demonstrate that without these losses, the performance of the 4SG
planner in the Guided Maze environment roughly matches the non-learned baseline. Additionally, as
mentioned in Sec. 7, these losses also help to discourage the learned model from producing unrealistic
values for the subgoal properties.

15



Panoramic images with normalized integrated gradients of likelihood a subgoal leads to the unseen goal.

Subgoal leads to goal Subgoal does not lead to goal Subgoal does not lead to goal
Predicted Likelihood: 0.94 Predicted Likelihood: 0.06 Predicted Likelihood: 0.11

When the subgoal leads to the When the subgoal does not lead to the goal, the strongest of the

goal (denoted by a green path integrated gradients are negative associations with pixels

on the ground), the integrated corresponding to the green path—which points elsewhere—the
gradient associated with the most salient visual feature for the likelihood of a path to lead to the
green path is positive. goal in this environment.

Figure 4: Preliminary feature attribution results for P;, the likelihood a subgoal will lead to the
goal These results show that existing tools for interpreting convolutional neural networks highlight
salient features useful for informing the predictions of neural networks trained via our approach.

Training proceeds for one epoch and therefore sees each datum only a single time. We begin with a
learning rate of 0.02 and decay the learning rate by half every time 1/8 of the data has been consumed.
We train and evaluate on a single Nvidia 2060 SUPER GPU. For each planner, training on the Guided
Maze environment takes roughly 5 hours and on the University Building environment (which has
more and larger data) takes roughly 12 hours.

A.3 Natural Language Grammar

The primary algorithmic component of explanation generation produces a set of subgoal property
changes Ao, from which we use a simple rule-based grammar to generate a natural language
explanation. The process is relatively simple: we first order the subgoals by the importance of their
most important subgoal and then order the subgoal properties within each subgoal. We loop through
this newly-ordered list and for all the most important subgoal properties—those properties whose
gradients were used to change the agent’s behavior—and inserts them into template strings before
concatenating them into an explanation. An example: if the likelihood of success Pg for Subgoal 0
decreased from 0.7 to 0.2 so that the agent would select Subgoal 2, we would output the following: /
would have preferred Subgoal 2 over Subgoal 0 if I instead believed Subgoal 0 were significantly less
likely to lead to the goal (20%, down from 70%). Fig. 1 and Fig. 3 both include example explanations
generated via this process. We include the qualifiers slightly and significantly to denote when the
absolute property changes are outside the range of 10% and 40% (respectively) for a change in
likelihood (Ps) and 1 meter and 5 meters (respectively) for a change in cost/distance (Rg and Rg).
These values are naturally somewhat context-dependent, and so what a significant change looks like
may change in environments substantially different from those we include here.

We note that the grammar in its current form are unabridged representations of the underlying
explanation: all of the subgoal property used during computation of our counterfactual explanation
are included and their numerical values are included. However, we do acknowledge that there may
be other ways of presenting this information that may be easier to digest, including not presenting
some of the subgoal property changes if the changes are deemed “sufficiently small.”” What is
implied by “sufficiently small” and the potential benefit of such a change will require additional
experiments. We also anecdotally observe that human descriptions of navigation in real-world spaces
often involves relationships between multiple options, something not permitted by such a simple
grammar; in the future it may be possible to update our grammar to include additional language
that incorporates the relationship between different subgoals: e.g., that an agent is favoring a route
that leads it towards exploring two promising subgoals over another route which explores only a
single somewhat promising alternative. In future work, we hope to explore how to best present this
information to humans: e.g., changing the number of subgoal properties we use during masking, the
grammar we use to generate the language, or the graphical interface.

A.4 Proof of concept pixel attribution for subgoal property estimation

This work focuses on explanations of high-level behavior for agents tasked with long-horizon planning
in partially-revealed environments. Yet, as we mention in Sec. 7, while the connection between
the low-level perception (via images) and the estimated subgoal properties is opaque, there exists

16



significant recent work devoted to interpreting convolutional neural networks to understand this
relationship.

In proof-of-concept experiments, we use an implementation of Axiomatic Attribution for Deep
Networks [31] provided via the Captum PyTorch interpretability library [13] to interpret Ps, the
likelihood of a subgoal to lead to the goal. Fig. 4 shows these preliminary results for a few selected
subgoals in the Guided Maze environment for predictions from our learned planner trained using 4
subgoal properties, as described in Sec. 5. These preliminary results show that across the different
images—each oriented such that the subgoal of interest is at the center of the panorama—the feature
attribution results correctly highlight as the most important visual feature for correctly estimated the
probability. When the subgoal leads to the goal, as evidenced by the green path leading toward the
subgoal at the center of the image, the attribution is positive indicating that the green path pixels
are a positive predictor of for the likelihood Pg. When the subgoal does not lead to the goal, the
feature attribution associated with the green path is mostly negative as the green path points elsewhere.
This proof of concept experiment suggests the possibility to enhance our explanations of high-level
behavior with existing tools for neural network interpretability, which could elucidate the connection
between low-level perception and long-horizon behavior in this challenging application domain.

17



