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Abstract

We present a novel generative modeling method called diffusion normalizing flow
based on stochastic differential equations (SDEs). The algorithm consists of two
neural SDEs: a forward SDE that gradually adds noise to the data to transform the
data into Gaussian random noise, and a backward SDE that gradually removes the
noise to sample from the data distribution. By jointly training the two neural SDEs
to minimize a common cost function that quantifies the difference between the
two, the backward SDE converges to a diffusion process the starts with a Gaussian
distribution and ends with the desired data distribution. Our method is closely
related to normalizing flow and diffusion probabilistic models and can be viewed as
a combination of the two. Compared with normalizing flow, diffusion normalizing
flow is able to learn distributions with sharp boundaries. Compared with diffusion
probabilistic models, diffusion normalizing flow requires fewer discretization steps
and thus has better sampling efficiency. Our algorithm demonstrates competitive
performance in both high-dimension data density estimation and image generation
tasks.

1 Introduction
Generative model is a class of machine learning models used to estimate data distributions and
sometimes generate new samples from the distributions [8, 35, 16, 37, 7]. Many generative models
learn the data distributions by transforming a latent variable z with a tractable prior distribution to
the data space [8, 35, 32]. To generate new samples, one can sample from the latent space and then
follow the transformation to the data space. There exist a large class of generative models where
the latent space and the data space are of the same dimension. The latent variable and the data are
coupled through trajectories in the same space. These trajectories serve two purposes: in the forward
direction x → z, the trajectories infer the posterior distribution in the latent space associated with a
given data sample x, and in the backward direction z → x, it generates new samples by simulating
the trajectories starting from the latent space. This type of generative model can be roughly divided
into two categories, depending on whether these trajectories connecting the latent space and the data
space are deterministic or stochastic.

When deterministic trajectories are used, these generative models are known as flow-based models.
The latent space and the data space are connected through an invertible map, which could either
be realized by the composition of multiple invertible maps [35, 8, 20] or a differential equation
[4, 14]. In these models, the probability density at each data point can be evaluated explicitly using
the change of variable theorem, and thus the training can be carried out by minimizing the negative
log-likelihood (NLL) directly. One limitation of the flow-based model is that the invertible map
parameterized by neural networks used in it imposes topological constraints on the transformation
from z to x. Such limitation affects the performance significantly when the prior distribution on z is
a simple unimodal distribution such as Gaussian while the target data distribution is a well-separated
multi-modal distribution, i.e., its support has multiple isolated components. In [6], it is shown that
there are some fundamental issues of using well-conditioned invertible functions to approximate such
complicated multi-modal data distributions.
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When stochastic trajectories are used, the generative models are often known as the diffusion model
[38]. In a diffusion model, a prespecified stochastic forward process gradually adds noise into the
data to transform the data samples into simple random variables. A separate backward process is
trained to revert this process to gradually remove the noise from the data to recover the original data
distributions. When the forward process is modeled by a stochastic differential equation (SDE), the
optimal backward SDE [1] can be retrieved by learning the score function [39, 40, 17, 2]. When the
noise is added to the data sufficiently slow in the forward process, the backward diffusion can often
revert the forward one reasonably well and is able to generate high fidelity samples. However, this
also means that the trajectories have to be sufficiently long with a large number of time-discretization
steps, which leads to slow training and sampling. In addition, since the forward process is fixed, the
way noise is added is independent of the data distribution. As a consequence, the learned model may
miss some complex but important details in the data distribution, as we will explain later.

In this work, we present a new generative modeling algorithm that resembles both the flow-based
models and the diffusion models. It extends the normalizing flow method by gradually adding noise
to the sampling trajectories to make them stochastic. It extends the diffusion model by making
the forward process from x to z trainable. Our algorithm is thus termed Diffusion Normalizing
Flow (DiffFlow). The comparisons and relations among DiffFlow, normalizing flow, and diffusion
models are shown in Figure 1. When the noise in DiffFlow shrinks to zero, DiffFlow reduces to a
standard normalizing flow. When the forward process is fixed to some specific type of diffusion,
DiffFlow reduces to a diffusion model.
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Figure 1: The schematic diagram for normalizing flows, diffusion models, and DiffFlow. In normal-
izing flow, both the forward and the backward processes are deterministic. They are the inverse of
each other and thus collapse into a single process. The diffusion model has a fixed forward process
and trainable backward process, both are stochastic. In DiffFlow, both the forward and the backward
processes are trainable and stochastic.

In DiffFlow, the forward and backward diffusion processes are trained simultaneously by minimizing
the distance between the forward and the backward process in terms of the Kullback-Leibler (KL)
divergence of the induced probability measures [42]. This cost turns out to be equivalent to (see
Section 3 for a derivation) the (amortized) negative evidence lower bound (ELBO) widely used in
variational inference [21]. One advantage to use the KL divergence directly is that it can be estimated
with no bias using sampled trajectories of the diffusion processes. The KL divergence in the trajectory
space also bounds the KL divergence of the marginals, providing an alternative method to bound the
likelihood (see Section 3 for details). To summarize, we have made the following contributions.
1. We propose a novel density estimation model termed diffusion normalizing flow (DiffFlow) that
extends both the flow-based models and the diffusion models. The added stochasticity in DiffFlow
boosts the expressive power of the normalizing flow and results in better performance in terms of
sampling quality and likelihood. Compared with diffusion models, DiffFlow is able to learn a forward
diffusion process to add noise to the data adaptively and more efficiently. This avoids adding noise to
regions where noise is not so desirable. The learnable forward process also shortens the trajectory
length, making the sampling much faster than standard diffusion models (We observe a 20 times
speedup over diffusion models without decreasing sampling quality much).
2. We develop a stochastic adjoint algorithm to train the DiffFlow model. This algorithm evaluates
the objective function and its gradient sequentially along the trajectory. It avoids storing all the
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intermediate values in the computational graph, making it possible to train DiffFlow for high-
dimensional problems.
3. We apply the DiffFlow model to several generative modeling tasks with both synthetic and real
datasets, and verify the performance of DiffFlow and its advantages over other methods.

2 Background
Below we provide a brief introduction to normalizing flows and diffusion models. In both of these
models, we use τ = {x(t), 0 ≤ t ≤ T} to denote trajectories from the data space to the latent space
in the continuous-time setting, and τ = {x0,x1, · · · ,xN} in the discrete-time setting.

Normalizing Flows: The trajectory in normalizing flows is modeled by a differential equation

ẋ = f(x, t, θ), (1)

parameterized by θ. This differential equation starts from random x(0) = x and ends at x(T ) = z.
Denote by p(x(t)) the probability distribution of x(t), then under mild assumptions, it evolves
following [4]

∂ log p(x(t))

∂t
= −tr(

∂f

∂x
). (2)

Using this relation (1) (2) one can compute the likelihood of the model at any data point x.

In the discrete-time setting, the map from x to z in normalizing flows is a composition of a collection
of bijective functions as F = FN ◦FN−1 · · ·F2 ◦F1. The trajectory τ = {x0,x1, · · · ,xN} satisfies

xi = Fi(xi−1, θ), xi−1 = F−1
i (xi, θ) (3)

for all i. Similar to Equation (2), based on the rule for change of variable, the log-likelihood of any
data samples x0 = x can be evaluated as

log p(x0) = log p(xN )−
N�

i=1

log |det(
∂F−1

i (xi)

∂xi
)|. (4)

Since the exact likelihood is accessible in normalizing flows, these models can be trained by minimiz-
ing the negative log-likelihood directly.

Diffusion Models: The trajectories in diffusion models are modeled by stochastic differential
equations. More explicitly, the forward process is of the form

dx = f(x, t)dt+ g(t)dw, (5)

where the drift term f : Rd × R → Rd is a vector-valued function, and the diffusion coefficient
g : R → R is a scalar function (in fact, g is often chosen to be a constant). Here w denotes the
standard Brownian motion. The forward process is normally a simple linear diffusion process [38, 16].
The forward trajectory τ can be sampled using (5) initialized with the data distribution. Denote by
pF the resulting probability distribution over the trajectories. With a slight abuse of notation, we also
use pF to denote the marginal distribution of the forward process.

The backward diffusion from z = x(T ) to x = x(0) is of the form

dx = [f(x, t)− g2(t)s(x, t, θ)]dt+ g(t)dw. (6)

It is well-known that when s coincides with the score function ∇ log pF , and x(T ) in the forward
and backward processes share the same distribution, the distribution pB induced by the backward
process (6) is equal to pF [1],[29, Chapter 13]. To train the score network s(x, t, θ), one can use the
KL divergence between pF and pB as an objective function to reduce the difference between pF and
pB . When the difference is sufficiently small, pF and pB should have similar distribution over x(0),
and one can then use the backward diffusion (6) to sample from the data distribution.

In the discrete setting, the trajectory distributions can be more explicitly written as

pF (τ) = pF (x0)

N�

i=1

pF (xi|xi−1), pB(τ) = pB(xT )

N�

i=1

pB(xi−1|xi). (7)

The KL divergence between pF and pB can be decomposed according to this expression (7). Most
diffusion models use this decomposition, and meanwhile take advantage of the simple structure of
the forward process (5), to evaluate the objective function in training [39, 40, 41].
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3 Diffusion normalizing flow
We next present our diffusion normalizing flow models. Similar to diffusion models, the DiffFlow
models also has a forward process

dx = f(x, t, θ)dt+ g(t)dw, (8)
and a backward process

dx = [f(x, t, θ)− g2(t)s(x, t, θ)]dt+ g(t)dw. (9)
The major difference is that, instead of being a fixed linear function as in most diffusion models, the
drift term f is also learnable in DiffFlow. The forward process is initialized with the data samples at
t = 0 and the backward process is initialized with a given noise distribution at t = T . Our goal is to
ensure the distribution of the backward process at time t = 0 is close to the real data distribution.
That is, we would like the difference between pB(x(0)) and pF (x(0)) to be small.

To this end, we use the KL divergence between pB(τ) and pF (τ) over the trajectory space as the
training objective function. Since

KL(pF (x(t))|pB(x(t))) ≤ KL(pF (τ)|pB(τ)) (10)
for any 0 ≤ t ≤ T by data processing inequality, small difference between pB(τ) and pF (τ) implies
small difference between pB(x(0)) and pF (x(0)) in terms of KL divergence (more details are
included in Appendix B).

3.1 Implementation
In real implementation, we discretize the forward process (8) and the backward process (9) as

xi+1 = xi + fi(xi)Δti + giδ
F
i

�
Δti (11)

xi = xi+1 − [fi+1(xi+1)− g2i+1si+1(xi+1)]Δti + gi+1δ
B
i

�
Δti, (12)

where δFi , δ
B
i ∼ N (0, I) are unit Gaussian noise, {ti}Ni=0 are the discretization time points, and

Δti = ti+1 − ti is the step size at the i-th step. Here we have dropped the dependence on the
parameter θ to simplify the notation. With this discretization, the KL divergence between trajectory
distributions becomes

KL(pF (τ)|pB(τ)) = Eτ∼pF
[log pF (x0)� �� �
L0

]+Eτ∼pF
[− log pB(xN )� �� �

LN

]+

N−1�

i=1

Eτ∼pF
[log

pF (xi|xi−1)

pB(xi−1|xi)� �� �
Li

].

(13)

The term L0 in (13) is a constant determined by entropy of the dataset as
E

τ∼pF

[log pF (x0)] = E
x0∼pF

[log pF (x0)] =: −H(pF (x(0))).

The term LN is easy to calculate since pB(xN ) is a simple distribution, typically standard Gaussian
distribution.

To evaluate L1:N−1, we estimate it over sampled trajectory from the forward process pF . For a given
trajectory τ sampled from pF (τ), we need to calculate pB(τ) along the same trajectory. To this
end, a specific group of {δBi } is chosen such that the same trajectory can be reconstructed from the
backward process. Thus, δBi satisfies

δBi (τ) =
1

gi+1

√
Δt

�
xi − xi+1 + [fi+1(xi+1)− g2i+1si+1(xi+1)]Δt

�
. (14)

Since δBi is a Gaussian noise, the negative log-likelihood term pB(xi|xi+1) is equal to 1
2 (δ

B
i (τ))2

after dropping constants (see more details in Appendix B). In view of the fact that the expectation
of

�
i
1
2 (δ

F
i (τ))

2 remains a constant, minimizing Equation (13) is equivalent to minimizing the
following loss (see Appendix C for the full derivation):

L := Eτ∼pF
[− log pB(xN ) +

�

i

1

2
(δBi (τ))2] = EδF ;x0∼p0

[− log pB(xN ) +
�

i

1

2
(δBi (τ))2],

(15)
where the last equality is based on a reparameterization trick [21]. We can minimize the loss in
Equation (15) with Monto Carlo gradient estimation as in Algorithm 1.
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Algorithm 1 Training
repeat

x0 ∼ Real data distribution
δF1:N ∼ N (0, I)
Discrete timestamps: tNi=0

Sample: τ = {xi}Ni=0 based on δF1:N
Gradient descent step ∇θ[− log pB(xN ) +

�
i
1
2 (δ

B
i (τ))2]

until converged

Algorithm 2 Stochastic Adjoint Algorithm for DiffFlow

1: Input: Forward trajectory {xi}Ni=0

2: ∂L
∂xN

= 1
2
∂(δBN (τ))2

∂xN
− ∂ log pB(xN )

xN

3: ∂L
∂θ = 0

4: for i = N,N − 1, · · · , 1 do
5: ∂L

∂xi−1
= ( ∂L

∂xi
+ 1

2
∂(δBi (τ))2

∂xi
) ∂xi

∂xi−1
+ 1

2
∂(δBi (τ))2

∂xi−1

6: ∂L
∂θ + = 1

2
∂(δBi (τ))2

∂θ + ( ∂L
∂xi

+ 1
2
∂(δBi (τ))2

∂xi
)∂xi

∂θ

7: end for

xi−1 xi

δBi

f

f − g2s

δFi

Forward pass
Backpropagation

Figure 2: Gradient Flowchart.

3.2 Stochastic Adjoint method

One challenge in training DiffFlow is memory consumption. When a naive backpropagation strategy
is used, the memory consumption explodes quickly. Indeed, differentiating through the operations of
the forward pass requires unrolling networks N times and caching all network intermediate values
for every step, which prevents this naive implementation of DiffFlow from being applied in high
dimensional applications. Inspired by the adjoint method in Neural ODE [4], we propose the adjoint
variable ∂L

∂xi
and a stochastic adjoint algorithm that allows training the DiffFlow model with reduced

memory consumption. In this adjoint method, we cache intermediate states xi and, based on these
intermediate states, reproduce the whole process, including δFi , δ

B
i as well as fi, si exactly.

We note another similar approach [26] of training SDEs caches random noise dw and further takes
advantage of the pseudo-random generator to save memory for the intermediate noises, resulting
in constant memory consumption However, the approach can not reproduce exact trajectories due
to time discretization error and requires extra computation to recover dw from the pseudo-random
generator. We found that in our image experiments in Section 4, the cached {xi} consumes only about
2% memory out of all the memory being used during training. Due to the accuracy and acceptable
memory overhead, the introduced stochastic adjoint approach is a better choice for DiffFlow. We
summarize the method in Algorithm 2 and Figure 2. We also include the PyTorch [34] implementation
in the supplemental material.

3.3 Time discretization and progressive training Figure 3: Δti of Lβ and L̂β

We propose two time discretization schemes for training DiffFlow:
fixed timestamps Lβ and flexible timestamps L̂β . For fixed times-
tamps, the time interval [0, T ] is discretized with fixed schedule
ti = ( i

N )βT . With such fixed time discretization over batches, we
denote the loss function as Lβ . Empirically, we found β = 0.9 works
well. This choice of β increases stepsize Δti when the forward pro-
cess approaches z = xN and provides higher resolution when the
backward process is close to x0. We found such discretization gen-
erates samples with good quality and high fidelity details. The choice
of polynomial function is arbitrary; other functions of similar sharps
may work as well.
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In the flexiable timestamps scheme, we train different batches with different time discretization points.
Specifically, ti is sampled uniformly from the interval [( i−1

N−1 )
βT, ( i

N−1 )
βT ] for each batch. We

denote the training objective function with such random time discretization as L̂β . We empirically
found such implementation results in lower loss and better stability when we conduct progressive
training where we increase N gradually as training progresses. In progressive training, we refine the
forward and backward processes as N increase. This training scheme can significantly save training
time compared with the other method that uses a fixed large N during the whole process. Empirically,
we found that progressive training can speed up the training up to 16 times.

To understand why such random time discretization scheme is more stable, we hypothesis that this
choice encourages a smoother f , s since it seeks functions f , s to reduce objective loss under different
sets of {ti} instead of a specific {ti}. We illustrate fixed timestamps in Lβ and a realization of
random discretization in L̂β in Figure 3 with β = 0.9.

3.4 Learnable forward process
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Figure 4: Illustration of forwarding trajectories of DiffFlow, DDPM, and FFJORD. Each row
shows two trajectories of transforming data distributions, four rings, and Olympics rings, to a base
distribution. Different modes of densities are in different colors. Though FFJORD adjusts forward
process based on data, its bijective property prevents the approach from expanding density support
to the whole space. DDPM can transform data distributions into Gaussian distribution but a data-
invariant way of adding noise can corrupt the details of densities, e.g., the densities at the intersections
of the rings. DiffFlow not only transforms data into base distribution but also keeps the topological
information of the original datasets. Points from the same ring are transformed into continental plates
instead of being distributed randomly.

The forward process not only is responsible for driving data into latent space, but also provides
enough supervised information to learning backward process. Thanks to bijective property, NFs can
reconstruct data exactly but there is no guarantee that it can reach the standard Gaussian. At the
other extreme, Denoising diffusion probabilistic models (DDPM) [17] adopt a data-invariant forward
diffusing schema, ensuring that xN is Gaussian. DDPM can even reach Gaussian in one step with
N = 1, which output noise disregarding data samples. However, backward process will be difficult
to learn if data is destroyed in one step. Therefore, DDPM adds noise slowly and often needs more
than one thousand steps for diffusion.

The forward module of DiffFlow is a combination of normalizing flow and diffusion models. We
show the comparision in fitting toy 2D datasets in Figure 4. We are especially interested in data
with well-separated modes and sharp density boundaries. Those properties are believed to appear
in various datasets. As stated by manifold hypothesis [36], real-world data lie on low-dimensional
manifold [28] embedded in a high-dimensional space. To construct the distributions in Figure 4, we
rotate the 1-d Gaussian distribution N (1, 0.0012) around the center to form a ring and copy the rings
to different locations.

As a bijective model, FFJORD [14] struggles to diffuse the concentrated density mass into a Gaussian
distribution. DiffFlow overcomes expressivity limitations of the bijective constraint by adding noise.
As added noise shrinks to zero, the DiffFlow has no stochasticity and degrades to a flow-based model.
Based on this fact, we present the following theorem with proof in Appendix A.
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Theorem 1. As diffusion coefficients gi → 0, DiffFlow reduces to Normalizing Flow. Moreover,
minimizing the objective function in Equation (13) is equivalent to minimizing the negative log-
likelihood as in Equation (4).

DDPM [17] uses a fixed noising transformation. Due to the data-invariant approach p(xT |x0) =
p(xT ), points are diffused in the same way even though they may appear in different modes or
different datasets. We observe that sharp details are destroyed quickly in DDPM diffusion, such as
the intersection regions between rings. However, with the help of learnable transformation, DiffFlow
diffuses in a much efficient way. The data-dependent approach shows different diffusion strategies
on different modes and different datasets. Meanwhile, similar to NFs, it keeps some topological
information for learning backward processes. We include more details about the toy sample in
Section 4.

4 Experiments
We evaluate the performance of DiffFlow in sample quality and likelihood on test data. To evaluate
the likelihood, we adopt the marginals distribution equivalent SDEs

dx = [f(x, t, θ)− 1 + λ2

2
g2(t)s(x, t, θ)]dt+ λg(t)dw, (16)

with λ ≥ 0 (Proof see Appendix H). When λ = 0, it reduces to probability ODE [41]. The ODE
provides an efficient way to evaluate the density and negative log-likelihood. For any 0 ≤ λ ≤ 1, the
above SDE can be used for sampling. Empirically, we found λ = 1 has the best performance.

4.1 Synthetic 2D examples
We compare the performance of DiffFlow and existing diffusion models and NFs on estimating the
density of 2-dimensional data. We compare the forward trajectories of DiffFlow, DDPM [17] and
FFJORD [14]1 in Figure 4 and its sampling performance in Figure 5. To make a fair comparison, we
build models with comparable network sizes, around 90k learnable parameters. We include more
training and model details in Appendix E.

All three algorithms have good performance on datasets whose underlying distribution has smooth
density, such as 2 spirals. However, when we shrink the support of samples or add complex patterns,
performance varies significantly. We observe that FFJORD leaks many samples out of the main
modes and datasets with complex details and sharp density exacerbates the disadvantage.

DDPM has higher sample quality but blurs density details, such as intersections between rings,
areas around leaves of the Fractal tree, and boxes in Sierpiński Carpet. The performance is within
expectation given that details are easy to be destroyed and ignored with the data-invariant noising
schema. On the less sharp dataset, such as 2 Spirals and Checkerboard, its samples align with data
almost perfectly.

DiffFlow produces the best samples (according to a human observer). We owe the performance to the
flexible noising forward process. As illustrated in Figure 4, DiffFlow provides more clues and retains
detailed patterns longer for learning its reverse process. We also report a comprehensive comparison
of the negative likelihood and more analysis in Appendix E. DiffFlow has a much lower negative
likelihood, especially on sharp datasets.
4.2 Density estimation on real data
We perform density estimation experiments on five tabular datasets [33]. We employ the probability
flow to evaluate the negative log-likelihood. We find that our algorithm has better performance in most
datasets than most approaches trained by directly minimizing negative log-likelihood, including NFs
and autoregressive models. DiffFlow outperforms FFJORD by a wide margin on all datasets except
HEPMASS. Compared with autoregressive models, it excels NAF [18] on all but GAS. Those models
require O(d) computations to sample from. Meanwhile, DiffFlow is quite effective in achieving such
performance with MLPs that have less than 5 layers. We include more details in Appendix F

4.3 Image generation
In this section, we report the quantitative comparison and qualitative performance of our method and
existing methods on common image datasets, MNIST [24] and CIFAR-10 [23]. We use the same

1Implementation of FFJORD and DDPM are based on official codebases.
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Figure 5: Samples from DiffFlow, DDPM and FFJORD on 2-D datasets. All three models have
reasonable performance on datasets that have smooth underlying distributions. But only DiffFlow is
capable to capture complex patterns and provides sharp samples when dealing with more challenging
datasets.

Dataset POWER GAS HEPMASS MINIBOONE BSDS300

RealNVP [8] -0.17 -8.33 18.71 13.55 -153.28
FFJORD [14] -0.46 -8.59 14.92 10.43 -157.40
DiffFlow (ODE) -1.04 -10.45 15.04 8.06 -157.80
MADE [11] 3.08 -3.56 20.98 15.59 -148.85
MAF [33] -0.24 -10.08 17.70 11.75 -155.69
TAN [31] -0.48 -11.19 15.12 11.01 -157.03
NAF [18] -0.62 -11.96 15.09 8.86 -157.73

Table 1: Average negative log-likelihood (in nats) on tabular datasets [33] for density estimation (lower
is better).

unconstrained U-net style model as used successfully by Ho et al. [17] for drift and score network.
We reduce the network size to half of the original DDPM network so that the total number of trainable
parameters of DiffFlow and DDPM are comparable. We use small N = 10 at the beginning of
training and slowly increase to large N as training proceeds. The schedule of N reduces the training
time greatly compared with using large N all the time. We use constants gi = 1 and T = 0.05 for
MNIST and CIFAR10, and N = 30 for sampling MNIST data and N = 100 for sampling CIFAR10.
As it is reported by Jolicoeur-Martineau et al. [19], adding noise at the last step will significantly
lower sampling quality, we use one single denoising step at the end of sampling with Tweedie’s
formula [10].

We report negative log-likelihood (NLL) in bits per dimension or negative ELBO if NLL is unavailable.
On MNIST, we achieve competitive performance on NLL as in Table 2. We show the uncurated
samples from DiffFlow in Figure 6 and Figure 7. On CIFAR-10, DiffFlow also achieves competitive
NLL performance as shown in Table 3. DiffFlow performs better than normalizing flows and DDPM
models, but is slightly worse than DDPM++(sub, deep, sub-vp) and Improved DDPM. However, these
approaches conduct multiple architectural improvements and use much deeper and wider networks.
We also report the popular sample metric, Fenchel Inception Distance (FID) [15]. DiffFLow has a
lower FID score than normalizing flows and has competitive performance compared with DDPM
trained with unweighted variational bounds, DDPM and Improved DDPM. It is worse than DDPM
trained with reweighted loss, DDPM (Ls), DDPM cont, and DDPM++ [17, 41, 30]. Besides, sampling
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Table 2: NLL on MNIST

Model NLL (↓)

RealNVP [8] 1.06
Glow [20] 1.05
FFJORD [14] 0.99
ResFlow [5] 0.97
DiffFlow 0.93

Figure 6: MNIST Samples Figure 7: CIFAR10 Samples

quality with different sampling steps N are compared in Table 4 2. The advantage of DiffFlow is
clear when we compare relative FIDs degeneracy ratio with N = 100 respectively. DiffFlow is able
to retain better sampling quality when decreasing N . Full details on architectures used, training setup
details, and more samples can be found in Appendix G.

Table 3: NLLs and FIDs on CIFAR-10.

Model NLL(↓) FID (↓)

RealNVP [8] 3.49 -
Glow [20] 3.35 46.90
Flow++ [16] 3.29 -
FFJORD [14] 3.40 -
ResFlow [5] 3.28 46.37
DDPM (L) [17] ≤ 3.70 13.51
DDPM (Ls) [17] ≤ 3.75 3.17
DDPM (Ls)(ODE) [41] 3.28 3.37
DDPM cont. (sub-VP) [41] 3.05 3.56
DDPM++ (sub-VP) [41] 3.02 3.16
DDPM++ (deep, sub-VP) [41] 2.99 2.94
Improved DDPM [30] ≤2.94 11.47
DiffFlow (Lβ) ≤ 3.71 13.87
DiffFlow (L̂β) ≤ 3.67 13.43
DiffFlow (L̂β , ODE) 3.04 14.14

Table 4: FIDs with various N

N DiffFlowDDPM (L) DDPM (Ls)DDIM

5 28.31 373.51 370.23 44.69
10 22.56 364.64 365.12 18.62
20 17.98 138.84 135.44 10.89
50 14.72 47.12 34.56 7.01
100 13.43 22.23 10.04 5.63

Table 5: Relative FIDs degeneracy ratio

N DiffFlowDDPM (L) DDPM (Ls)DDIM

5 2.12 16.80 37.02 7.94
10 1.68 16.40 36.12 3.31
20 1.34 6.24 13.54 1.93
50 1.10 2.12 3.45 1.24
100 1.0 1.0 1.0 1.0

5 Related work
Normalizing flows [8, 35] have recently received lots of attention due to its exact density evaluation
and ability to model high dimensional data [20, 9]. However, the bijective requirement poses
limitations on modeling complex data, both empirically and theoretically [42, 6]. Some works
attempt to relax the bijective requirement; discretely index flows [9] use domain partitioning with
only locally invertible functions. Continuously indexed flows [6] extend discretely indexing to
a continuously indexing approach. As pointed out in Stochastic Normalizing Flows (SNF) [42],
stochasticity can effectively improve the expressive power of the flow-based model in low dimension
applications. The architecture used in SNF, which requires known underlying energy models, presents
challenges for density learning tasks; SNF is designed for sampling from unnormalized probability
distribution instead of density estimation. Besides, even with ideal networks and infinite amount of
data, due to the predefined stochstic block being used, SNF cannot find models with aligned forward
and backward distribution as DiffFlow.

When it comes to stochastic trajectories, minimizing the distance between trajectory distributions
has been explored in existing works. Denoising diffusion model [38] uses a fixed linear forward
diffusion schema and reparameterizes the KL divergence such that minimizing loss is possible without
computing whole trajectories. Diffusion models essentially corrupt real data iteratively and learn to
remove the noise when sampling. Recently, Diffusion models have shown the capability to model

2The performance of DDPM is evaluated based on the officially released checkpoint with Ls denotes for
Lsimple in the original paper.
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high-dimensional data distribution, such as images [17, 40], shapes [3], text-to-speech [22]. Lately,
the Score-based model [41] provides a unified framework for score-matching methods and diffusion
models based on stochastic calculus. The diffusion processes and sampling processes can be viewed
as forwarding SDE and reverse-time SDE. Thanks to the linear forward SDE being used in DDPM,
the forward marginal distributions have a closed-form and are suitable for training score functions
on large-scale datasets. Also, due to the reliance on fixed linear forward process, it takes thousands
of steps to diffuse data and generate samples. DiffFlow considers general SDEs and nosing and
sampling are more efficient.

Existing Neural SDE approaches suffer from poor scaling properties. Backpropagating through
solver [12] has a linear memory complexity with the number of steps. The pathwise approach [13]
scales poorly in computation complexity. Our stochastic adjoint approach shares a similar spirit
with SDE adjoint sensitivity [25]. The choice of caching noise requires high resolution of time
discretization and prevents the approach from scaling to high dimension applications. By caching the
trajectory states, DiffFlow can use a coarser discretization and deploy on larger dimension problems
and problems with more challenging densities. The additional memory footprint is negligible
compared with the other network memory consumption in DiffFlow.

6 Limitations
While DiffFlow gains more flexibility due to the introduction of a learnable forward process, it loses
the analytical form for pF (xt|x0) and thus the training less efficient compared with score-based
loss [41]. Training DiffFlow relies on backpropagation through trajectories and is thus significantly
slower than diffusion models with affine drift. Empirically, we found DiffFlow is about 6 times
slower than DDPM in 2d toy examples, 55 times in MNIST, and 160 times in CIFAR10 without
progressive training in Section 3.3. Though the stochastic adjoint method and progressive training
help save memory footprint and reduce training time, the training of DiffFlow is still more expensive
than DDPM and its variants. On the other hand, compared with normalizing flows, the extra noise in
DiffFlow boosts the expressive power of the model with little extra cost. Though DiffFlow trained
based on SDE, its marginal distribution equivalent ODE 2 shows much better performance than its
counterpart trained with ODE [14]. It is interesting to investigate, both empirically and theoretically,
the benefit in terms of expressiveness improvement caused by stochastic noise for training normalizing
flows.

7 Conclusions
We proposed a novel algorithm, the diffusion normalizing flow (DiffFlow), for generative modeling
and density estimation. The proposed method extends both the normalizing flow models and the
diffusion models. Our DiffFlow algorithm has two trainable diffusion processes modeled by neural
SDEs, one forward and one backward. These two SDEs are trained jointly by minimizing the KL
divergence between them. Compared with most normalizing flow models, the added noise in DiffFlow
relaxes the bijectivity condition in deterministic flow-based models and improves their expressive
power. Compared with diffusion models, DiffFlow learns a more flexible forward diffusion that is
able to transform data into noise more effectively and adaptively. In our experiments, we observed that
DiffFlow is able to model distributions with complex details that are not captured by representative
normalizing flow models and diffusion models, including FFJORD, DDPM. For CIFAR10 dataset,
our DiffFlow method has worse performance than DDPM in terms of FID score. We believe our
DiffFlow algorithm can be improved further by using different neural network architectures, different
time discretizing method and different choices of time interval. We plan to explore these options in
the near future.

Our algorithm is able to learn the distribution of high-dimensional data and then generate new samples
from it. Like many other generative modeling algorithms, it may be potentially used to generate
misleading data such as fake images or videos.
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