APPENDIX

Overview:

* Appendix A contains the full proofs for all theoretical results from the main paper.
* Appendix B contains additional details and plots for the Causal3DIdent dataset.

* Appendix C contains additional experimental results and analysis.

* Appendix D contains additional implementation details for our experiments.

A Proofs

We now present the full detailed proofs of our three theorems which were briefly sketched in the
main paper. We remark that these proofs build on each other, in the sense that the (main) step 2 of the
proof of Thm. 4.2 is also used in the proofs of Thms. 4.3 and 4.4.

A.1 Proof of Thm. 4.2

Theorem 4.2 (Identifying content with a generative model). Consider the data generating process
described in § 3, i.e., the pairs (x,X) of original and augmented views are generated according to (2)
and (3) with p;|, as defined in Assumptions 3.1 and 3.2. Assume further that

(i) £: 2 — X is smooth and invertible with smooth inverse (i.e., a diffeomorphism);
(ii) p, is a smooth, continuous density on Z with p,(z) > 0 almost everywhere;

(iti) foranyl € {1,...,ns}, JA C{1,...,ns} s.t. 1 € A; pa(A) > 0; ps,|s, is sSmooth w.r.t. both
sa and S 4; and for any s 4, ps ,|s , (-|84) > 0 in some open, non-empty subset containing s a.

If, for a given ns (1 < ng < n), a generative model (ﬁz,ﬁA,ﬁgs’A, f) assumes the same generative
process (§ 3), satisfies the above assumptions (i)-(iii), and matches the data likelihood,

Pxx(X,X) = Px (X, X) V(x,X) € X X X,

then it block-identifies the true content variables via g = £~ in the sense of Defn. 4.1.

Proof. The proof consists of two main steps.

In the first step, we use assumption (i) and the matching likelihoods to show that the representation

z = g(x) extracted by g = =1 is related to the true latent z by a smooth invertible mapping h, and
that z must satisfy invariance across (x,X) in the first n. (content) components almost surely (a.s.)
with respect to (w.r.t.) the true generative process.

In the second step, we then use assumptions (ii) and (iii) to prove (by contradiction) that € := 2;.,,, =
h(z);.,, can, in fact, only depend on the true content ¢ and not on the true style s, for otherwise the
invariance established in the first step would have be violated with probability greater than zero.

To provide some further intuition for the second step, the assumed generative process implies that
(c,s, 8)| A is constrained to take values (a.s.) in a subspace R of C x S x S of dimension n.+ns+ | A|
(as opposed to dimension n. 4+ 2n, for C x S x S). In this context, assumption (iii) implies that
(c,s,8)|A has a density with respect to a measure on this subspace equivalent to the Lebesgue
measure on R"t7<+4l This equivalence implies, in particular, that this “subspace measure” is
strictly positive: it takes strictly positive values on open sets of R seen as a topological subspace of
C x & x §. These open sets are defined by the induced topology: they are the intersection of the open
sets of C x S x S with R. An open set B of V' on which p(c, s, §|4) > 0 then satisfies P(B|A) > 0.
We look for such an open set to prove our result.

Step 1. From the assumed data generating process described in § 3—in particular, from the form of
the model conditional pz, described in Assumptions 3.1 and 3.2—it follows that

g(x)l:nC = g(i)lan (6)

a.s., 1.e., with probability one, w.r.t. the model distribution px x.
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Due to the assumption of matching likelihoods, the invariance in (6) must also hold (a.s.) w.r.t. the
true data distribution py x.

Next, since f, f : Z — X are smooth and invertible functions by assumption (i), there exists a smooth
and invertible function h = go f : Z — Z such that

g=hof L (7)

Substituting (7) into (6), we obtain (a.s. w.r.t. p):
€= 21, = 8(X)1:m, = B(ETH (X)) 10, = B(ETH (X))1, ®)
Substituting z = f~!(x) and z = f~1(X) into (8), we obtain (a.s. W.r.t. p)
¢ =h(z)1:n, = h(2)1n,. )

It remains to show that h(-);.,, can only be a function of c, i.e., does not depend on any other (style)
dimension of z = (c, s).

Step 2. Suppose for a contradiction that h.(c,s) := h(c,s)1.,, = h(2)1.,. depends on some
component of the style variable s:

oh,
88[

that is, we assume that the partial derivative of h, w.r.t. some style variable s; is non-zero at some
point z* = (¢*,;8*) € Z=C x S.

Ae{l,..,ns}, (c*,s")eC xS, S.t.

(c",5%) #0, (10)

Since h is smooth, so is h.. Therefore, h. has continuous (first) partial derivatives.

By continuity of the partial derivative, %}S‘; must be non-zero in a neighbourhood of (c*,s*), i.e.,

In>0 st s he(c* (s?y,s)) isstrictly monotonicon (s; —m,s7 +n), (1)
where s_; € S_; denotes the vector of remaining style variables except s;.
Next, define the auxiliary function ¢ : C x § x § = R as follows:
¥(c,5,8) = |he(e,s) — he(c,5) > 0. (12)
To obtain a contradiction to the invariance condition (9) from Step 1 under assumption (10), it remains
to show that v from (12) is strictly positive with probability greater than zero (w.r.t. p).
First, the strict monotonicity from (11) implies that
(e, (s2y,80), (850, 8)) >0, V(si,8) € (sf,sf+n) x(sf —n,s). (13)

Note that in order to obtain the strict inequality in (13), it is important that s; and s; take values in
disjoint open subsets of the interval (s; — 7, s; + 1) from (11).

Since 1 is a composition of continuous functions (absolute value of the difference of two continuous
functions), v is continuous.

Consider the open set R+, and recall that, under a continuous function, pre-images (or inverse
images) of open sets are always open.

Applied to the continuous function ), this pre-image corresponds to an open set
UCCxSExS (14)
in the domain of v on which ¥ is strictly positive.
Moreover, due to (13):
{e"} x ({8} x (s7, 87 +m) x ({82} x (s] —m.87)) C U, (15)
so U is non-empty.

Next, by assumption (iii), there exists at least one subset A C {1, ...,ns} of changing style variables
such that [ € A and pa(A) > 0; pick one such subset and call it A.
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Then, also by assumption (iii), for any s4 € S4, there is an open subset O(s4) C S containing s 4,
such that pg , |, (-[s4) > 0 within O(s ).

Define the following space

Ra = {(SA,§A):SAESA,§A€O(SA)} (16)
and, recalling that A° = {1,...,n4} \ A denotes the complement of A, define
RZ:CXSAC X Ra an

which is a topological subspace of C x S x S.

By assumptions (ii) and (iii), p is smooth and fully supported, and ps , |s , (-|s.4) is smooth and fully
supported on O(s4) for any s4 € Sa. Therefore, the measure fi(c s ,c s,,54)|4 has fully supported,
strictly-positive density on R w.r.t. a strictly positive measure on R. In other words, p, X ps s, is
fully supported (i.e., strictly positive) on R.

Now consider the intersection &/ N R of the open set ¢/ with the topological subspace R.

Since U is open, by the definition of topological subspaces, the intersection { "R C R is open in R,
(and thus has the same dimension as R if non-empty).

Moreover, since O(s?,) is open containing s%, there exists 77’ > 0 such that {s* ;} x (s; — 7/, s]) C
O(s*). Thus, for " = min(n,n’) > 0,

(e} x s x (Tsingn} % (st +m) x ({Shgnd < (s =) R (18)
In particular, this implies that
{e} x ({20} x (sisi +m) x ({4} x (s —n",s0)) € R, (19)

Now, since " < 7, the LHS of (19) is also in I/ according to (15), so the intersection & N R is
non-empty.

In summary, the intersection i/ N R C R:

* is non-empty (since both ¢/ and R contain the LHS of (15));

* is an open subset of the topological subspace R of C x & x S (since it is the intersection of an
open set, U, with R);

* satisfies 1) > 0 (since this holds for all of If);
* is fully supported w.r.t. the generative process (since this holds for all of R).
As a consequence,
P (¢(c,s,8) > 0]A) >PUUNTR) >0, (20)
where P denotes probability w.r.t. the true generative process p.
Since p4(A) > 0, this is a contradiction to the invariance (9) from Step 1.

Hence, assumption (10) cannot hold, i.e., h.(c, s) does not depend on any style variable s;. It is thus
only a function of ¢, i.e., ¢ = h.(c).

Finally, smoothness and invertibility of h. : C — C follow from smoothness and invertibility of h, as
established in Step 1.

This concludes the proof that ¢ is related to the true content ¢ via a smooth invertible mapping. [J

A.2 Proof of Thm. 4.3

Theorem 4.3 (Identifying content with an invertible encoder). Assume the same data generating
process (§ 3) and conditions (i)-(iv) as in Thm. 4.2. Let g : X — Z be any smooth and invertible
function which minimises the following functional:
2
] “)
2

Then g block-identifies the true content variables in the sense of Definition 4.1.
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Proof. As in the proof of Thm. 4.2, the proof again consists of two main steps.

In the first step, we show that the representation z = g(x) extracted by any g that minimises £ ajign is
related to the true latent z through a smooth invertible mapping h, and that Z must satisfy invariance
across (x, X) in the first n. (content) components almost surely (a.s.) with respect to (w.r.t.) the true
generative process.

In the second step, we use the same argument by contradiction as in Step 2 of the proof of Thm. 4.2,
to show that ¢ = h(z)1.,, can only depend on the true content ¢ and not on style s.

Step 1. From the form of the objective (4), it is clear that Lajig, > 0 with equality if and only if
g(X)1:n, = 8(X)1:n, forall (x,X) s.t. px 2(x,%X) > 0.

Moreover, it follows from the assumed generative process that the global minimum of zero is attained
by the true unmixing £~ since

f ' (%) 1, =c=¢€=f"1(X)1n, (21)
holds a.s. (i.e., with probability one) w.r.t. the true generative process p.
Hence, there exists at least one smooth invertible function (f ~!) which attains the global minimum.
Let g be any function attaining the global minimum of £ 4jig, of zero.

As argued above, this implies that (a.s. w.r.t. p):
g(i)l:nc = g(x)lznc . (22)
Writing g = h o f~!, where h is the smooth, invertible function h = g o f we obtain (a.s. w.r.t. p):

é = h(i)lznc = h(Z)l:"C. (23)
Note that this is the same invariance condition as (9) derived in Step 1 of the proof of Thm. 4.2.

Step 2. It remains to show that h(z);.,,_ can only depend on the true content ¢ and not on any of
the style variables s. To show this, we use the same Step 2 as in the proof of Thm. 4.2. O

A.3 Proof of Thm. 4.4

Theorem 4.4 (Identifying content with discriminative learning and a non-invertible encoder). Assume
the same data generating process (§ 3) and conditions (i)-(iv) as in Thm. 4.2. Let g : X — (0,1)"e
be any smooth function which minimises the following functional:

2

L asgmntacont (&) = Ecesyopn o U \g<x> () ]  H(g() )

2

where H (-) denotes the differential entropy of the random variable g(x) taking values in (0,1)".
Then g block-identifies the true content variables in the sense of Defn. 4.1.
Proof. The proof consists of three main steps.

In the first step, we show that the representation ¢ = g(x) extracted by any smooth function g
that minimises (5) is related to the true latent z through a smooth mapping h; that ¢ must satisfy
invariance across (x,X) almost surely (a.s.) with respect to (w.r.t.) the true generative process p; and
that ¢ must follow a uniform distribution on (0, 1)™.

In the second step, we use the same argument by contradiction as in Step 2 of the proof of Thm. 4.2,
to show that ¢ = h(z) can only depend on the true content ¢ and not on style s.

Finally, in the third step, we show that h must be a bijection, i.e., invertible, using a result from [129].
Step 1. The global minimum of £ ajignMaxEnt 1S reached when the first term (alignment) is min-
imised (i.e., equal to zero) and the second term (entropy) is maximised.

Without additional moment constraints, the unique maximum entropy distribution on (0, 1)" is the
uniform distribution [25, 61].
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First, we show that there exists a smooth function g* : X — (0,1)™ which attains the global
minimum of £ ajignMaxEnt-

To see this, consider the function flfrllc : X — C, i.e., the inverse of the true mixing f, restricted to
its first n. dimensions. This exists and is smooth since f is smooth and invertible by assumption (i).
Further, we have f~(x)1.,,, = c by definition.

We now build a functiond : C — (0, 1)™ which maps c to a uniform random variable on (0, 1)"e
using a recursive construction known as the Darmois construction [29, 57].

Specifically, we define
di(c) == Fi(ciler.i—1) = P(C; < cileri), it=1,...,nc, (24)
where F; denotes the conditional cumulative distribution function (CDF) of ¢; given cy.;_1.
By construction, d(c) is uniformly distributed on (0, 1)™e [29, 57].
Further, d is smooth by the assumption that p, (and thus p.) is a smooth density.
Finally, we define
ghi=dofy, X —(0,1)", (25)

which is a smooth function since it is a composition of two smooth functions.

Claim A.1. g* as defined in (25) attains the global minimum of £ ajignMaxEnt-

Proof of Claim A.1. Using f*(x)1.,, = c and f~!(X);.,, = ¢, we have

2
ﬁAIignMaxEnt (g*) = E(x,i)wp(xy,a U g* (X) - g* (5{) ‘| - H (g* (X)) (26)
2
2
= Eixs)pian U ate) - d@ ] - H(d(o) @)
2
=0 (28)

where in the last step we have used the fact that ¢ = ¢ almost surely w.r.t. to the ground truth
generative process p described in § 3, so the first term is zero; and the fact that d(c) is uniformly
distributed on (0, 1) and the uniform distribution on the unit hypercube has zero entropy, so the
second term is also zero.

Next, let g : X — (0, 1)™ be any smooth function which attains the global minimum of (5), i.e.,

2

L atignMaxEnt (8) = E(x,5)~pe ) U ’g(x) - g(x) ] — H (g(x)) = 0. (29)

Define h :=gof : Z — (0,1)™ which is smooth because both g and f are smooth.
Writing x = f(z), (29) then implies in terms of h:

2
E ey oro s mmz) h(2) ] —0, G0)

H(h(z)) = 0. 31)

Equation (30) implies that the same invariance condition (9) used in the proofs of Thms. 4.2 and 4.3
must hold (a.s. w.r.t. p), and (31) implies that ¢ = h(z) must be uniformly distributed on (0, 1)".

Step 2. Next, we show that h(z) = h(c, s) can only depend on the true content ¢ and not on any of
the style variables s. For this we use the same Step 2 as in the proofs of Thms. 4.2 and 4.3.
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Step 3. Finally, we show that the mapping ¢ = h(c) is invertible.

To this end, we make use of the following result from [129].

Proposition A.2 (Proposition 5 of [129]). Let M, N be simply connected and oriented C* manifolds
without boundaries and h : M — N be a differentiable map. Further; let the random variable
z € M be distributed according to z ~ p(z) for a regular density function p, i.e., 0 < p < oco. If
the pushforward pyn(z) of p through h is also a regular density, i.e., 0 < pyp < oo, then his a
bijection.

We apply this result to the simply connected and oriented C! manifolds without boundaries M = C
and NV = (0,1)™, and the smooth (hence, differentiable) map h : C — (0, 1)™ which maps the
random variable c to a uniform random variable ¢ (as established in Step 1).

Since both p. (by assumption) and the uniform distribution (the pushforward of p. through h) are
regular densities in the sense of Prop. A.2, we conclude that h is a bijection, i.e., invertible.

We have shown that for any smooth g : X — (0, 1)" which minimises £ AlignMaxEnt, W€ have that
¢ = g(x) = h(c) for a smooth and invertible h : C — (0,1)"<, i.e., c is block-identified by g. [

B Additional details on the Causal3DIdent data set

Using the Blender rendering engine [11], 3DIdent [129] is a recently proposed benchmark which
contains hallmarks of natural environments (e.g. shadows, different lighting conditions, a 3D object),
but allows for identifiability evaluation by exposing the underlying generative factors.

Each 224 x 224 x 3 image in the dataset shows a coloured 3D object which is located and rotated
above a coloured ground in a 3D space. Furthermore, each scene contains a coloured spotlight which
is focused on the object and located on a half-circle around the scene. The images are rendered based
on a 10-dimensional latent, where: (i) three dimensions describe the XYZ position of the object, (ii)
three dimensions describe the rotation of the object in Euler angles, (iii) two dimensions describe the
colour (hue) of the object and the ground of the scene, respectively, and (iv) two dimensions describe
the position and colour (hue) of the spotlight. For influence of the latent factors on the renderings,
see Fig. 2 of [129].

B.1 Details on introduced object classes

3DIdent contained a single object class, Teapot [89]. We add six additional object classes: Hare [121],
Dragon [110], Cow [62], Armadillo [70], Horse [98], Head [111].

B.2 Details on latent causal graph

In 3DIdent, the latents are uniformly sampled independently. We instead impose a causal graph
over the variables (see Fig. 2). While object class and all environment variables (spotlight position,
spotlight hue, background hue) are sampled independently, all object variables are dependent. Specif-
ically, for spotlight position, spotlight hue, and background hue, we sample from U(—1,1). We
impose the dependence by varying the mean (1) of a truncated normal distribution with standard
deviation o = 0.5, truncated to the range [—1, 1].

Object rotation is dependent solely on object class, see Tab. 2 for details. Object position is dependent
on both object class & spotlight position, see Tab. 3. Object hue is dependent on object class,
background hue, & object hue, see Tab. 4. Hares blending into their environment as a form of active
camouflage has been observed in Alaskan [78], Arctic [2], & Snowshoe hares.

B.3 Dataset Visuals

We show 40 random samples from the marginal of each object class in Causal3DIdent in Figs. 3 to 9.
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Table 2: Given a certain object class, the center of the truncated normal distribution from which we
sample rotation latents varies.

objectclass | (o) p(0) p(v)

Teapot -0.35 035 035
Hare 035 -035 035
Dragon 035 035 -0.35
Cow 035 -035 -0.35
Armadillo | -0.35 0.35 -0.35
Horse -035 -035 035
Head -0.35 -0.35 -0.35

Table 3: Given a certain object class & spotlight position, the center of the truncated normal
distribution from which we sample zy-position latents varies. Note the spotlight position pos, is

rescaled from [—1,1] to [-7/2,7/2].

object class | u(x) 1(y) wu(z)
Teapot 0 0 0
Hare —sin(posy,) —cos(posg) 0
Dragon —sin(posy,) —cos(posg,) 0
Cow sin(pos,y cos(posgy) 0
Armadillo sin(posgy ) cos(Posgy) 0
Horse —sin(posy,) —cos(posy) 0
Head sin(posgy cos(posy, 0

Table 4: Given a certain object class, background hue, and spotlight hue, the center of the truncated
normal distribution from which we sample the object hue latent varies. Note that for the Hare and
Dragon classes, in particular, the object either blends in or stands out from the environment.

object class |  y(hue)

Teapot 0
Hare huebg +huespl
Dragon _ huepg —ghuespl
Cow —0.35
Armadillo 0.7
Horse —0.7
Head 0.35

’ 1
%
«

Figure 3: 40 random samples from the marginal distribution of the Teapot object class.
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-

Figure 4: 40 random samples from the marginal distribution of the Hare object class.

Figure 5: 40 random samples from the marginal distribution of the Dragon object class.
-

Figure 6: 40 random samples from the marginal distribution of the Cow object class.
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Figure 8: 40 random samples from the marginal distribution of the Horse object class.

Figure 9: 40 random samples from the marginal distribution of the Head object class.
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C Additional results

» Appendix C.1 contains numerical experiments, namely linear evaluation & an ablation on dim(¢).

* Appendix C.2 contains experiments on Causal3DlIdent, namely (i) nonlinear & linear evaluation
results of the output & intermediate feature representation of SimCLR with results for the individual
axes of object position & rotation, and (ii) evaluation of BarlowTwins.

* Appendix C.3 contains experiments on the MPI3D-real dataset [38], namely SimCLR & a super-
vised sanity check.

C.1 Numerical Data

In Tab. 5, we report mean =+ std. dev. R? over 3 random seeds across four generative processes
of increasing complexity using linear (instead of nonlinear) regression to predict ¢ from ¢. The
block-identification of content can clearly still be seen even if we consider a linear fit.

In Fig. 10, we perform an ablation on dim(¢), visualising how varying the dimensionality of the
learnt representation affects identifiability of the ground-truth content & style partition. Generally,
if dim(¢) < n., there is insufficient capacity to encode all content, so a lower-dimensional mixture
of content is learnt. Conversely, if dim(¢) > n., the excess capacity is used to encode some style
information, as that increases entropy.

Table 5: Results using linear regression for the experiment on numerical data presented in § 5.1

Generative process R? (linear)
p(chg.) Stat. Cau. Contentc Style s
1.0 X X 1.00 = 0.00  0.00 4 0.00
0.75 X X 0.99 +0.00 0.00 £ 0.00
0.75 v X 0.97 +0.03 0.37£0.05
0.75 v v 0.98 +0.01 0.78 +0.07
p((hg.)=l.0.75;:‘§e=False, plchg ):é)als.:s;lt:mse, p[(hg.]?}szsz, S;al,:True, p((hgv)=gé25;$£:le=vue,

style style style style
08 08 08 08
0.6 06 06 06
k3 k3 k3 k3

0.4 0.4 0.4 0.4

0.2 0.2 0.2 0.2

0.0 0.0 0.0 0.0

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9
dim(€) dim(€) dim(€) dim(€)

Figure 10: Identifiability of the content & style partition in the numerical experiment as a function of
the model latent dimensionality

On Dependence. As can be seen from Tab. 5, the corresponding inset table in § 5.1, and Fig. 10,
scores for identifying style increase substantially when statistical dependence within blocks and
causal dependence between blocks are included. This finding can be explained as follows.

If we compare the performance for small latent dimensionalities (dim(¢) < n.) between the first two
(without) and the third plot (with statistical dependence) of Fig. 10, we observe a significantly higher
score in identifying content for the latter (e.g., R? of ca. 0.4 vs 0.2 at dim(¢) = 1). This suggest that
the introduction of statistical dependence between content variables (as well as between style variables,
and in how style variables change) in the third plot/row, reduces the effective dimensionality of the
ground-truth latents and thus leads to higher content identifiability for the same dim(¢) < n.. Since
the R? for content is already close to 1 for dim(¢) = 3 in the third plot of Fig. 10 (due to the smaller
effective dimensionality induced by statistical dependence between c), when dim(¢) = n, = 5 is
used (as reported in Tab. 5), excess capacity is used to encode style, leading to a positive R2.

Regarding causal dependence (i.e., the fourth plot in Fig. 10 and fourth row in Tab. 5), we note that
the ground truth dependence between c¢ and s is linear, i.e., p(s|c) is centred at a linear transformation
a + Bc of c, see the data generating process in Appendix D for details. Given that our evaluation
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consists of predicting the ground truth ¢ and s from the learnt representation ¢ = g(x), if we were to
block-identify ¢ according to Defn. 4.1, we should be able to also predict some aspects of s from ¢,
due to the linear dependence between ¢ and s. This manifests in a relatively large R? for s in the last
row of Tab. 5 and the corresponding table in § 5.1.

To summarise, we highlight two main takeaways: (i) when latent dependence is present, this may
reduce the effective dimensionality, so that some style is encoded in addition to content unless a
smaller representation size is chosen; (ii) even though the learnt representation isolates content in the
sense of Defn. 4.1, it may still be predictive of style when content and style are (causally) dependent.

C.2 Causal3DIdent

Full version of Tab. 1: In Tab. 6, we a) provide the results for the individual axes of object position
& rotation and b) present additional rows omitted from Tab. 1 for space considerations.

Interestingly, we find that the variance across the individual axes is significantly higher for object
position than object rotation. If we compare the causal dependence imposed for object position
(see Tab. 3) to the causal dependence imposed for object rotation (see Tab. 2), we can observe that
the dependence imposed over individual axes is also significantly more variable for position than
rotation, i.e., for x the sine nonlinearity is used, for y the cosine nonlinearity is used, while for 2, no
dependence is imposed.

Regarding the additional rows, we can observe that the composition of image-level rotation & crops
yields results quite similar to solely using crops, a relationship which mirrors how transforming the
rotation & position latents yields results quite similar to solely transforming the position latents.
This suggests that the rotation variables are difficult to disentangle from the position variables in
Causal3DIdent, regardless of whether data augmentation or latent transforms are used.

Finally, we can observe that applying image-level rotation in conjunction with small crops & colour
distortion does lead to a difference in the encoding, background hue is preserved, while the scores for
object position & rotation appear to slightly decrease. When using three augmentations as opposed to
two, the effects of the individual augmentations are lessened. While colour distortion discourages the
encoding of background hue, both small crops & image-level rotation encourages it, and thus it is
preserved when all three augmentations are used. While colour distortion encourages the encoding
of object position & rotation, both small crops & image-level rotation discourage it, but as a causal
relationship exists between the class variable and said latents, the scores merely decrease, the latents
are still for the most part preserved. In reality, where complex interactions between latent variables
abound, the effect of data augmentations may be uninterpretable, however with Causal3DIdent, we
are able to interpret their effects in the presence of rich visual complexity and causal dependencies,
even when applying three distinct augmentations in tandem.

Table 6: Full version of Tab. 1.

. | Positions Hues Rotations
Views generated by Class
| object(x) object(y) object(z) spotlight | object spotlight background | object(¢) object(6) object(1))

DA: colour distortion 0.42+0.01 | 0.58+0.01 0.75+0.00 0.524+0.01 0.17+0.00 0.10+£0.01 0.014+0.00 0.014+0.00 | 0.36+0.01 0.3340.01 0.32+0.00
LT: change hues 1.00£0.00 | 0.814£0.02 0.81£0.02 0.1540.02 091+0.00 0.30£0.00 0.00£0.00 0.004£0.00 | 0.30+£0.02 0.304+0.01 0.30£0.01
DA: crop (large) 0.28£0.04 | 0.04£0.02 0.03£0.01 0.19£0.02 021+0.13 08740.00 0.09%£0.02 1.00£0.00 | 0.00£0.00 0.05£0.00 0.02+£0.00
DA: crop (small) 0.14£0.00 | 0.00£0.00 0.01£0.02 0.00£0.00 0.00£0.01 0.00£0.00 0.00%£0.00 1.00£0.00 | 0.00£0.00 0.00£0.00 0.00+£0.00
LT: change positions 1.00 £0.00 | 0.01£0.00 0.474+0.01 0.01£0.00 0.00£0.01 0.46=+0.02 0.00£0.00 0.97+0.00 | 0.30£0.00 0.29+0.00 0.28 £ 0.00
DA: crop (large) + colour distortion ~ 0.97 +£0.00 | 0.594+0.03 0.52+0.01 0.68+0.01 0.59+0.05 0.28+0.00 0.01£0.01 0.01£0.00 | 0.74£0.01 0.78+£0.00 0.72 +0.00
DA: crop (small) + colour distortion ~ 1.00 +0.00 | 0.724+0.02 0.65+0.02 0.70+0.00 0.93+0.00 0.30+0.01 0.00£0.00 0.02+0.03 | 0.53+0.00 0.57+0.01 0.58+0.01

LT: change positions + hues 1.00 + 0.00 ‘ 0.10+£0.10 0.49+0.02 0.06+0.05 0.074+0.08 0.32+0.02 0.004+0.01 0.02+0.03 | 0.34+0.09 0.34+0.04 0.34+0.08
DA: rotation 0.33+0.06 | 0.29+0.03 0.11+£0.01 0.12+0.04 0.23+0.12 0.83+0.01 0.30+0.12 0.99+0.00 | 0.024+0.01 0.0640.03 0.07 =+ 0.01
LT: change rotations 1.00£0.00 | 0.784+0.01 0.72£0.03 0.0940.03 090+0.00 0.41£0.00 0.00£0.00 0.9740.00 | 0.284+0.00 0.2840.00 0.28 £ 0.00
DA: rotation + colour distortion 0.59+0.01 | 0.63+£0.01 0.57+0.08 0544+0.02 021+0.01 0.124£0.02 0.014£0.00 0.01£0.00 | 0.364+0.03 0.34£0.04 0.30+0.03
LT: change rotations + hues 1.00£0.00 | 0.804£0.02 0.77+£0.01 0.13£0.02 091+0.00 0.30£0.00 0.00£0.00 0.00£0.00 | 0.28+0.00 0.284+0.01  0.28 £ 0.00
DA: rot. + crop (Ig) 0.26£0.01 | 0.03£0.02 0.03£0.01 0.15£0.04 0.04£0.03 0.844£0.06 0.10£0.01 1.00£0.00 | 0.00£0.00 0.04£0.02 0.02+£0.00
DA: rot. + crop (sm) 0.154£0.00 | 0.00£0.00 0.00£0.00 0.00£0.00 0.00+0.00 0.00+0.00 0.00+0.00 1.00=+0.00 | 0.0040.00 0.0040.00 0.00 =+ 0.00
LT: change rot. + pos. 1.00 +£0.00 | 0.0240.03 0.48+0.02 0.01£0.01 0.02+0.03 149 £0.03  0.03+£0.02 0.98+0.00 | 0.29+£0.01 0.28+0.01 0.284+0.01
DA: rot. + crop (Ig) + col. dist. 0.99 +0.00 | 0.69+0.03 0.60+0.01 0.704+0.02 0.86 =+ 0.03 28+0.00 0.01+0.00 0.014+0.00 | 0.60+0.01 0.64+0.02 0.61+0.01
DA: rot. + crop (sm) + col. dist. 1.00£0.00 | 0.614£0.02 0.59+£0.01 0.64£0.01 0.82+£0.01 .38£0.00 0.01£0.01 0.78+0.03 | 0.44£0.00 0.48+0.02 0.4540.01
LT: change rot. + pos. + hues 1.00£0.00 | 0.20+£0.12 050£0.04 0.1440.11 0.15£0.12 0.32£0.01 0.00£0.00 0.024+0.01 | 0.33+£0.04 0.334+0.02 0.32+0.03

Linear identifiability: In Tab. 7, we present results evaluating all continuous variables with linear
regression. While, as expected, R? scores are reduced across the board, we can observe that even
with a linear fit, the patterns observed in Tab. 6 persist.

Intermediate feature evaluation: In Tab. 8 and Tab. 9, we present evaluation based on the repre-

sentation from an intermediate layer (i.e., prior to applying a projection layer [20]) with nonlinear
and linear regression for the continuous variables, respectively. Note the intermediate layer has an
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Table 7: Evaluation results using a linear fit for not only class, but all continuous variables.

N | Positions Hues Rotations

Views generated by Class

| object(x) object(y) object(z) spotlight | object spotlight background object(¢) object(6) object(v)
DA: colour distortion 0.42 +0.01 0.37 £0.03 0.20 £ 0.16 0.23 +£0.02 0.01+0.01 0.03 £0.01 —0.00£0.00  —0.00 £ 0.00 0.13 £0.01 0.04 £0.01 0.09 £ 0.02
LT: change hues 1.00 £ 0.00 0.72£0.07 0.56 £ 0.04 —0.00£0.00  0.65+£0.07 0.29 £0.01 —0.00£0.00  —0.00 £ 0.00 0.27 £0.01 0.26 £0.03 0.26 £0.01
DA: crop (large) 0.28 +£0.04 0.00 £ 0.00 0.02 +0.00 0.04 +0.07 0.08 +£0.13
DA: crop (small) 0.14+£0.00 —0.00£0.00 —0.00£0.00 —0.00£0.00 —0.00+0.00 | —0.00£0.00 —0.00+0.00 0.17+0.05 —0.00£0.00 —0.00+0.00 —0.00 =+ 0.00
LT: change positions 1.00 £ 0.00 0.00£0.00  0.44 £0.02 0.00 £ 0.00 0.00 £ 0.00 0.29 £0.04 0.00 £ 0.00 0.73£0.16 0.26 £0.01 0.25 £0.03 0.25 £ 0.04

0.13 £0.01 —0.004£0.00 —0.00 £ 0.00
0.28 +0.00 —0.004+0.00  —0.00 + 0.00

0.14 £0.04 0.18 £0.05 0.22 £+ 0.02
0.29 + 0.00 0.30 £ 0.00 0.29 4+ 0.01

DA: crop (large) + colour distortion  0.97 £ 0.00 0.12 £0.02
DA: crop (small) + colour distortion  1.00 + 0.00 0.35 £ 0.02

0.21 £0.00 0.08 £0.03
0.19 £ 0.03 0.80 4 0.01

I
0.51 £0.05 0.03 £0.02 0.20 £0.04 ‘ 0.00 £ 0.00 0.02 £0.00 0.01 £ 0.00

LT: change positions + hues 1.00 £ 0.00 0.00 £ 0.00 U JZ +0.06 0.00 £ 0.00 0.00 £ 0.00 0.27 £0.02 0.00 £ 0.00 0.00 £ 0.00 0.23 £0.07 0.26 £ 0.03 0.25 £ 0.04
DA: rotation 0.33 £ 0.06 0.04 £0.04 0.04 £ 0.00 0.02 £0.03 0.12£0.08 0.46 £ 0.06 0.06 £ 0.04 0.30 £0.13 0.00 £ 0.00 0.04 £0.02 0.02 £ 0.00
LT: change rotations 1.00 £ 0.00 0.34£0.21 0.48 £ 0.03 —0.00£0.00  0.60+0.15 0.28 £ 0.00 0.00 + 0.00 0.59 £ 0.26 0.27 £0.01 0.27 £ 0.00 0.27 4+ 0.01
DA: rotation + colour distortion 0.59 £0.01 0.31 £0.02 0.26 £ 0.06 0.25+0.07 0.02 £ 0.00 0.03 £0.02 —0.00£0.00  —0.00 £ 0.00 0.07 £0.01 0.06 £ 0.01 0.10 £ 0.01
LT: change rotations + hues 1.00 £ 0.00 0.68 £0.02 0.57 £0.01 —0.00£0.00  0.72£0.10 0.29 £ 0.00 —0.00£0.00  —0.00 £ 0.00 0.28 £ 0.00 0.28 £0.00 0.28 £ 0.00
DA: rot. + crop (Ig) 026 +0.01 —0.00+0.00 0.0240.00 0.00 + 0.00 0.00 £ 0.00 0.59 £ 0.05 0.02 +0.01 0.20 £ 0.04 0.00 £ 0.00 0.01 +0.00 0.01 £ 0.00
DA: rot. + crop (sm) 0.15£0.00 —0.00=0.00 —0.00£0.00 —0.00£0.00 —0.00+£0.00 | —0.00£0.00 —0.00+£0.00 0.29+0.21 —0.00£0.00  —0.00+£0.00 —0.00 = 0.00
LT: change rot. + pos. 1.00£0.00 —0.00£0.00 0.45+0.01 —0.00£0.00 —0.00 £ 0.00 0.32£0.02 0.00 £ 0.00 0.80 £ 0.09 0.27 £ 0.00 0.27 £ 0.01 0.27£0.01
DA: rot. + crop (Ig) + col. dist. 0.99 + 0.00 0.2 0.04 0.26 +0.07 0.26 £ 0.01 0.51+0.14 0.21 £0.01 —0.004+0.00  —0.00 + 0.00 0.21 +0.04 0.28 +0.02 0.22 4 0.02
DA: rot. + crop (sm) + col. dist. 1.00 £ 0.00 0.26 £0.02 0.48 £0.01 0.21 £0.02 0.61 £0.01 0.31 £ 0.00 0.00£0.00  0.34 £0.02 0.30 £ 0.00 0.30 £0.01 0.29 £0.01
LT: change rot. + pos. + hues 1.00 £ 0.00 0.03 £0.05 0.46 £0.01 0.01 £0.01 0.01 £0.02 0.29 £0.01 —0.00£0.00  —0.00 £ 0.00 0.27 £ 0.00 0.28 £ 0.01 0.28 +£0.01

output dimensionality of 100. While it is clear that all R? scores are increased across the board,
we can notice that certain latents which were discarded in the final layer, were not in an interme-
diate layer. For example, with “LT: change hues”, in the final layer the z-position was discarded
(R? = 0.15 in Tab. 6), inexplicably we may add, as position is content regardless of axis with
this latent transformation. But in the intermediate layer, z-position was not discarded (R? = 0.88
in Tab. 8).

Table 8: Evaluation of an intermediate layer. Logistic regression used for class, kernel ridge regression
used for all continuous variables.

o e Positions Hues Rotations
Views generated by Class
object(z) object(y) object(z) spotlight object spotlight background object(¢) object(6) object(1))

DA: colour distortion 0.714£0.02 | 0.68+0.02 080+£0.01 0.63+£001 025+001 | 013+0.00  0.02£001 0.01+001 | 044+0.01  048+£0.01  0.39%0.00
LT: change hues 1.00£0.00 | 0.984£0.00 0.97+£0.00 0.8840.01 0.98+£0.00 | 0.34£0.01 —0.00£0.00 0.20+£0.10 | 0.7140.02 0.68 £ 0.03 0.68 £ 0.02
DA: crop (large) 0.43£0.03 | 041005 0.35£0.05 032£0.04 041£013 | 0.88+£0.00  0.14£0.03 1.00£0.00 | 0.03+0.02  0.06+0.01  0.08£0.00
DA: crop (small) 0.20£0.01 | 0.04+0.05 0.204£0.02 0.01£0.02 0.20£0.03 | —0.00+0.00 —0.00=0.00 1.00+0.00 | —0.00+0.00 —0.000.00 —0.00 = 0.00
LT: change positions 1.00£0.00 | 0.78£0.02 0.90+£0.01 0.7540.01 0.59 £ 0.02 0.82£0.01 0.18£0.02  0.99+£0.00 | 0.6440.02 0.55 £ 0.02 0.56 £ 0.02

0.92+£0.00 0.83+£0.00 0.92£0.00 0.90%0.01
0.92£0.00 0.87+0.01 0.90£0.00 0.97+0.00

0.29 £ 0.00 0.01 £0.01 0.01 £0.01
0.46 £ 0.04 0.02 £0.02 0.58 £0.12

0.87 £0.00 0.90 £ 0.00 0.85 £ 0.00
0.79 £ 0.01 0.83 £ 0.00 0.79 £ 0.00

DA: crop (large) + colour distortion  1.00 £ 0.00
DA: crop (small) + colour distortion  1.00 & 0.00

LT: change positions + hues 1.00£0.00 | 0.834£0.04 0.90+0.01 0.8140.04 0.75+0.08 0.42 +0.09 0.04£0.02 0.52+0.20 | 0.72+0.05 0.69 £ 0.07 0.67 4 0.06
DA: rotation 0.46 £0.04 | 0.35£0.04 0.19+£0.02 0.28+0.04 0.34+0.08 0.85 £ 0.01 0.35 £0.12 1.00 £+ 0.00 0.03 £0.01 0.08 £0.02 0.10 £0.01
LT: change rotations 1.00£0.00 | 0.974£0.00 0.96+0.01 0.8440.01 0.98£0.00 | 0.8240.01 0.17£0.02  0.99+£0.00 | 0.6440.02 0.59 £ 0.01 0.60 4 0.03
DA: rotation + colour distortion 0.87+£0.02 | 0.76 £0.01 0.81£0.01 0.71£0.01 0.39£0.08 0.19 £0.02 —0.00£0.00 0.02+0.02 0.55 £ 0.03 0.55 £0.03 0.48 £0.02
LT: change rotations + hues 1.00£0.00 | 0.98£0.00 0.97£0.00 0.87£0.00 0.99£0.00 0.39 £0.05 0.04 £0.02 0.37£0.21 0.69 £ 0.01 0.68 £0.01 0.68 £ 0.00
DA: rot. + crop (Ig) 0.43+£0.03 | 0.33+£0.04 0.34+£0.02 028+0.03 0.30+0.05 0.86 +0.04 0.17 £0.02 1.004+0.00 | 0.02+0.00 0.05 £ 0.01 0.10 £ 0.01
DA: rot. + crop (sm) 0.20£0.01 | 0.07£0.03 0.09£0.10 0.01+£0.01 0.20£0.01 | =0.00£0.00 —0.00£0.00 1.00£0.00 [ —0.00£0.00 —0.00£0.00 —0.00=%0.00
LT: change rot. + pos. 1.00£0.00 | 0.81£0.01 0.90£0.01 0.76£0.01 0.67 £ 0.04 0.84 £ 0.01 0.28 £0.04 0.99 £ 0.00 0.62 £ 0.02 0.57 £0.01 0.55 £ 0.01
DA: rot. + crop (Ig) + col. dist. 1.00+0.00 | 0.924+0.01 0.894+0.00 0.92£0.00 0.95=+0.01 0.30 £ 0.00 0.02£0.02 0.18+0.16 0.81 £0.00 0.84 £0.00 0.79 4 0.00
DA: rot. + crop (sm) + col. dist. 1.00£0.00 | 0.87£0.00 0.854+0.00 0.87£0.00 0.93+£0.00 0.71 £0.02 0.33 £0.05 0.96 £ 0.00 0.72 £0.00 0.75 £ 0.00 @ +0.00
LT: change rot. + pos. + hues 1.00£0.00 | 0.84£0.02 091£0.01 0.82£0.02 0.78+£0.06 0.40 £0.01 0.06 £ 0.01 0.50 £ 0.05 0.72 £ 0.04 0.70 £ 0.05 0.67 £ 0.04

Table 9: Evaluation of an intermediate layer. Logistic regression used for class, linear regression used
for all continuous variables.

— o | Positions Hues Rotations
Views generated by Class
object(x) object(y) object(z) spotlight object spotlight background object(¢) object(6) object(v))

DA: colour distortion 0.71+£0.02  0.53+£0.01 0.70 £ 0.01 0.46 +0.01 0.13 £0.01 0.11£0.01 —0.0140.00 0.00£0.00 | 0.28+0.01 0.19 £ 0.01 0.25 £ 0.01
LT: change hues 1.00£0.00 0.93+0.00 0.93+0.00 0.60+£0.04 0.95£0.00 | 0.31+0.00 0.01 £0.01 0.06 £0.04 | 0.44+£0.02 0.41£0.02 0.42 £ 0.00
DA: crop (large) 0.43+£0.03 0.18£0.06 0.06 £0.01 0.17 £0.02 0.19+0.14 0.82+0.02 0.08 +0.04 0.98 £0.00 0.01 £0.00 0.05 £ 0.01 0.05+0.01
DA: crop (small) 0.20+£0.01  0.01£0.01 0.03+0.02 0.00 £0.01 0.02+0.01 | —=0.00£0.00 —0.01£0.00 0.99=+0.00 | —0.01+0.00 —0.01+0.00 —0.00=0.01
LT: change positions 1.00+£0.00 0.49+0.04 0.72+0.03 0.43 £0.03 0.19 +£0.03 0.71£0.02 0.09 +0.02 0.98 £0.00 0.39 +£0.01 0.36 £0.01 0.35+0.00

DA: crop (large) + colour distortion ~ 1.00 £ 0.00  0.67 £0.03  0.56 & 0.01 0.66 £ 0.02 0.67 £0.03
DA: crop (small) + colour distortion ~ 1.00 £ 0.00  0.76 £0.01  0.704+0.02  0.68 £ 0.01 0.90 £ 0.00

0.28£0.00 —0.01£0.00 0.01£0.01
0.38 £ 0.03 0.00 £ 0.01 0.39£0.13

0.58 £ 0.02 0.61 £0.02 0.56 £ 0.01
0.50 £ 0.02 0.50 £ 0.01 0.49 £0.01

LT: change positions + hues 1.00£0.00 0.61£0.09 0.744£0.02 051£0.08 040£0.15 | 0.34£0.04 0.02 +0.01 025£0.22 | 0.47+£0.04 0.40 £0.02 0.41£0.03
0.02 +£0.01 0.06 £ 0.02 0.08 £0.01
LT: change rotations 1.00£0.00 0.92£0.00 0.8840.01 0.51 £0.02 0.95 £ 0.00 0.70 £0.06 0.07 £0.02 0.98 £0.00 0.36 £0.01 0.34 £0.00 0.34£0.01
DA: rotation + colour distortion 0.87+0.02 0.60+0.01 0.62+0.03 0.52 £ 0.02 0.23 £ 0.02 0.18 £0.02 —0.01£0.00 0.02+0.01 0.33 £0.04 0.29 £ 0.01 0.28 £0.01
LT: change rotations + hues 1.00£0.00 0.94£0.00 0.92+0.01 0.58 £ 0.01 0.96 £ 0.00 0.33 £0.02 0.02 +£0.01 0.15£0.10 0.40 £ 0.02 0.38 £0.01 0.41£0.03
DA: rot. + crop (Ig) 0.43+£0.03 0.24£0.04 0.08£0.02 0.16+0.03 0.07+0.01 0.80 £ 0.04 0.10 +£0.01 0.98£0.00 | 0.01+0.00 OOinDO] 0.06 £ 0.01
DA: rot. + crop (sm) 0.20+£0.01  0.01£0.01 0.03£0.01 —0.00+0.01 0.04+0.01 | —0.01£0.00 —0.01£0.00 0.99+£0.00 | —0.01+0.00 —0.00 £ 0.01
LT: change rot. + pos. 1.00£0.00 0.55+0.05 0.72+£0.02 0444004 0.31+0.08 | 0.76 £0.01 0.14+0.01  0.99+0.00 | 0.384+0.01 1001 0.36 £0.02

0.28 £0.00 —0.00£0.00 0.07£0.07
0.57£0.03 0.18 = 0.02 0.89 £0.01
+0.04

0.51 £0.01 .50 £ 0.02 0.51 £0.01
0.46 £ 0.01 0.45 £0.02 0.44£0.01
0.48 +£0.04 0.43 +£0.01 0.43 £0.01

DA: rot. + crop (Ig) + col. dist. 1.00+£0.00 0.71£0.01 0.69+0.01 0.69 £ 0.00 0.84 £0.03
DA: rot. + crop (sm) + col. dist. 1.00£0.00 0.66 =0.00 0.69+0.01 0.65 £ 0.02 0.83 £ 0.00
LT: change rot. + pos. + hues 1.00£0.00 0.65+0.04 0.75+0.05 0.57 £0.03 0.49 +£0.12

I
DA: rotation 0.46£0.04 0.21£0.02 0.10£0.01 0.10£0.02 0.21+0.09 ‘ 0.77 £0.01 0.25+0.11  0.97+0.01

0.35 £ 0.01 0.02+0.01

In [20], the value in evaluating an intermediate layer as opposed to a final layer is discussed, where the
authors demonstrated that predicting the data augmentations applied during training is significantly
more accurate from an intermediate layer as opposed to the final layer, implying that the intermediate
layer contains much more information about the transformation applied. Our results suggest a distinct
hypothesis, the value in using an intermediate layer as a representation for downstream tasks is
not due to preservation of style information, as can be seen, R? scores on style variables are not
significantly higher in Tab. 8 relative to Tab. 6. The value is in preservation of all content variables,
as we can observe certain content variables are discarded in the final layer, but are preserved in an
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Table 10: BarlowTwins A = 0.0051 results: R? mean = std. dev. over 3 random seeds. DA: data augmentation,
LT: latent transformation, bold: R > 0.5, red: R < 0.25. Results for individual axes of object position &
rotation are aggregated.

Positions Hues

Views generated by Class ‘ Rotations
| object spotlight | object spotlight background |

DA: colour distortion 0.48£0.02 | 0.51+0.14 0.07£0.01 | 0.084+0.00 0.00£0.00 0.00=£0.00 | 0.21 +0.04
LT: change hues 1.00 £0.00 | 0.56+0.20 0.76 £0.07 | 0.30£0.01 0.00£0.00 0.0140.00 | 0.35=£0.01
DA: crop (large) 0.17£0.02 | 0.10£0.03 0.06£0.02 | 0.29+0.13 0.11£0.05 0.99+0.00 | 0.02+0.01
DA: crop (small) 0.154+0.00 | 0.04 £0.02 0.054+0.02 | 0.024+0.01 0.00+£0.01 1.00 £0.00 | 0.00£0.01
LT: change positions 0.88+0.00 | 0.19+0.20 0.054+0.00 | 0.50£0.02 0.04+£0.01 0.98+0.00 | 0.27 £ 0.03
DA: crop (large) + colour distortion ~ 0.87 0.02 | 0.49+0.06 0.32+£0.03 | 0.254+0.01 0.00£0.00 0.00=£0.00 | 0.50 & 0.02
DA: crop (small) + colour distortion  0.81+0.01 | 0.39+0.07 0.42+0.06 | 0.47+0.04 0.03+£0.01 0.85+0.02 | 0.30+0.02
LT: change positions + hues 1.00 £0.00 | 0.28 £0.20 0.1240.05 | 0.31£0.00 0.00£0.00 0.0140.01 | 0.37£0.06

Table 11: BarlowTwins A = 0.051 results: R? mean = std. dev. over 3 random seeds. DA: data augmentation,
LT: latent transformation, bold: R? > 0.5, red: R? < 0.25. Results for individual axes of object position &
rotation are aggregated.

Views generated by Class ‘ Positions Hues Rotations
| object spotlight | object spotlight background |

DA: colour distortion 0.52+0.07 | 0.43+0.18 0.07+£0.02 | 0.10+0.03 0.00£0.00 0.00£0.00 | 0.21 +0.05
LT: change hues 1.00 £0.00 | 0.55+0.24 0.74+£0.02 | 0.30£0.00 0.00£0.00 0.0140.01 | 0.33+£0.02
DA: crop (large) 0.19£0.05 | 0.08+£0.02 0.05£0.01 | 0.39+0.36 0.08+£0.05 0.96+0.05 | 0.01 +0.02
DA: crop (small) 0.15£0.00 | 0.05+£0.02 0.07£0.02 | 0.00+£0.01 0.01£0.01 1.00+0.00 | 0.00 % 0.00
LT: change positions 0.89+0.01 | 0.19+£0.20 0.05£0.01 | 0.484+0.04 0.05£0.02 0.98+0.00 | 0.25+0.03
DA: crop (large) + colour distortion ~ 0.86 == 0.03 | 0.40+0.07 0.23+£0.02 | 0.244+0.01 0.00£0.00 0.00 £0.00 | 0.47 +0.04
DA: crop (small) + colour distortion ~ 0.99 +0.01 | 0.63 +£0.03 0.88+0.01 | 0.324+0.02 0.00£0.00 0.16£0.13 | 0.52+0.03
LT: change positions + hues 1.00 £0.00 | 0.21 £0.22 0.07£0.01 | 0.30£0.00 0.00=£0.00 0.0240.01 | 0.46 £ 0.06

intermediate layer. With that being said, our theoretical result applies to the final layer, which is why
said results were highlighted in the main paper. The discarding of certain content variables is an
empirical phenomenon, likely a consequence of a limited number of negative samples in practice,
leading to certain content variables being redundant, or unnecessary, for solving the contrastive
objective.

The fact that we can recover certain content variables which appeared discarded in the output from
the intermediate layer may suggest that we should be able to decode class. While scores are certainly
increased, we do not see such drastic differences in R? scores, as was seen above. The drastic
difference highlighted above was with regards to latent transformation, for which we always observed
class encoded as a content variable. So, unfortunately, using an intermediate layer does not rectify
the discrepancy between data augmentations and latent transformations. While latent transformations
allow us to better interpret the effect of certain empirical techniques [20], as discussed in the main
paper, we cannot make a one-to-one correspondence between data augmentations used in practice
and latent transformations.

BarlowTwins: We repeat our analysis from § 5.2 using BarlowTwins [128] (instead of SimCLR)
which, as discussed at the end of § 4.2, is also loosely related to Thm. 4.4. The BarlowTwins
objective consists of an invariance term, which equates the diagonal elements of the cross-correlation
matrix to 1, thereby making the embedding invariant to the distortions applied and a redundancy
reduction term, which equates the off-diagonal elements of the cross-correlation matrix to 0, thereby
decorrelating the different vector components of the embedding, reducing the redundancy between
output units.

In Tab. 10 we train BarlowTwins with A = 0.0051, the default value for the hyperparameter which
weights the redundancy reduction term relative to the invariance term. To confirm the insights are
robust to the value of \,in Tab. 11, we report results with A increased by an order of magnitude,
A = 0.051. We find that the results mirror Tab. 1, e.g. colour distortion yields a discarding of hue,
crops isolate background hue where the larger the crop, the higher the identifiability of object hue,
and crops & colour distortion yield high accuracy in inferring the object class variable.

C.3 MPI3D-real

We ran the same experimental setup as in § 5.2 also on the MPI3D-real dataset [38] containing > 1
million real images with ground-truth annotations of 3D objects being moved by a robotic arm.
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Table 12: MPI3D-real results: R? mean = std. dev. over 3 random seeds for dim(¢)= 5. DA: data augmentation,
bold: RZ > 0.5, red: R? < 0.25.

Views generated by \ object color  object shape  objectsize  camera height  background color  horizontal axis  vertical axis
DA: colour distortion | 0.3940.01 0.00£0.00 0.1640.01  1.00 4 0.00 0.09 +£0.15 0.60 £ 0.06 0.42 4+ 0.08
DA: crop (large) | 0.65+£0.17 0.01+£0.02 0.314+0.03  1.00 £ 0.00 1.00 & 0.00 0.37 £ 0.06 0.08 +0.03
DA: crop (small) [ 0.0940.02 0.03£0.00 0.1940.01  1.00+0.00 1.00 + 0.00 0.21 +£0.02 0.07 4+ 0.00
DA: crop (large) + colour distortion | 0.34+0.00 0.0040.00 0.22+0.03  1.00 + 0.00 0.39 +0.02 0.54 £0.01 0.29 +£0.01
DA: crop (small) + colour distortion | 0.25+£0.02  0.0040.00 0.10£0.01 100 +0.00 0.75+0.16 0.54 4 0.01 0.29 +0.03

Table 13: Supervised MPI3D-real results: R* mean =+ std. dev. over 3 random seeds. DA: data augmentation.
bold: R* > 0.5, red: R* < 0.25.

Views generated by | object color  object shape  object size  camera height  background color  horizontal axis  vertical axis
Original [ 090£0.01 0.25+0.02 0.61+0.02 0.99+0.00 0.97 £ 0.01 1.00 = 0.00 1.00 £ 0.00
DA: colour distortion 0.61+0.01 0.11+0.00 0.47+0.01  0.98 £ 0.00 0.93 £ 0.00 0.99 £ 0.00 1.00 £ 0.00
DA: crop (large) 0.82+0.01 0.05+£0.01 0.42+0.02 0.97 £ 0.01 0.91 £ 0.00 0.96 + 0.00 0.97 £ 0.01
DA: crop (small) 0.71+£0.04 0.01£0.00 0.3240.02 0.95=+0.00 0.85 +0.01 0.79+0.02  0.90 +0.01
DA: crop (large) + colour distortion ~ 0.45£0.02  0.02+£0.00 0.22 &+ 0.00 0.95 +0.01 0.67 £0.01 0.91 + 0.00 0.94 £ 0.00
DA: crop (small) + colour distortion ~ 0.45+0.02 0.00+0.00 0.17 £+ 0.02 0.91 +0.02 0.55+0.03 0.69 + 0.01 0.79 + 0.08

As MPI3D-real contains much lower resolution images (64 x 64) compared to ImageNet &
Causal3DIdent (224 x 224), we used the standard convolutional encoder from the disentangle-
ment literature [82], and ran a sanity check experiment to verify that by training the same backbone
as in our unsupervised experiment with supervised learning, we can recover the ground-truth factors
from the augmented views. In Tab. 13, we observe that only five out of seven factors can be consis-
tently inferred, object shape and size are somewhat ambiguous even when observing the original
image. Note that while in the self-supervised case, we evaluate by training a nonlinear regression for
each ground truth factor separately, in the supervised case, we train a network for all ground truth
factors simultaneously from scratch for as many gradient steps as used for learning the self-supervised
model.

In Tab. 12, we report the evaluation results in the self-supervised scenario. Subject to the aforemen-
tioned caveats, the results show a similar trend as those on Causal3DlIdent, i.e. with colour distortion,
color factors of variation are decoded significantly worse than positional/rotational information.

D Experimental details

Ground-truth generative model. The generative process used in our numerical simulations (§ 5.1)
is summarised by the following:

c~p(c) =N(0,%;), with X.~ Wishart,, (I,n.),
i

slc ~ p(s|e) = N(a+ Be,Ys), with g ~ Wishart, (I,ns), a;,bi; = N(0,1),
Salsa, A~ p(Salsa) = N(sa,2(A)) with ¥ ~ Wishart,_(I,ns),
(x,x) = (fmrp (2), fure(2)),
where the set of changing style vectors A is obtained by flipping a (biased) coin with p(chg.) = 0.75

for each style dimension independently, and where 3(A) denotes the submatrix of ¥ defined by
selecting the rows and columns corresponding to subset A.

When we do not allow for statistical dependence (Stat.) within blocks of content and style variables,
we set the covariance matrices X, >g, and X to the identity. When we do not allow for causal
dependence (Cau.) of style on content, we set a;, b;; = 0,V4, j.

For fy1,p, we use a 3-layer MLP with LeakyReLLU (v = 0.2) activation functions, specified using
the same process as used in previous work [54, 55, 129]. For the square weight matrices, we draw
(ne 4+ ms) x (ne +ns) samples from U(—1, 1), and perform /3 column normalisation. In addition, to
control for invertibility, we re-sample the weight matrices until their condition number is less than or
equal to a threshold value. The threshold is pre-computed by sampling 24, 975 weight matrices, and
recording the minimum condition number.

Training encoder. Recall that the result of Thm. 4.4 corresponds to minimizing the following
functional (5):
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2
[fAlignMaxEnt (g) = E(x,i)wpx,;( [(g(X) - g(X)) ] - H (g(X)) .
Note that InfoNCE [20, 91] (1) can be rewritten as:

Linonce (85T K) = B, 2,35 mprs | — S sim(g(x)i, g(%):) /7 +log YI exp{sim(g(x)i, g(%);)/7}].  (32)

Thus, if we consider 7 = 1, and sim(u, v) = —(u — v)?,

Lintonce (85 K) = By, 2,15  ~opes (2K, (8(x); — g(%):)” + log S exp{—(g(x): — g(%);)%}]  (33)

we can approximately match the form of (5). In practice, we use K = 6, 144.

For g, as in [129], we use a 7-layer MLP with (default) LeakyReLLU (o = 0.01) activation functions.
As the input dimensionality is (n. +ns), we consider the following multipliers [10, 50, 50, 50, 50, 10]
for the number of hidden units per layer. In correspondence with Thm. 4.4, we set the output
dimensionality to n..

We train our feature encoder for 300, 000 iterations, using Adam [66] with a learning rate of 10~

Causal3DIdent. We here elaborate on details specific to the experiments in § 5.2. We train the
feature encoder for 200, 000 iterations using Adam with a learning rate of 10~*. For the encoder
we use a ResNet18 [46] architecture followed by a single hidden layer with dimensionality 100 and
LeakyReLU activation function using the default (0.01) negative slope. The scores are evaluated on a
test set consisting of 25, 000 samples not included in the training set.

Data augmentations. We here specify the parameters for the data augmentations we considered:

* colour distortion: see the paragraph labelled “Color distortion” in Appendix A of [20] for details.
We use s = 1.0, the default value.

* crop: see the paragraph labelled “Random crop and resize to 224 x 224” in Appendix A of [20] for
details. For small crops, a crop of random size (uniform from 0.08 to 1.0 in area) of the original
size is made, which corresponds to what was used in the experiments reported in [20]. For large
crops, a crop of random size (uniform from 0.8 to 1.0 in area) of the original size is made.

 rotation: as specified in the captions for Figure 4 & Table 3 in [20], we sample one of
{0°,90°,180°,270°} uniformly. Note that for the pair, we sample two values without replacement.

A visual overview of the effect of these image-level data augmentations is shown in Fig. 11.

Latent transformations. To generate views via latent transformations (LT) in our experiments on
Causal3DIdent (§ 5.2), we proceed as follows.

Let z refer to the latent corresponding to the original image. For all latents specified to change, we
sample 2’ from a truncated normal distribution constrained to [—1, 1], centered at z, with o = 1..
Then, we use nearest-neighbor matching to find the latent  closest to 2’ (in L? distance) for which
there exists an image rendering.'”

Evaluation. Recall that Thm. 4.4 states that g block-identifies the true content variables in the
sense of Defn. 4.1, i.e., there exists an invertible function h : R? — R" s.t. ¢ = h(c).

Since this is different from typical evaluation in disentanglement or ICA in that we do not assume
independence and do not aim to find a one-to-one correspondence between inferred and ground truth
latents, existing metrics, such as MCC [54, 55] or MIG [18], do not apply.

We therefore treat identifying h as a regression task, which we solve using kernel ridge regression
with a Gaussian kernel [88]. Since the Gaussian kernel is universal, this constitutes a nonparametric
regression technique with universal approximation capabilities, i.e., any nonlinear function can be
approximated arbitrarily well given sufficient data.

Bsee [129] for further details
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Figure 11: Visual overview of the effect of different data augmentations (DA), applied to 10 represen-
tative samples. Rows correspond to (fop to bottom): original images, small random crop (+ random
flip), large random crop (+ random flip), colour distortion (jitter & drop), and random rotation.

We sample 4096 x 10 datapoints from the marginal for evaluation. For kernel ridge regression, we
standardize the inputs and targets, and fit the regression model on 4096 x 5 (distinct) datapoints. We
tune the regularization strength o and kernel variance «y by 3-fold cross-validated grid search over the
following parameter grids: « € [1,0.1,0.001, 0.0001], v € [0.01, 0.22, 4.64, 100].

Compute. The experiments in § 5.1 took on the order of 5-10 hours on a single GeForce RTX 2080
Ti GPU. The experiments in § 5.2 on 3DIdent took 28 hours on four GeForce RTX 2080 Ti GPUs.
The creation of the Causal3DIdent dataset additionally required approximately 150 hours of compute
time on a GeForce RTX 2080 Ti.
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