
A Implementation Details
Datasets. We conduct exhaustive experiments on not only a standard low dimensional dataset on
32×32 pixels with 10 classes: CIFAR-10 [1] and SVHN [2], but also more challenging datasets Tiny-
ImageNet [3]. Tiny-ImageNet is a small subset of ImageNet dataset, containing 100,000 training
images, 10,000 validation images, and 10,000 testing images separated in 200 different classes,
dimensions of which are 64×64 pixels.

Baseline Models. We adopt two baseline models: VGG-16 and WideResNet-28-10 trained with L∞
perturbation magnitude γ = 0.03 as a standard PGD training [4]. For the models’ adversarial training,
we use learning rate of 0.01 with SGD [5] in 60 epoch for early stopping [6] to reduce overfitting that
in fact harms adversarial robustness. In addition, we take a step scheduler to lower the learning rate
by 0.2 times every 20 epoch, and we hold 0.01 parameter of weight decay. For PGD settings, we set
the number of steps N to 10 for gradient clipping, and we set the step size η = 2.3

N × γ to 2.3
10 × 0.03.

Our Information Bottleneck. Below algorithm represents how robust and non-robust features are
distilled by our Information Bottleneck (IB). We choose IB’s coefficient β to 0.3 for VGG-16 on
CIFAR-10 and SVHN, and 0.5 for WideResNet-28-10 on CIFAR-10, and 1.0 for WideResNet-28-10
on SVHN. These selections are determined from Fig. 5 in our manuscript. For Tiny-ImageNet, we
set β = 0.3 both for VGG-16 and WideResNet-28-10. Note that we use IB’s learning rate α of 0.1
with Adam [7] in 200 iterations. In practical, we consider noise variation σ (∈ RC) as optimizing
parameter, but it may be learned to be non-positive values. To address it, we apply SoftPlus to the
noise variation to get positive values. Here, SoftPlus is a function of log(1 + exp(·)).

Algorithm 1

Require: X,Y : an image and its target label, σ− : (pseudo) noise variation (σ− ∈ RC).
1: Z ← fl(X), (Z ∈ RC×H×W ) . Extracting an intermediate feature
2: σ2

z ← Var(Z), (σ2
z ∈ RC) . Calculating (channel-wise) feature variation

3: σ− ← 0 ∈ RC . Initialize the noise variation to zero
4: for iteration do . Our IB procedure
5: σ ← log(1 + exp(σ−)) . SoftPlus to be positive values
6: ZI ← Z + σ · ε, (ε ∼ N (0, I)) . Sampling an informative feature
7: Ŷ ← fl+(ZI) . Model Prediction
8: LCE ← −

∑C
k=1 Yk log Ŷk . Cross-entropy loss

9: LI ← 1
2

∑C
k=1[

σ2
zk

σ2
k

+ log
σ2
k

σ2
zk

− 1] . Information loss

10: LX(σ−)← LCE + βLI . Our IB loss
11: σ− ← σ− − α ∂

∂σ−LX(σ−) . Update noise variation
12: end for
13: σ ← log(1 + exp(σ−)) . SoftPlus to be positive values
14: T = max(σ2

z) . Obtaining a maximum tolerance
15: ir ← 1(σ2 > T ), (ir ∈ RC) . Finding a robust channel index
16: inr ← 1− ir, (inr ∈ RC) . Finding a non-robust channel index
17: Zr ← ir · Z . Distilling a robust feature
18: Znr ← inr · Z . Distilling a non-robust feature

Validation. The main purpose of this work is to demonstrate the impacts of robust and non-robust
features to model prediction. In order to measure classification accuracy, we take various adversarial
attacks of FGSM [8], BIM [9], AutoAttack [10], and FAB [10, 11] under L∞ perturbation magnitude
γ = 0.03. In particular, we set hyperparameters of BIM that step number N is automatically arranged
on γ = 0.03 neighborhood, and step size η = 1/255. Besides, hyperparameters of AutoAttack and
FAB are chosen that N = 100, ρ = 0.75, αmax = 0.1, η = 1.05, β = 0.9 of which notations are
used in their papers. In addition, we also use a strong attack of CW [12] with constraining L2 distance
metric of 0.01, which overcomes defensive distillation [13], encompassing a range of attacks cast
through the same optimization framework with Lagrangian relaxation. Note that the hyperparameters
of CW equal to that c = 0.1, κ = 0, N = 200, learning rate= 0.1 with Adam. For NRF attack in
Section 4 of our manuscript, we equally use those of CW with L2 distance metric of 0.01 to fairly
validate its effectiveness for intensifying brittleness of non-robust features.
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B Deep Information Bottleneck
Let X denotes inputs and Y denotes (one-hot encoded) target labels corresponding to the input,
and Z indicates the intermediate features of deep neural networks (DNNs). The following equation
represents an objective of Information Bottleneck (IB).

max
Z

I(Z, Y )− βI(Z,X), (1)

where I denotes mutual information, and β represents the degree of restraining input information X .
Here, the first term can be expressed as follows:

I(Z, Y ) =

∫
p(y, z) log

p(y, z)

p(y)p(z)
dydz

=

∫
p(y, z) log

p(y | z)
p(y)

dydz,

(2)

where a true feature probability p(z) is erased on the fraction. To apply it to DNNs, model classifier
denoted by q(y | z) is introduced to perform model prediction. Based on variational inference [14], it
is a closed-form for a true likelihood p(y | z). This approximation is formulated by KL divergence
(always positive) and then the following inequality is constructed as follows:

DKL[p(Y | Z) || q(Y | Z)] ≥ 0 ⇒
∫
p(y | z) log p(y | z)dy ≥

∫
p(y | z) log q(y | z)dy

(3)

which helps getting IB’s objective to be tractable. With this equality, the first term in Eq. (1) can be
represented to a lower bound which can be written as:

I(Z, Y ) ≥
∫
p(y, z) log

q(y | z)
p(y)

dydz

=

∫
p(y, z) log q(y | z)dydz −

∫
p(y, z) log p(y)dydz

=

∫
p(y, z) log q(y | z)dydz −

∫
p(y) log p(y)dy

=

∫
p(y, z) log q(y | z)dydz +H(Y )

≥
∫
p(y, z) log q(y | z)dydz,

(4)

where a positive constantH(Y ) = −
∫
p(y) log p(y)dy ≥ 0 denotes Shannon entropy of target labels

(ignored). Next, the second term in Eq. (1) is described as:

I(Z,X) =

∫
p(z, x) log

p(z, x)

p(x)p(z)
dzdx

=

∫
p(z, x) log

p(z | x)

p(z)
dzdx,

(5)
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where a dataset probability p(x) is erased on the fraction. Here, an approximate feature probability
q(Z) is introduced to approximate the true feature probability p(Z). As similar with Eq. (3), the
relationship between q(Z) and p(Z) can be written and then it builds the following equality:

DKL[p(Z) || q(Z)] ≥ 0 ⇒
∫
p(z) log p(z)dz ≥

∫
p(z) log q(z)dz (6)

By using it, the second term is constructed with a upper bound as follows:

I(Z,X) ≤
∫
p(z, x) log

p(z | x)

q(z)
dzdx

=

∫
p(x)p(z | x) log

p(z | x)

q(z)
dzdx

= E
X∼p(X)

[DKL[p(Z | X) || q(Z)]] ,

(7)

where a feature likelihood is denoted by p(z | x). To sum it up, the IB’s objective can be re-formulated
with a lower bound as follows:

I(Z, Y )− βI(Z,X) ≥
∫
p(y, z) log q(y | z)dydz − β E

X∼p(X)
[DKL[p(Z | X) || q(Z)]︸ ︷︷ ︸

LI

], (8)

where LI denotes a information loss computed by KL divergence [15] between the feature likelihood
p(Z | X) and the approximate feature probability q(Z). Without the true feature probability p(Z),
employing the lower bound is an alternative way of maximizing the IB’s objective so that IB is easily
applied to DNNs to make the intermediate features Z become rich information. In practical, the first
term in the lower bound is simplified to the expected log-likelihood in a form of cross entropy LCE ,
which can be written as follows:

∫
p(y, z) log q(y | z)dydz =

∫
p(z)p(y | z) log q(y | z)dydz

=

∫
p(z, x)p(y | z) log q(y | z)dydzdx

=

∫
p(x)p(z | x)p(y | z) log q(y | z)dydzdx

= E
X∼p(X),Z∼p(Z|X)

[∫
p(y | z) log q(y | z)dy

]

= E
X∼p(X),Z∼p(Z|X)

[−LCE ] ,

(9)

where p(y | z) indicates the true likelihood considered as a target label y corresponding z. Note that
since we consider a non-random model in the inference phase, the expected log-likelihood can be
calculated to E

X∼p(X)
[−LCE ] without repeatedly sampling the intermediate feature Z given an input

X . Hence, IB’s objective is re-written as follows:

min
Z
LCE + βLI . (10)
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C Model Prediction for Our IB by Taylor Expansion

We analyze impacts of robust Zr = ir · fl(X) and non-robust features Znr = inr · fl(X) to model
robustness by expanding model prediction of informative features ZI = fl(X) + σ · ε to Taylor
approximation with its convergence of local minima [16, 17] as follows:

fl+(fl(X) + σ · ε) = fl+(fl(X) + σr · ε) +

[
∂

∂σr
fl+(fl(X) + σr · ε)

]T
σnr︸ ︷︷ ︸

∆

, (11)

where robust noise variation σr = ir · σ and non-robust noise variation σnr = inr · σ. Now, we will
prove the above formulation.

Proof. Taylor approximation represents a number as a polynomial that has a very similar value to the
number in a neighborhood around a specified value. It is a powerful tool to approximate a function
that can be intractable. It is evaluated as infinite sums and integrals of the function’s derivatives at a
single point. Basically, it can be written with an arbitrary function F : R→ R as follows:

F (a+ ∆a) = F (a) +

∞∑
k=1

(∆a)k

k!

∂k

∂ak
F (a). (12)

Once the difference ∆a ∈ R gets small enough, it can be expressed as a first-order polynomial as:

F (a+ ∆a) = F (a) + ∆a
∂

∂a
F (a). (13)

Here, we extend it to deal with a multi-variable function F : RM → RN given small ∆a as follows:

F(a+ ∆a) = F(a) +

[
∂

∂a
F(a)

]T
∆a. (14)

Then, dimension of F(a) and ∂
∂aF(a) is each RN and RM×N , such that a ∈ RM . In our manuscript,

since the non-robust noise variation σnr is small enough, therefore, the model prediction for our IB
can be formulated with Taylor expansion of Eq. (14) as follows:

fl+(fl(X) + σ · ε) = fl+(fl(X) + σ · (ir + inr) · ε)

= fl+(fl(X) + (σr + σnr) · ε)

= fl+︸︷︷︸
F

(fl(X) + σr · ε︸ ︷︷ ︸
a

+σnr · ε︸ ︷︷ ︸
∆a

)

= fl+︸︷︷︸
F

(fl(X) + σr · ε︸ ︷︷ ︸
a

) +

 ∂

∂(fl(X) + σr · ε︸ ︷︷ ︸
a

)
fl+(fl(X) + σr · ε)︸ ︷︷ ︸

a


T

σnr · ε︸ ︷︷ ︸
∆a

= fl+(fl(X) + σr · ε) +

[
∂

∂σr
fl+(fl(X) + σr · ε)

∂σr
∂(fl(X) + σr · ε)

]T
σnr · ε

= fl+(fl(X) + σr · ε) +

[
∂

∂σr
fl+(fl(X) + σr · ε) ·

1

ε

]T
σnr · ε

= fl+(fl(X) + σr · ε) +

[
∂

∂σr
fl+(fl(X) + σr · ε)

]T
σnr.

(15)
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(a) FGSM Examples (b) CW Examples (c) NRF Examples (Ours)

Figure 1: Additional t-SNE plot [18] results of FGSM [8], CW [12], and NRF attack in VGG-16.
Each cluster indicates high-dimensional distributions of feature representation for 10 object labels in
CIFAR-10.

D Additional t-SNE Plot Results

In Section 3.1, we have analyzed the properties of the robust and non-robust features in the feature
representation. We extend analysis of t-SNE plots to the various attack scenarios for further gener-
alization. The additional results are illustrated in Fig. 1. As in the figure, we can observe that the
intermediate robust feature representation Z̄r of FGSM, CW, and NRF attacks exhibit well clustered
tendency along target labels. Whereas, the embedding space of Z̄nr generally shows disorganized
clusters due to their brittleness.

E Omitted Visual Explanations

Additional Feature Visualization. We provide additional feature visualization under various ad-
versarial attack methods including NRF in Fig. 3-5 (CIFAR-10, SVHN, and Tiny-ImageNet are
utilized). As in the figure, we can realize that the semantic information in the distilled feature space
and manipulated intermediate feature visualization when an attack comes in. Moreover, the distilled
features still include the robust and brittle information even in the failed attack examples. Notably,
we can infer that the prediction of non-robust features significantly affect to the adversarial prediction,
because the characteristic properties of the brittle information reflects to the intermediate features.
Through the comprehensive qualitative results, we corroborate the robust and non-robust features
indeed have human-perceptible properties and provide an interpretable cause of adversarial examples.

Visual Interpolation of Distilled Features. In the previous work, Tsipras et al. [19] show linear
interpolating results between the clean and PGD-attacked examples in the image domain with large-ε,
in order to explain perceptually plausible interpolation changes of cross-class relation. As a further
work, we conduct an experiment of linear interpolation results, not in the image domain but in
the distilled feature space to analyze how small imperceptible changes in the given images affects
intermediate feature representation. Through this analysis by showing visual interpolation between
the robust and non-robust features, we want to show smooth changes of the visual results towards the
adversarial prediction.

In Fig. 6, we illustrate the linear interpolation results of feature visualization [20] between the robust
and non-robust features. Each visualization of interpolated feature representation can be written as
follows: Zint = λ · Zr + (1− λ) · Znr, where λ is interpolation parameter between the robust and
non-robust features. In the figure, the first and second row indicates the feature visualization of Zint
for the clean example and PGD-attacked examples, respectively. As the proportion of non-robust
features in Zint increases, we can observe the visualization smoothly changes from the target label to
the adversarial prediction (e.g., deer→bird) in the both examples. Through interpolation results, we
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(a) VGG-16 (b) WRN-28-10 (c) # of Assigned Channels

Figure 2: The classification accuracy of robust and non-robust features in standard setting. Along β
value, and the number of assigned channels in the l-th feature representation. Note that each color
of the lines in (c) corresponds to the same color in the bar plots of (a) and (b). The total number of
channels is equivalent to the size of C.

can infer that imperceptible adversarial noise indeed affects to the intermediate feature space and
manipulate the model prediction to the adversarial prediction.

F Analysis of Information Bottleneck in Standard Setting
In optimizing our bottleneck objective, we have utilized adversarially trained model f to distill the
robust and non-robust features. In several works [19, 21], it has been argued that the distinction
between robust and non-robust features are established in adversarial setting, since the non-robust
features are not solely brittle, but highly predictive concurrently in standard setting. In the nature of
standard training paradigm, any predictive features including non-robust features can be utilized to
estimate target labels, thus disentangling feature representation based on the predictivity cannot be an
optimal criterion. To verify such properties in the bottleneck, we conduct same experiments as in
Section 3.4, but in standard setting.

In Fig. 2, the bottleneck cannot disentangle the robust and non-robust features accurately along β
changes. As we can find, the classification accuracy of using the non-robust features are more higher
than those of the robust features, which is opposite results of adversarially trained model analyzed in
Section 3.4. Moreover, the number of channels assigned to robust features are significantly small
amount than the non-robust features, since the non-robust features play a dominant role in canonical
standard classification setting [21]. Accordingly, we utilize the adversarially trained model as f ,
which is trained to learn robust representation [22] and not relying on the non-robust features to
predict target labels.
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Example ExampleInt. Feature R. Feature NR. Feature Int. Feature R. Feature NR. Feature

𝑌𝑌: Deer

�𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎: Frog

𝑍𝑍: Deer 𝑍𝑍𝑟𝑟: Deer 𝑍𝑍𝑛𝑛𝑟𝑟: Frog

�̅�𝑍: Frog �̅�𝑍𝑟𝑟𝑎𝑎: Deer �̅�𝑍𝑛𝑛𝑟𝑟𝑎𝑎 : Frog

�𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎: Frog �̅�𝑍: Frog �̅�𝑍𝑟𝑟𝑎𝑎: Deer �̅�𝑍𝑛𝑛𝑟𝑟𝑎𝑎 : Frog

�𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎: Frog �̅�𝑍: Frog �̅�𝑍𝑟𝑟𝑎𝑎: Deer �̅�𝑍𝑛𝑛𝑟𝑟𝑎𝑎 : Frog �𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎: Frog �̅�𝑍: Frog �̅�𝑍𝑟𝑟𝑎𝑎: Bird �̅�𝑍𝑛𝑛𝑟𝑟𝑎𝑎 : Frog

�𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎: Frog �̅�𝑍: Frog �̅�𝑍𝑟𝑟𝑎𝑎: Bird �̅�𝑍𝑛𝑛𝑟𝑟𝑎𝑎 : Frog

�𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎: Bird �̅�𝑍: Bird �̅�𝑍𝑟𝑟𝑎𝑎: Bird �̅�𝑍𝑛𝑛𝑟𝑟𝑎𝑎 : Frog

𝑌𝑌: Bird 𝑍𝑍: Bird 𝑍𝑍𝑟𝑟: Bird 𝑍𝑍𝑛𝑛𝑟𝑟: Frog
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Figure 3: Feature visualization of CIFAR-10. The class labels under each image indicate the target
prediction results of the corresponding features.
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𝑌𝑌: 5

�𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎: 3

𝑍𝑍: 5 𝑍𝑍𝑟𝑟: 5 𝑍𝑍𝑛𝑛𝑟𝑟: 3
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Figure 4: Feature visualization of SVHN. The class labels under each image indicate the target
prediction results of the corresponding features.
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Example ExampleInt. Feature R. Feature NR. Feature Int. Feature R. Feature NR. Feature
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Figure 5: Feature visualization of Tiny-ImageNet. The class labels under each image indicate the
target prediction results of the corresponding features.
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Figure 6: Interpolation results of feature visualization in CIFAR-10. We linearly interpolate the
robust and non-robust features ranging of λ = [0 : 0.1 : 1], and visualize the combination of
feature representation Zint. The ratio of the corresponding distilled features and predicted labels (i.e.,
fl+(Zint)) are described above the visualization examples.
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