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A Table of Notations

Table 2: Symbol reference
Symbol Meaning
d Dimension of model parameters.
Rd Unconstrained model parameter space of dimension d.
C A closed convex Model parameter set C ⊆ Rd for convex optimization.
ΠC(θ) Projection of θ to C.
X ,Xn Data universe and Domain of all datasets of size n.
n Dataset size.
D,D′ Neighbouring Dataset of size n.
xi i-th data point in dataset D.
`(θ;x) Risk of parameter θ w.r.t data point x.
LD(θ) Emprical risk optimization objective.
U1(θ) Average between gradients on neighbouring datasets D and D′.
U2(θ) Half of difference between gradients on neighbouring datasets D and D′.
g(θ;D) Sum of risk gradients at θ for all data points in D.
Vt, V

′
t Time-variable vector fields on Rd.

Sg `2-sensitivity of total loss gradient g(θ;D)
Sv maximum `2 distance between Vt and V ′t for all t > 0.
θ∗ Parameter minimizing the empirical risk LD(θ).
L Potential function for Langevin diffusion.
Wt Standard Brownian motion aka. Wiener process.
α Rényi differential privacy order.
δ Probability of uncontrolled breach in standard DP.
ε Rényi or standard DP privacy parameter.
A Randomized algorithm.
ν , ν′ Two probability measures.
p , p′ Two Probability densities over parameter space Rd.
Θ,Θ′ Two random variables distributed as p, p′ respectively.
σ2 Noise variance in noisy GD and Langevin diffusion.
Id d-dimensional identity matrix.
N (0, Id) Standard gaussion distribution with dimension d.
Z,Z1, Z2, · · · Random variables taken from N (0, Id).
η Step size of updates in noisy GD.
λ Strong convexity parameter of risk function.
β Smoothness parameter of risk function.
B Bound on range of risk function.
L Lipschitzness parameter of risk function.
K, k Number of update steps and intermediate step index in noisy GD.
θk, θ

′
k Parameter at step k of noisy GD on D,D′.

T, t Termination time and intermediate time stamp for diffusion.
Θt,Θ

′
t Model parameter random variable at time t of diffusion on D,D′.

pt, p
′
t Probability densities or random variables Θt,Θ

′
t

pt1,t2 Joint density between diffusion random variables (Θt1 ,Θt2).
p′t1,t2 Joint density between diffusion random variables (Θ′t1 ,Θ

′
t2).

pt1|t2(θ|θt2) Conditional density for Θt1 given Θt2 = θt2 .
p′t1|t2(θ|θt2) Conditional density for Θ′t1 given Θ′t2 = θt2 .
Rα(Θt||Θ′t) Rényi divergence of distribution of Θt w.r.t Θ′t.
Eα(Θt||Θ′t) αth moment of likelihood ratio r.v. between Θt,Θ

′
t.

Iα(Θt||Θ′t) Rényi Information of distribution of Θt w.r.t Θ′t.
c Constant in Log sobolev inequality.
� Absolute continuity with respect to measure.
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B Preliminaries

B.1 Divergence measures

A measure ν is said to be absolutely continuous with respect to another measure ν′ on same space
(denoted as ν � ν′) if for all measurable set S, ν(S) = 0 whenever ν′(S) = 0.
Definition B.1 (α-Rényi Divergence). For α > 1, and any two measures ν, ν′ with ν � ν′, the
α-Rényi Divergence Rα (.‖.) of ν with respect to ν′ is defined as

Rα (ν‖ν′) =
1

α− 1
logEα (ν‖ν′) , (24)

where Eα (ν‖ν′) is defined as:

Eα (ν‖ν′) =

∫ (
dν

dν′

)α
dν′, (25)

Additionally, if ν and ν′ are absolutely continuous with Lebesgue measures on Rd (i.e. they are
continuous distributions on Rd) with densities p and p′ respectively, Eα (ν‖ν′) is same as

Eα (ν‖ν′) = E
θ∼p′

[
p(θ)α

p′(θ)α

]
. (26)

As an example, the α-Rényi divergence between two Gaussian distributions centered at µ, µ′ ∈ Rd,

with covariance matrix σ2Id is
α‖µ−µ′‖2

2

2σ2 [17, Proposition 7].
Definition B.2 (Rényi information [22]). Let 1 < α <∞. For any two measures ν, ν′ with ν � ν′,
if the Radon-Nikodym derivative dν

dν′ is differentiable, the α-Rényi Information Iα (·‖·) of ν with
respect to ν′ is

Iα (ν‖ν′) =

∫ (
dν

dν′

)α ∥∥∥∥∇ log
dν

dν′

∥∥∥∥2

2

dν′. (27)

Additionally, if ν and ν′ are absolutely continuous with Lebesgue measures (i.e. they are continuous
distributions on Rd) with densities p and p′ respectively, Iα (ν‖ν′) is same as

Iα (ν‖ν′) =
4

α2
E
θ∼p′

[∥∥∥∥∇ p(θ)
α
2

p′(θ)
α
2

∥∥∥∥2

2

]
= E
θ∼p′

[
p(θ)α−2

p′(θ)α−2

∥∥∥∥∇ p(θ)

p′(θ)

∥∥∥∥2

2

]
. (28)

B.2 Differential privacy

LetX be a data universe. Let a dataset be a vector of n records fromX : D = (x1,x2, · · · ,xn) ∈ Xn.
Definition B.3 (Neighboring datasets). Two datasets D and D′ are neighboring, denoted by D ∼ D′,
if |D| = |D′|, and they differ in exactly one data record, i.e., |D ⊕D′| = 2.
Definition B.4 (Differential drivacy [7]). A randomized algorithm A : Xn → Rd satisfies (ε, δ)-
differential privacy (DP) if for any two neighboring datasets D,D′ ∈ Xn, and for all sets S ∈ Rd,

Pr [A(D) ∈ S] ≤ eεPr [A(D′) ∈ S] + δ. (29)
Definition B.5 (Rényi differential privacy [17]). Let α > 1. A randomized algorithm A : Xn → Rd
satisfies (α, ε)-Rényi Differential Privacy(RDP), if for any two neighboring datasets D,D′ ∈ Xn:

Rα (A(D)‖A(D′)) ≤ ε. (30)

In this paper, we mainly use Rényi differential privacy notion to analyze the privacy loss of algorithms.
We refer to Rα (A(D)‖A(D′)) as the Rényi privacy loss of algorithm A on datasets D,D′.
Theorem 6 (RDP composition theorem [17, Proposition 1]). Let A1 : Xn → Rd and
A2 : Rd ×Xn → Rd be two randomized algorithms that satisfy (α, ε1) and (α, ε2)-RDP, respec-
tively. The composed algorithm defined asA(D) = (A1(D),A2(D)) satisfies (α, ε1 +ε2)-Rényi DP.

An RDP guarantee can be converted to a DP guarantee as per the following theorem.
Theorem 7 (DP Conversion [17, Proposition 3]). If a randomized algorithm A : Xn → Rd satisfies
(α, ε)-RDP, then it also satisfies the standard (ε+ log 1/δ

α−1 , δ)-DP guarantee for any 0 < δ < 1.
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B.3 Langevin diffusion

We focus on the Langevin diffusion process in Rd with noise variance σ2, described by the following
stochastic differential equation (SDE).

dΘt = −∇L(Θt)dt+
√

2σ2dWt, (31)

where dWt = Wt+dt −Wt ∼
√
dtN (0, Id) characterizes the d-dimensional Wiener process.

The joint effect of this drag force (i.e. −∇L) and Brownian fluctuations on the probability density pt
of position random variable Θt is characterized through the Fokker-Planck equation [10],

∂pt(θ)

∂t
= ∇ · (pt(θ)∇L(θ)) + σ2∆pt(θ), (32)

which describes the rate of change in probability density at any position θ ∈ Rd. It’s important to point
out that Fokker-Planck equation isn’t a property of Langevin diffusion, but rather a general equation
quantifying the distributional change under any drag force in presence of Brownian fluctuations.

Under mild regularity conditions on the potential L(θ), this diffusion process has a stationary
distribution ν, given by the solution to ∂pt(θ)

∂t = 0, which is the following Gibbs distribution.

ν(θ) =
1

V
e−L(θ)/σ2

, where V =

∫
Rd
e−L(θ)/σ2

dθ. (33)

B.4 Loss function properties

For any data record x ∈ X , a loss function `(θ;x) : C → R on a closed convex set C maps parameter
θ ∈ C ⊆ Rd to a real value. Let∇`(θ;x) be its loss gradient vector with respect to θ.

Definition B.6 (Lipschitz continuity). Function `(θ;x) is L-Lipschitz continuous if for all θ, θ′ ∈ C
and x ∈ X ,

|`(θ;x)− `(x; θ′)|≤ L ‖θ − θ′‖2 . (34)

Definition B.7 (Smoothness). Differentiable function `(θ;x) is β-smooth over C if for all θ, θ′ ∈ C
and x ∈ X ,

‖∇`(θ;x)−∇`(θ′;x)‖2 ≤ β ‖θ − θ
′‖2 . (35)

Definition B.8 (Strong convexity). Differentiable function `(θ;x) is λ-strongly convex if for all
θ, θ′ ∈ Rd and x ∈ X ,

`(θ′;x) ≥ `(θ;x) +∇`(θ;x)T (θ′ − θ) +
λ

2
‖θ′ − θ‖22 . (36)

Definition B.9 (Vector field sensitivity). For two vector fields V, V ′ on Rd, we define Sv to be the
l2-sensitivity between them:

Sv = max
θ∈Rd

‖V (θ)− V ′(θ)‖2 . (37)

Definition B.10 (Sensitivity of total gradient). For a differentiable function `(θ;x), we define Sg
to be the l2-sensitivity of its total gradient g(θ;D) =

∑
x∈D∇`(θ;x) on neighboring datasets

D,D′ ∈ Xn:
Sg = max

D∼D′
max
θ∈Rd

‖g(θ;D)− g(θ;D′)‖2 . (38)

In Appendix C, we briefly present the basic vector calculus that we require in this paper.

C Calculus Refresher

Given a smooth function L : Θ→ R, where Θ ⊂ Rd, its gradient ∇L : Xn → Rd is the vector of
partial derivatives

∇L(θ) =

(
∂L(θ)

∂θ1
, · · · , ∂L(θ)

∂θ2

)
. (39)

15



Its Hessian∇2L : Θ→ Rd×d is the matrix of second partial derivatives

∇2L(θ) =

(
∂2L(θ)

∂θiθj

)
1≤i,j≤d

. (40)

Its Laplacian ∆L : Θ→ R is the trace of its Hessian∇2L, i.e.,

∆L(θ) = Tr
(
∇2L(θ)

)
. (41)

Given a smooth vector field v = (v1, · · · ,vd) : Θ→ Rd, its divergence∇ · v : Θ→ R is

(∇ · v)(θ) =

d∑
i=1

∂vi(θ)

∂θi
. (42)

Some identities that we would rely on:

1. Divergence of gradient is the Laplacian, i.e.,

∇ · ∇L(θ) =
d∑
i=1

∂2L(θ)

∂θ2
i

= ∆L(θ). (43)

2. For any function f : Θ→ R and a vector field v : Θ→ Rd with sufficiently fast decay to a
constant at the border of Θ,∫

Θ

〈v(θ),∇f(θ)dθ〉 = −
∫

Θ

f(θ)(∇ · v)(θ)dθ. (44)

3. For any two twice continuously differentiable functions f, g : Θ→ R, out of which at least
for one the gradient decays sufficiently fast at infinity, the following also holds.∫

Θ

f(θ)∆g(θ)dθ = −
∫

Θ

〈∇f(θ),∇g(θ)〉 dθ =

∫
Θ

g(θ)∆f(θ)dθ. (45)

This identity comes from the Green’s first identity, which is the higher dimensional equivalent
of integration by part.

4. Based on Young’s inequality, for two vector fields v1,v2 : Θ→ Rd, and any a, b ∈ R such
that ab = 1, the following inequality holds.

〈v1,v2〉 (θ) ≤
1

2a
‖v1(θ)‖22 +

1

2b
‖v2(θ)‖22 . (46)

Wherever it is clear, we would drop (θ) for brevity. For example, we would represent (∇ · v)(θ) as
only∇ · v.

D Proofs for Section 3: Privacy analysis of noisy gradient descent

D.1 Proofs for Section 3.1: Tracing diffusion for Noisy GD

Lemma 1. For coupled diffusion processes (5) in time ηk < t < η(k + 1), the equivalent Fokker-
Planck equations are {

∂pt(θ)
∂t = ∇ · (pt(θ)Vt(θ)) + σ2∆pt(θ)

∂p′t(θ)
∂t = ∇ · (p′t(θ)V ′t (θ)) + σ2∆p′t(θ),

(47)

where Vt(θ) = −V ′t (θ) = E
θk∼pηk|t

[U2(θk)|θ] are time-dependent vector fields on Rd, and

U2(θ) = ∇LD(θ)−∇LD′ (θ)
2 is the difference between gradients on neighboring datasets D and D′.

Proof. We only prove∂pt(θ)∂t = ∇ · (pt(θ)Vt(θ)) + σ2∆pt(θ). The proof for the other Fokker-Planck
equation is similar.
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Recall that conditionals of joint distribution pηk,t is

pηk,t(θk, θ) = pηk(θk)pt|ηk(θ|θk) = pt(θ)pηk|t(θk|θ). (48)

By marginalizing away θk in (48), and taking partial derivative w.r.t. t on both sides, we obtain the
following:

∂pt(θ)

∂t
=

∫
Rd

∂pt|ηk(θ|θk)

∂t
pηk(θk)dθk

=

∫
Rd

(
∇ · (pηk,t(θk, θ)U2(θk)) + σ2∆pηk,t(θk, θ)

)
dθk (By (8))

= ∇ ·
(
pt(θ)

∫
Rd
pηk|t(θk|θ)U2(θk)dθk

)
+ σ2∆pt(θ)

= ∇ ·
(
pt(θ) E

θk∼pηk|t
[U2(θk)|θ]

)
+ σ2∆pt(θ)

= ∇ · (pt(θ) · Vt(θ)) + σ2∆pt(θ) (where Vt(θ) = E
θk∼pηk|t

[U2(θk)|θ])

D.2 Proofs for Section 3.2: Privacy erosion in tracing diffusion

Lemma 7 (Leibniz integral rule). Suppose ft : Rd → R is Lebesgue-integrable for each t ≥ 0. If
for almost all θ ∈ Rd, the derivative dft

dt exists and there exists an integrable function g : Rd → R
such that

∣∣∣dftdt (θ)
∣∣∣ ≤ g(θ) for all t ≥ 0 and almost every θ ∈ Rd, then

d

dt

∫
Rd
ft(θ)dθ =

∫
Rd

dft
dt

(θ)dθ, for all t ≥ 0. (49)

Lemma 2 ( Rate of Rényi divergence ). Let Vt and V ′t be two vector fields on Rd with
max
θ∈Rd

‖Vt(θ)− V ′t (θ)‖2 ≤ Sv for all t ≥ 0. Then, for corresponding coupled diffusions {Θt}t≥0 and

{Θ′t}t≥0 under Vt and V ′t with noise variance σ2, the rate of Rényi divergence at any t ≥ 0 is upper
bounded by

∂Rα (Θt‖Θ′t)
∂t

≤ 1

γ

αS2
v

4σ2
− (1− γ)σ2α

Iα (Θt‖Θ′t)
Eα (Θt‖Θ′t)

. (50)

where γ > 0 is a tuning parameter that we can fix arbitrarily according to our need.

Proof. For brevity, let the functions R(α, t) = Rα (pt‖p′t), E(α, t) = Eα (pt‖p′t), and
I(α, t) = Iα (pt‖p′t). Under the stated assumptions ∂E(α,t)

∂t is bounded as follows.

∂E(α, t)

∂t
=

∂

∂t

∫
Rd

pαt
p′α−1
t

dθ (51)

By Leibniz integral rule (Lemma 7), we exchange order of derivative and integration in (51). The
necessary conditions are satisfied because of the following properties about pt and p′t:

1. pt and p′t have the same support, and their Renyi divergence is well-defined.

2. The distributions of coupled tracing diffusions {θt}ηk<t<η(k+1) and {θ′t}ηk<t<η(k+1) have
full support and smooth densities pt and p′t (due to convolution with Gaussian noise).

3. The evolutions of probability densities pt and p′t with regard to time t satisfy the Fokker-
Planck equations (8).
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Therefore, we obtain:

∂E(α, t)

∂t
= α

∫
Rd

∂pt
∂t

(
pt
p′t

)α−1

dθ − (α− 1)

∫
Rd

∂p′t
∂t

(
pt
p′t

)α
dθ (By Lemma 7)

= α

∫
Rd

(
σ2∆pt +∇ · (ptVt)

)(pt
p′t

)α−1

dθ

− (α− 1)

∫
Rd

(
σ2∆p′t +∇ · (p′tV ′t )

)(pt
p′t

)α
dθ (From (9))

= σ2α

∫
Rd

(
pt
p′t

)α−1

∆ptdθ − σ2(α− 1)

∫
Rd

(
pt
p′t

)α
∆p′tdθ︸ ︷︷ ︸

def
=F1

+ α

∫
Rd

(
pt
p′t

)α−1

∇ · (ptVt)dθ − (α− 1)

∫
Rd

(
pt
p′t

)α
∇ · (p′tV ′t )dθ︸ ︷︷ ︸

def
=F2

We simplify F1 as following:

F1 = σ2(α− 1)

∫
Rd

〈
∇
(
pt
p′t

)α
,∇p′t

〉
dθ − σ2α

∫
Rd

〈
∇
(
pt
p′t

)α−1

,∇pt

〉
dθ (From (45))

= σ2α(α− 1)

∫
Rd

(
pt
p′t

)α−2〈
∇pt
p′t
,
pt
p′2t
∇p′t −

∇pt
p′t

〉
p′tdθ

= −σ2α(α− 1)E
p′t

[(
pt
p′t

)α−2 ∥∥∥∥∇ptp′t
∥∥∥∥2

2

]
(∵ ∇pt

p′t
= ∇pt

p′t
− pt

p′2t
∇p′t)

= −σ2α(α− 1)I(α, t) (From (28))
We upper bound F2 as following:

F2 = −α
∫
Rd

〈
∇
(
pt
p′t

)α−1

, ptVt

〉
dθ + (α− 1)

∫
Rd

〈
∇
(
pt
p′t

)α
, p′tV

′
t

〉
dθ (From (44))

= α(α− 1)

∫
Rd

(
pt
p′t

)α−2〈
∇pt
p′t
,
pt
p′t

(V ′t − Vt)
〉
p′tdθ

≤ γα(α− 1)σ2

∫
Rd

(
pt
p′t

)α−2 ∥∥∥∥∇ptp′t
∥∥∥∥2

2

p′tdθ (From (46) with b = 2γσ2)

+
α(α− 1)S2

v

4γσ2

∫
Rd

(
pt
p′t

)α−2

×
(
pt
p′t

)2

p′tdθ (∵ max
θ∈Rd

‖Vt(θ)− V ′t (θ)‖2 ≤ Sv)

= γσ2α(α− 1)I(α, t) +
1

γ

α(α− 1)S2
v

4σ2
E(α, t) (From (26) & (28))

Therefore, we get the following bound on the rate of Renyi divergence:
∂R(α, t)

∂t
=

1

α− 1
× 1

E(α, t)
× ∂E(α, t)

∂t

≤ −(1− γ)σ2α
I(α, t)

E(α, t)
+

1

γ

αS2
v

4σ2

Discussions about the terms in Lemma 2 Lemma 2 bounds the rate of privacy loss with various
terms. Generally speaking, the term αS2

v

4σ2 bounds the worst-case privacy loss growth due to noisy

gradient update when Sv =
Sg
n , while the term Iα(Θt‖Θ′t)

Eα(Θt‖Θ′t)
amplifies our bound for the rate of privacy

loss, as the Rényi privacy loss accumulates during the process. We offer more explanations as the
following.
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1.
αS2

g

4σ2n2 : This is the first term in the right hand side of (15). It quantifies the worst-case
privacy loss due of one noisy gradient update in noisy GD Algorithm 1. The term Sg

n is the
sensitivity of average loss gradient LD(θ) over two neighboring datasets D,D′. The larger
Sg is, the further apart the parameters θ and θ′ after the gradient descent updates on two
neighboring dataset D,D′ could be, where θ = θ0 − η∇LD(θ0) and θ′ = θ0 − ηLD′(θ0).
The term σ2 is the variance of Gaussian noise. Because additive noise shrink the expected
trajectory difference between θ and θ′ in noisy GD updates, the larger σ2 is, the more
indistinguishable the distributions of sum of θ, θ′ and Gaussian noise will be, therefore the
smaller the privacy loss (Rényi divergence between end distributions) will be.

2. Iα(Θt‖Θ′t)
Eα(Θt‖Θ′t)

: This term is the second term in the right hand side of (10), which originates
from the derivative of pt, p′t with regard to time t. To obtain the expression Iα/Eα, we
are using the Fokker Planck equation to replace the terms related to ∂pt

∂t ,
∂p′t
∂t with terms

determined by the gradient and Laplacian of pt, p′t over θ.
The term Iα(Θt‖Θ′t) is the Rényi information defined in Definition 2.2., which equals

Eθ∼p′t

[∥∥∥∇ log pt(θ)
p′t(θ)

∥∥∥2

2

(
pt(θ)
p′t(θ)

)α]
. The term Eα(Θt‖Θ′t) is the moment of likelihood

ratio defined in Definition 2.1., which equals Eθ∼p′t
[(

pt(θ)
p′t(θ)

)α]
. These two terms

differ by a multiplicative ratio
∥∥∥∇ log pt(θ)

p′t(θ)

∥∥∥2

2
for their quantities inside expectation.

This ratio characterizes the variation of log likelihood ratio function across θ, where
θ is taken from distribution p′t. This is intuitive in the one dimensional case, because∫ θ2
θ1
∇ log pt(θ)

p′t(θ)
dθ = log pt(θ2)

p′t(θ2) − log pt(θ1)
p′t(θ2) . Meanwhile since pt(θ), pt(θ)′ are continuous

and
∫
pt(θ)dθ =

∫
p′t(θ)dθ = 1, by mean value theorem, there exists θ̃ ∈ Rd such that the

log likelihood ratio log pt(θ̃)

p′t(θ̃)
is zero. Therefore the variation of log likelihood ratio across θ

implicitly increases the largest log likelihood ratio maxθ∈Rd
[
log(pt(θ)pt(θ)

)− log(pt(θ̃)
pt(θ̃)

)
]

=

maxθ∈Rd
[
log(pt(θ)pt(θ)

)
]

across θ , which reflects the Rényi privacy loss Rα.

As a result, intuitively, under some conditions, the larger the Rényi privacy loss Rα is, the
larger the variation of log likelihood ratio across θ will be, and therefore the larger the term
Iα(Θt‖Θ′t)
Eα(Θt‖Θ′t)

will be. Therefore when the Rényi privacy loss Rα is large, the bound for the
rate of privacy loss in (10) Lemma 2 will also be smaller (under (1− γ) > 0).

3. γ is a tuning constant to balance the privacy growth rate estimated using the above two terms,
thus helping us tune the privacy loss accumulation. See the tightness results in Appendix E
for more details.

Theorem 1 (Linear Rényi divergence bound). Let Vt and V ′t be two vector fields on Rd, with
max
θ∈Rd

‖Vt(θ)− V ′t (θ)‖2 ≤ Sv for all t ≥ 0. Then, the diffusion under vector fields Vt and V ′t with

noise variance σ2 for time T has α-Rényi divergence of output distributions bounded by ε =
αS2

vT
4σ2 .

Proof. Setting γ = 1 in Lemma 2 gives constant privacy loss rate. Integrating over t suffices.

Controlling Rényi privacy loss rate under isoperimetry
Lemma 3 ( [22] c-LSI in terms of Rényi Divergence ). Suppose Θt,Θ

′
t ∈ Rd are random variables

such that probability density ratio between Θt and Θ′t lies in FΘ′t
. Then for any α ≥ 1,

Rα (Θt‖Θ′t) + α(α− 1)
∂Rα (Θt‖Θ′t)

∂α
≤ α2

2c

Iα (Θt‖Θ′t)
Eα (Θt‖Θ′t)

, (52)

if and only if Θ′ satisfies c-LSI.

Proof. Let p and p′ denote the probability density functions of Θt and Θ′t respectively. For brevity,
let the functions R(α) = Rα (Θt‖Θ′t), E(α) = Eα (Θt‖Θ′t), and I(α) = Iα (Θt‖Θ′t). Let function
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g2(θ) =
(
p(θ)
p′(θ)

)α
. Then,

E
p′

[
g2
]

= E
p′

[(
p

p′

)α]
= Eα (p‖p′) , (From (26))

and,

E
p′

[
g2 log g2

]
= E
p′

[(
p

p′

)α
log

(
p

p′

)α]
= α

∂

∂α
E
p′

[∫
α

(
p

p′

)α
log

(
p

p′

)
dα

]
(Lebniz’s rule)

= α
∂

∂α
E
p′

[(
p

p′

)α]
= α

∂E(α)

∂α
. (From (26))

Moreover, from (28),

E
p′

[
‖∇g‖22

]
= E
p′

∥∥∥∥∥∇
(
p

p′

)α
2

∥∥∥∥∥
2

2

 =
α2

4
I(α). (53)

On substituting the above equalities in (11), we get:

E
p′

[
g2 log g2

]
− E
p′

[
g2
]

logE
p′

[
g2
]
≤ 2

c
E
p′

[
‖∇g‖22

]
⇐⇒ α

∂E(α)

∂α
− E(α) logE(α) ≤ α2

2c
I(α)

⇐⇒ α
∂ logE(α)

∂α
− logE(α) ≤ α2

2c

I(α)

E(α)

⇐⇒ α
∂

∂α
((α− 1)R(α))− (α− 1)R(α) ≤ α2

2c

I(α)

E(α)
(From (24))

⇐⇒ R(α) + α(α− 1)
∂R(α)

∂α
≤ α2

2c

I(α)

E(α)

D.3 Proofs for Section 3.3: Privacy guarantee for Noisy GD

Lemma 4. Let `(θ;x) be a loss function on closed convex set C, with a finite total gradient sensitivity
Sg . Let {Θt}t≥0 and {Θ′t}t≥0 be the coupled tracing diffusions for noisy GD on neighboring datasets
D,D′ ∈ Xn, under loss `(θ;x) and noise variance σ2. Then the difference between underlying
vector fields Vt and V ′t for coupled tracing diffusions is bounded by

max
θ∈Rd

‖Vt(θ)− V ′t (θ)‖2 ≤
Sg
n
, (54)

where Vt(θ) and V ′t (θ) are time-dependent vector fields on Rd, defined in Lemma 1.

Proof. By triangle inequality, for any θ ∈ Rd,

‖Vt(θ)− V ′t (θ)‖2 ≤ ‖Vt(θ)‖2 + ‖V ′t (θ)‖2

≤ 1

2
E

θk∼pηk|t
[‖∇LD(θk)−∇LD′(θk)‖2|θ] (55)

+
1

2
E

θ′k∼p
′
ηk|t

[‖∇LD′(θ′k)−∇LD(θ′k)‖2|θ] . (From Jensen’s inequality)

By definition of total gradient sensitivity, for any θk and θ′k, we have

‖∇LD(θk)−∇LD′(θk)‖2 ≤
Sg
n
, ‖∇LD′(θ′k)−∇LD(θ′k)‖2 ≤

Sg
n
.

Therefore, by applying this inequality in equation (55) we obtain (54).
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Theorem 2. Let {Θt}t≥0 and {Θ′t}t≥0 be the tracing diffusion forANoisy-GD on neighboring datasets
D and D′, under noise variance σ2 and loss function `(θ;x). Let `(θ;x) be a loss function on closed
convex set C, with a finite total gradient sensitivity Sg. If for any neighboring datasets D and D′,
the corresponding coupled tracing diffusions Θt and Θ′t satisfy c-LSI throughout 0 ≤ t ≤ ηK, then
ANoisy-GD satisfies (α, ε) Rényi Differential Privacy for

ε =
αS2

g

2cσ4n2
(1− e−σ

2cηK). (56)

Proof. The RDP evolution equation (15) holds for projected noisy GD during the tracing diffusion in
every time piece ηk < t < η(k + 1). Therefore, for ηk < t < η(k + 1), the following differential
inequality holds:

∂R(α, t)

∂t
≤ 1

γ

αS2
g

4σ2n2
− 2(1− γ)σ2c

[
R(α, t)

α
+ (α− 1)

∂R(α, t)

∂α

]
(57)

Let a1 = 2(1− γ)σ2c, a2 = 1
γ

αS2
g

4σ2n2 , and y = log(α− 1).

We define u(t, y) =

{
R(α,limt→ηk+ t)

α − a2
a1

if t = ηk
R(α,t)
α − a2

a1
if ηk < t < η(k + 1)

, where we denote the limit pri-

vacy at start of a step with R(α, limt→ηk+ t) = Rα(limt→ηk+ Θt‖limt→ηk+ Θ′t). Then we can
include starting time t = ηk in the time piece for evolution of u(t, y) and re-write (57) as the
following:

∂u

∂t
+ a1u+ a1

∂u

∂y
≤ 0, when ηk ≤ t < η(k + 1), (58)

with initial condition u(ηk, y) =
R(α,limt→ηk+ t)

α − a2
a1

.

We introduce auxiliary variables τ = t, and z = t − 1
a1
y. By defining v(τ, z) = u(t, y), we get

∂v
∂τ + a1v ≤ 0 from (58), with initial condition v(ηk, z) = u(ηk,−a1(z − ηk)). This PDI implies
that for every z, the rate of decay of v is proportional to its present value. The solution for this PDI is
v(τ, z) ≤ v(ηk, z)e−a1(τ−ηk). By bringing back the original variables, we have

u(t, y) ≤ u(ηk, y − a1(t− ηk))e−a1(t−ηk), when ηk ≤ t < η(k + 1). (59)

On undoing the substitution u(t, y), we have

R(α, t)− a2

a1
α ≤ (R(α, lim

t→ηk+
t)− a2

a1
α)e−a1(t−ηk), when ηk ≤ t < η(k + 1). (60)

On taking the limit t→ η(k + 1)−, we have

R(α, lim
t→η(k+1)−

t)− a2

a1
α ≤ (R(α, lim

t→ηk+
t)− a2

a1
α)e−a1η. (61)

Meanwhile, the tracing diffusion expression (5) gives us

lim
t→ηk+

Θt = φ(ΠC( lim
t→ηk−

Θt)), and lim
t→ηk+

Θ′t = φ(ΠC( lim
t→ηk−

Θ′t)), (62)

where φ(θ) = θ − η · 1
2 (LD(θ) + LD′(θ)) is a mapping on parameter set C ⊆ Rd. This mapping

is the same for neighboring dataset D and D′, because its definition only uses the average gradient
between neighboring datasets D and D′. Therefore by post-processing property of Rényi divergence,
we have

R(α, lim
t→ηk+

t) ≤ R(α, lim
t→ηk−

t). (63)

Combining the above two inequalities, we immediately have the following recursive equation:

R(α, lim
t→η(k+1)−

t)− a2

a1
α ≤ (R(α, lim

t→ηk−
t)− a2

a1
α)e−a1η (64)
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Repeating this step for k = 0, · · · ,K − 1, we have

R(α, lim
t→ηK−

t)− a2

a1
α ≤ (R(α, lim

t→0−
t)− a2

a1
α)e−a1ηK . (65)

Because coupled tracing diffusion have the same start parameter, we have R(α, limt→0− t) = 0.
Moreover, since projection is post-processing mapping, we have R(α, ηK) ≤ R(α, limt→ηK− t).

Therefore, taking the value a1 = 2(1− γ)σ2c, a2 = 1
γ

S2
g

4σ2n2 in (65), we have

R(α, ηK) ≤
αS2

g

8γ(1− γ)cσ4n2
(1− e−2(1−γ)σ2cηK). (66)

Setting γ = 1
2 suffices to prove the Rényi privacy loss bound in the theorem.

Isoperimetry constants for noisy GD To prove that LSI holds for the tracing diffusion for noisy
GD, we first note that the diffusion process (5) can be written as composition of Lipschitz mapping
and Gaussian noise for any ηk < t < η(k + 1). Meanwhile, the projection at the end of a step is
1-Lipstchitz mapping. Then, we rely on the following two lemmas that show Lipschitz transformation
and Gaussian perturbation of a probability distribution preserve its LSI property.
Lemma 8 (LSI under Lipschitz transformation [15]). Suppose a probability distribution p on Rd
satisfies LSI with constant c > 0. Let T : Rd → Rd be a differentiable andL-Lipschitz transformation.
The push-forward distribution T#p, representing T (Θ) when Θ ∼ p, satisfies LSI with constant c

L2 .

Lemma 9 (LSI under Gaussian convolution [15]). Suppose a probability distribution p on Rd satisfies
LSI with constant c > 0. For t > 0, the probability distribution p ∗ N (0, 2tId) satisfies LSI with
constant

(
1
c + 2t

)−1
. A special case of this is that N (0, 2tId) satisfies LSI with constant 1

2t .

Lemma 5. If loss function `(θ;x) is λ-strongly convex and β-smooth over a closed convex set C,
the step-size is η < 1

β , and initial distribution is Θ0 ∼ ΠC(N (0, 2σ2

λ Id)), then the coupled tracing
diffusion processes {Θt}t≥0 and {Θ′t}t≥0 for noisy GD on any neighboring datasets D and D′

satisfy c-LSI for any t ≥ 0 with c = λ
2σ2 .

Proof. We only prove c-LSI for the tracing diffusion process {Θt}t≥0 on dataset D. The proof for
{Θ′t}t≥0 is similar.

For any D ∈ Xn, and any 0 < s < η, recall that the update step in tracing diffusion (5) equals the
following random mapping:

Θηk+s =

{
Ts(Θηk) +

√
2sσ2Z, if 0 ≤ s < η

ΠC(Ts(Θηk) +
√

2sσ2Z), if s = η
(67)

where the mapping Ts(θ) = θ − η · 1
2 (∇LD(θ) +∇LD′(θ)) − s · 1

2 (∇LD(θ)−∇LD′(θ)). We
first show that Ts(θ) is (1− ηλ)-Lipschitz. For any w, v ∈ C, we have

Ts(w)− Ts(v) = w − v − η + s

2
[∇LD(w)−∇LD(v)]− η − s

2
[∇LD′(w)−∇LD′(v)]

= w − v −
[
η + s

2
∇2LD(z) +

η − s
2
∇2LD′(z′)

]
(w − v)

(for some z, z′ ∈ C by the mid-value theorems)

=
(
I −

[
η + s

2
∇2LD(z) +

η − s
2
∇2LD′(z′)

])
(w − v)

By λ-strong convexity and β-smoothness of loss function `(θ;x) on C, we prove that ∇2LD(z)
and ∇2LD′(z′) both have eigenvalues in the range [λ, β]. Since s < η < 1

β , all eigenvalues of
I −

[
η+s

2 ∇
2LD(z) + η−s

2 ∇
2LD′(z′)

]
is in (0, 1− ηλ]. So, Ts is (1− ηλ)-Lipshitz.

Now, using induction we prove pt statisfies c-LSI for c = λ
2σ2 for any t ≥ 0.

Base step: Being a projection of Gaussian with variance λ
2σ2 in every dimension, Θ0 satisfies c-LSI

with the given constant by Lemma 8 (because projection is 1-Lipschitz) and Lemma 9.
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Induction step: Suppose Θηk satisfies c-LSI with the above constant for some k ∈ N. Distribution
Θt for ηk < t < η(k + 1) is same as Ts pushover distribution plus gaussian noise distribution, i.e.
Θt = Θηk#Ts

∗N (0, 2sσ2Id) for s = t−ηk. By using Lemma 8 and 9, we get
(

c
(1−ηλ)2+2sσ2c

)
-LSI

for Θt. Since s < η < 1
λ , we have

(1− sλ)2 + 2sσ2c < 1− sλ+ 2sσ2c = 1.

Hence, for ηk < t < η(k + 1), Θt satisfies c′-LSI with constant c′ > c, which means it also satisfies
c-LSI by definition.

By (67), Θη(k+1) undergoes an additional projection ΠC(·). Since projection is a 1-Lipschitz map,
by Lemma 8, it preserves c-LSI. So distribution Θη(k+1) also satisfies c-LSI.

E Proofs and discussions for Section 4: Tightness analysis

Theorem 3. There exist two neighboring datasets D,D′ ∈ Xn, a start distribution p0, and a smooth
loss function `(θ;x) whose total gradient g(θ;D) has finite sensitivity Sg on unconstrained convex
set C = Rd, such that for any step-size η < 1, noise variance σ2 > 0, and K ∈ N, the Rényi privacy
loss of ANoisy-GD on D,D′ is lower-bounded by

Rα
(
ΘηK

∥∥Θ′ηK
)
≥

αS2
g

4σ2n2

(
1− e−ηK

)
. (68)

Proof. We give lower bounds for the Rényi DP guarantee of noisy gradient descent algorithm for
minimizing any smooth loss function `(θ;x) with finite total sensitivity Sg . We consider the following
L2-norm squared loss function with bounded data universe.

`(θ;x) =
1

2
‖θ − x‖22 ,where θ ∈ Rd,x ∈ Rd and ‖x‖2 ≤

Sg
2
. (69)

For any dataset D = {x1, · · · ,xn} of size n, and any θ ∈ Rd, the loss is

LD(θ) =
1

n

n∑
i=1

1

2
‖θ − xi‖22 .

It is easy to verify that LD(θ) is 1-smooth. The total gradient of D is

g(θ;D) =
∑
x∈D
∇`(θ;x) = nθ −

∑
x∈D

x,

with a finite sensitivity Sg .

We construct the two neighboring datasets D,D′ ∈ Xn such that D = (x1, 0
d, · · · , 0d) and

D′ = (x′1, 0
d, · · · , 0d), where x1,x

′
1 ∈ X are two records that are Sg distance apart (i.e.

‖x1 − x′1‖2 = Sg).

Under dataset D, we can express the random variable ΘηK at the K’th iteration of noisy GD using
the following recursion with starting parameter Θ0 = 0d.

ΘηK =(1− η)Θη(K−1) + η
x1

n
+
√

2ησ2 · ZK−1

=(1− η)KΘ0 + η

K−1∑
i=0

(1− η)i
x1

n
+
√

2ησ2

K−1∑
i=0

(1− η)K−1−iZi

=
ηx1

n

K−1∑
i=0

(1− η)i +

√√√√2ησ2

K−1∑
i=0

(1− η)2i · Z (where Zi,Z ∼ N (0, Id))
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A similar recursion can be used for Θ′K in Noisy GD under dataset D′. Both ΘK and Θ′K are
Gaussian random variables with variance 2ησ2

∑K−1
i=0 (1 − η)2i in each dimension. Thus, we can

calculate their exact divergence.

Rα
(
ΘηK

∥∥Θ′ηK
)

=
α ·
∥∥∥η(x1 − x′1)

∑K−1
i=0 (1− η)i

∥∥∥2

2

2 · 2ησ2n2
∑K−1
i=0 (1− η)2i

=
αη2S2

g

4ησ2n2
·

(
1− (1− η)K

)2
/η2

(1− (1− η)2K)/ (η(2− η))

=
αS2

g

4σ2n2
· 2− η

1 + (1− η)K
(
1− (1− η)K

)
≥

αS2
g

4σ2n2
(1− e−ηK)

This inequality concludes the proof.

Corollary 2. Given `2-norm squared loss function `(θ;x) = 1
2 ‖θ − x‖22 on unconstrained convex

set C = Rd and bounded data domain with range Sg, and initial parameter θ0 = 0d, for any two
neighboring datasets D,D′ ∈ Xn, step-size η, noise variance σ2, and K ∈ N, the Rényi privacy
loss of ANoisy-GD on D,D′ is upper-bounded by

Rα
(
ΘηK

∥∥Θ′ηK
)
≤

αS2
g

(2− η)σ2n2
(1− e−

2−η
2 ηK). (70)

Proof. To use Theorem 2, we still need to verify c-LSI for the tracing diffusion on `2-norm squared
loss.

We use the explicit expression for tracing diffusion proved in Theorem 3 to prove c-LSI. We utilize
the fact that ΘηK , the tracing diffusion for L2-norm squared loss at discrete update time ηK,
is Gaussian with bounded variance 2ησ2

∑K−1
i=0 (1− η)2i ≤ 2σ2

2−η in each dimension. Therefore,
based on Lemma 9, which shows the LSI properties of Gaussian distributions, ΘKη satisfies c-
LSI with c = 2−η

2σ2 . Similarly, by computing the explicit expression for tracing diffusion at time
ηk < t < η(k + 1), one can verify Θt satisfies c-LSI.

Now, we can directly use Theorem 2 to derive an upper-bound for RDP for Noisy GD under L2-
squared norm loss.

Discussion about tightness results Figure 2 shows the gap between this lower bound and our RDP
guarantee derived by Corollary 2, under small step-size η = 0.02. The upper bound is roughly two
times larger than the lower bound, which shows tightness of our privacy guarantee up to a rough
constant of two. As comparison, we compute and plot the composition-based bound, which grows
as fast as the lower bound in early iterations, but linearly grows above the lower bound, and our
RDP guarantee, as K increases to Ω( 1

η ) ≈ 100� n = 5000. Moreover, the larger the RDP order α
is, the smaller the required number of iterations K is for our RDP guarantee to be superior to the
composition-based privacy bound.

Gap between our upper bound and lower bound There is a gap between the exponent and
constant of our privacy upper bound Corollary 2 and the lower bound Theorem 3. We analyze the
gap as follows.

1. The gap in exponent: There is a 2−η
2 multiplicative gap between the exponent of our

privacy upper bound and the lower bound. In hindsight, this is because discretized noisy GD
converges to a biased stationary distribution. Therefore, our LSI constant bound c = 2−η

2σ2

depends on the discretization bias caused by step-size η, thus causing the exponent gap in
our privacy bound.

2. The gap in constant: Our upper bound is larger than the lower bound by roughly a
multiplicative constant of two. This is due to the balancing ratio γ > 0 in Lemma 2 for
bounding the rate of privacy loss.
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Figure 2: Tightness analysis of our RDP guarantee for the noisy GD algorithm. We show the changes
of α-RDP guarantee computed using Corollary 2, over K iterations (number of full passes over the
dataset) versus the lower-bounds (dashed lines) which are computed using Theorem 3. The loss
function is the `2-norm squared function (69), noise standard deviation is σ = 0.02, the step size is
η = 0.02, the size of the dataset is n = 5000, and the finite `2-sensitivity for total gradient is Sg = 4.
The expression for computing the privacy loss in Baseline composition-based analysis (derived by

moment accountant [1] with details in Appendix E) is: ε =
αS2

g

4n2σ2 · ηK

(a) At the start of Noisy GD: setting γ = 1 in (10) results in a smaller privacy loss
rate bound. This is because, at the start of noisy GD, the accumulated privacy loss
Rα(Θt‖Θ′t) is small, thus leading to a small second term Iα/Eα in (10), by Lemma 3.
Setting γ = 1 reduces the coefficient 1

γ for the dominating first term of (10), at a small
cost of increasing the coefficient for the smaller second term Iα/Eα. This facilitates a
smaller privacy loss rate bound, and is reflected in the similar growth of composition
bound (equivalent to setting γ = 1) and our lower bound in Figure 2.

(b) As Noisy GD converges: setting γ → 0 in (10) results in a smaller privacy loss rate
bound. This is because, at convergence, the accumulated privacy loss Rα(Θt‖Θ′t) is
larger, thus leading to more significant second term I/E in (10). Setting γ → 0 in (10)
reduces the coefficient −(1− γ) for the dominating second term I/E, thus facilitate a
smaller bound for the privacy loss rate.

3. In our proof for Theorem 2, we set γ = 1
2 to balance privacy loss rate estimates at the start

and convergence of noisy GD, thus obtaining the smallest privacy bound at convergence, as
shown in the proof.

Derivation for Baseline composition-based privacy bound Abadi et al. [1] introduce the mo-
ments accountant α(λ) for noisy SGD in Eq (2) of their paper, which effectively tracks the scaled
Renyi divergence between processes. Therefore in Figure 1, we plot moment accountant bound in
Abadi et al. [1] as baseline composition privacy analysis.

1. We first use moments bound on the Gaussian mechanism (following Lemma 3 in Abadi
et al. [1] ) to bound the log moment αM(λ) of data-sensitive computation one update
M :M(D) = η

n

∑
xi∈D∇`(θ;xi) +N (0, 2ησ2Id) in our Algorithm 1.

By Eq (2) in Abadi et al. [1], and that M(D),M(D′) are Gaussian distributions (with
variance 2ησ2 in every dimension and means at most η

nSg apart in `2 norm), we bound

αM(λ) ≤ λ(λ+1)ηS2
g

4n2σ2 .

2. We then compose log moment bound for K iterations by Theorem 2 [Composibility] of

log moement bound in Abadi et al. [1]., and we obtain α(λ) ≤ K · αM(λ) =
Kλ(λ+1)ηS2

g

4n2σ2 .

25



3. Finally by definition of log moment (Eq (2) of Abadi et al. [1]) and Renyi divergence ((1)
in our paper), we take λ ← α − 1 and Rα(ΘK‖ΘK) ← α(λ)

λ , and obtain the baseline

composition privacy bound ε =
αS2

g

4n2σ2 · ηK from the log moment bound. We use this
expression in Figure 1 and 2.

F Proofs for Section 5: Utility analysis

Theorem 4. For Lipschitz smooth strongly convex loss function `(θ;x) on a bounded closed convex
set C ⊆ Rd, and dataset D ∈ Xn of size n, if the step-size η = λ

2β2 and the initial parameter

θ0 ∼ ΠC(N (0, 2σ2

λ Id)), then the noisy GD Algorithm 1 is (α, ε′)-Rényi differentially private, where
α > 1 and ε′ > 0, and satisfies

E[LD(θK∗)− LD(θ∗)] = O(
αβdL2

ε′λ2n2
), (71)

by setting noise variance σ2 = 4αL2

λε′n2 , and number of updates K∗ = 2β2

λ2 log(n
2ε′

αd ).

Equivalently, for ε ≤ 2 log(1/δ) and δ > 0, Algorithm 1 is (ε, δ)-differentially private, and satisfies

E[LD(θK∗)− LD(θ∗)] = O(
βdL2 log(1/δ)

ε2λ2n2
), (72)

by setting noise variance σ2 = 8L2(ε+2 log(1/δ))
λε2n2 , and number of updates K∗ = 2β2

λ2 log( n2ε2

4 log(1/δ)d ).

Proof. From Lemma 6, we have

E[LD(θK)− LD(θ∗)] ≤ 2βL2

λ2
e−ληK +

2βdσ2

λ
. (73)

Since η = λ
2β2 ≤ 1

β , by Corollary 1, the noisy GD with K iterations will be (α, ε′)-RDP as long as

σ2 ≥ 4αL2

λε′n2 (1 − e−ληK/2). Therefore, if we set σ2 = 4αL2

λε′n2 , noisy GD is (α, ε′)-RDP for any K.
On substituting this noise variance in (73), we get

E[LD(θK)− LD(θ∗)] ≤ 2βL2

λ2
e−ληK +

8αL2βd

λ2ε′n2
. (74)

By setting K∗ = 1
λη log( ε

′n2

αd ) = 2β2

λ2 log( ε
′n2

αd ), we can control the empirical risk to be

E[LD(θK∗)− LD(θ∗)] ≤ 10αL2βd

λ2ε′n2
. (75)

Now, we convert the optimal excess risk guarantee under an (α, ε′) RDP constraint to an optimal
excess risk guarantee under (ε, δ) DP constraint. Let ε > 0 and 0 < δ < 1 be two constants
such that ε ≤ 2 log(1/δ). As per DP transition Theorem 7, (α, ε′)-RDP implies (ε, δ)-DP for
α = 1 + 2

ε log(1/δ) and ε′ = ε
2 . By using this conversion, we bound (75) in terms of DP parameters

as

E[LD(θK∗)− LD(θ∗)] ≤ 10L2βd

λ2n2

α

ε′

=
10L2βd

λ2n2

1 + 2
ε log(1/δ)
ε
2

∵ ε ≤ 2 log(1/δ) ≤ 10L2βd

λ2n2

8 log(1/δ)

ε2
.

The amount of noise needed in terms of DP parameters is

σ2 =
4L2

λn2

α

ε′

=
4L2

λn2
·

1 + 2
ε log(1/δ)
ε
2
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The optimal number of updates K∗ in terms of DP parameters is bounded as

K∗ =
2β2

λ2
log(

n2

d
· ε
′

α
)

=
2β2

λ2
log(

n2

d
·

ε
2

1 + 2
ε log(1/δ)

)

≤ 2β2

λ2
log(

n2

d
· ε2

4 log(1/δ)
).

Lemma 6. For L-Lipschitz, λ-strongly convex and β-smooth loss function `(θ;x) over a closed
convex set C ⊆ Rd, step-size η ≤ λ

2β2 , and start parameter θ0 ∼ ΠC(N (0, 2σ2

λ Id)), the excess
empirical risk of Algorithm 1 is bounded by

E[LD(θK)− LD(θ∗)] ≤ 2βL2

λ2
e−ληK +

2βdσ2

λ
, (76)

where θ∗ is the minimizer of LD(θ) in the relative interior of convex set C, and d is the dimension of
parameter.

Proof. By the noisy GD update equation we have

θk+1 = ΠC(θk − η∇LD(θk) +
√

2ησ2N (0, Id)). (77)

From the definition of projection ΠC(·), we have:

ΠC(θ
∗ − η∇LD(θ∗)) = arg min

θ∈C
‖θ − θ∗ + η∇LD(θ∗)‖22

= arg min
θ∈C
‖θ − θ∗‖22+2η〈θ − θ∗,∇LD(θ∗)〉+ η2‖∇LD(θ∗)‖22

(by optimality of θ∗ in C)

= arg min
θ∈C
‖θ − θ∗‖22+η2‖∇LD(θ∗)‖22

= θ∗

Therefore, by combining the above two, and from contractivity of projection ΠC(·) [8, Proposition 17]
we have

‖θk+1 − θ∗‖22 ≤‖θk − η∇LD(θk) +
√

2ησ2N (0, Id)− (θ∗ − η∇LD(θ∗))‖22
=‖θk − θ∗‖22 + η2‖∇LD(θk)−∇LD(θ∗)‖22 + 2ησ2‖N (0, Id)‖22

+ 2〈θk − θ∗,
√

2ησ2N (0, Id)〉 − 2η〈∇LD(θk)−∇LD(θ∗),
√

2ησ2N (0, Id)〉
− 2η〈θk − θ∗,∇LD(θk)−∇LD(θ∗)〉.

By β-smoothness of LD and η = λ
2β2 , we have

η2‖∇LD(θk)−∇LD(θ∗)‖22 ≤ ηλ‖θk − θ∗‖22. (78)

By strong convexity of LD, we have

E[〈∇LD(θk), θk − θ∗〉] ≥ E[LD(θk)− LD(θ∗)] +
λ

2
E[‖θk − θ∗‖2]

≥ λ

2
E[‖θk − θ∗‖2] +

λ

2
E[‖θk − θ∗‖2]

≥ λE[‖θk − θ∗‖2].

By taking expectations on the controlling inequality, and plugging the above results, we get

E[‖θk+1 − θ∗‖22] ≤ (1− λη)E[‖θk − θ∗‖22] + 2ησ2d. (79)
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By β-smoothness,

LD(θk)− LD(θ∗) ≤ 〈∇LD(θ∗), θk − θ∗〉+
β

2
‖θk − θ∗‖22.

By the optimality of θ∗ in the relative interior of convex set C and the fact that θK ∈ C, we prove

〈∇LD(θ∗), θK − θ∗〉 = 0.

Therefore, LD(θK)− LD(θ∗) ≤ β
2 ‖θK − θ

∗‖22. On taking expectation over θK , we have

E[LD(θK)− LD(θ∗)] ≤ β

2
E[‖θK − θ∗‖2].

On unrolling the recursion in (79), we have

E[LD(θK)− LD(θ∗)] ≤ β

2
(1− ηλ)KE[‖θ0 − θ∗‖22] + 2βdσ2

K−1∑
k=0

(1− ηλ)k

≤β
2
e−ληKE[‖θ0 − θ∗‖22] +

2βdσ2

λ
.

Since we always have ‖C‖2 ≤ 2L/λ, we can bound E[‖θ0 − θ∗‖22] ≤ 4L2

λ2 as both θ0, θ
∗ ∈ C.

Therefore, we have

E[LD(θK)− LD(θ∗)] ≤ 2βL2

λ2
e−ληK +

2βdσ2

λ
.
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