
A Auxiliary lemmas

In this section, we introduce auxiliary lemmas that are necessary for our proofs.

Lemma 10 ([21, Lemma 19]). If f(·) is !-smooth and ρ-Hessian Lipschitz, η = 1/!, then the gradient descent
sequence {xt} obtained by xt+1 := xt − η∇f(xt) satisfies:

f(xt+1)− f(xt) ≤ η‖∇f(x)‖2/2, (37)

for any step t in which Negative Curvature Finding is not called.

Lemma 11 ([21, Lemma 23]). For a !-smooth and ρ-Hessian Lipschitz function f with its stochastic gradient
satisfying Assumption 1, there exists an absolute constant c such that, for any fixed t, t0, ι > 0, with probability
at least 1− 4eι, the stochastic gradient descent sequence in Algorithm 8 satisfies:

f(xt0+t)− f(xt0) ≤ −η
8

t−1∑

i=0

‖∇f(xt0+i)‖2 + c · σ
2

!
(t+ ι), (38)

if during t0 ∼ t0 + t, Stochastic Negative Curvature Finding has not been called.

Lemma 12 ([21, Lemma 29]). Denote α(t) :=
[∑t−1

τ=0(1+ ηγ)2(t−1−τ)
]1/2

and β(t) := (1+ ηγ)t/
√
2ηγ.

If ηγ ∈ [0, 1], then we have

1. α(t) ≤ β(t) for any t ∈ N;

2. α(t) ≥ β(t)/
√
3, ∀t ≥ ln 2/(ηγ).

Lemma 13 ([21, Lemma 30]). Under the notation of Lemma 12 and Appendix D.1, letting −γ := λmin(H̃),
for any 0 ≤ t ≤ Ts and ι > 0 we have

Pr
(
‖qp(t)‖ ≤ β(t)ηrs ·

√
ι
)
≥ 1− 2e−ι, (39)

and

Pr
(
‖qp(t)‖ ≥ β(t)ηrs

10
√
n

· δ
Ts

)
≥ 1− δ

Ts
, (40)

Pr
(
‖qp(t)‖ ≥ β(t)ηrs

10
√
n

· δ
)
≥ 1− δ. (41)

Lemma 14 ([21, Lemma 37]). Given i.i.d. X1, . . . ,Xτ ∈ Rn all being zero-mean nSG(σi), then for any ι >
0, and B > b > 0, there exists an absolute constant c such that, with probability at least 1−2n log(B/b) ·e−ι:

n∑

i=1

σ2
i ≥ B or

∥∥
τ∑

i=1

Xi

∥∥ ≤ c ·

√√√√max

{
τ∑

i=1

σ2
i , b

}
· ι. (42)

The next two lemmas are frequently used in the large gradient scenario of the accelerated gradient descent
method:

Lemma 15 ([22, Lemma 7]). Consider the setting of Theorem 21, define a new parameter

T̃ :=

√
!

(ρε)1/4
· cA, (43)

for some large enough constant cA. If ‖∇f(xτ )‖ ≥ ε for all τ ∈ [0, T̃ ], then there exists a large enough
positive constant cA0, such that if we choose cA ≥ cA0, by running Algorithm 2 we have ET̃ − E0 ≤ −E , in

which E =
√

ε3

ρ · c−7
A , and Eτ is defined as:

Eτ := f(xτ ) +
1
2η

‖vτ‖2. (44)

Lemma 16 ([22, Lemma 4 and Lemma 5]). Assume that the function f is !-smooth. Consider the setting of
Theorem 21, for every iteration that is not within T ′ steps after uniform perturbation, we have:

Eτ+1 ≤ Eτ , (45)

where Eτ is defined in (44) in Lemma 15.
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B Proof details of negative curvature finding by gradient descent

B.1 Proof of Lemma 17

Lemma 17. Under the setting of Proposition 3, we use αt to denote

αt = ‖yt,‖‖/‖yt‖, (46)

where yt,‖ is the component of yt in the subspace S‖ spanned by {u1,u2, . . . ,up}. Then, during all the T
iterations of Algorithm 1, we have αt ≥ αmin for

αmin =
δ0
4

√
π
n
, (47)

given that α0 ≥
√

π
nδ0.

Proof. In this proof, we consider the worst case, where the initial value α0 =
√

π
nδ0 and the component y0,1

along u1 equals 0. Also, the eigenvalues satisfy

λ2 = λ3 = · · · = λp = −√
ρε, λp+1 = λp+2 = · · · = λn−1 = −√

ρε+ ν, (48)

for an arbitrarily small positive constant ν, which can make components of yt in S⊥ as large as possible to
make αt smaller. Out of the same reason, we assume that each time we make a gradient call at point x, the
derivation term ∆ from pure quadratic approximation

∆ = ∇hf (x)−H(0)x, (49)

lies in the direction that can make αt as small as possible. Then, the component ∆‖ in S‖ should be in the
opposite direction to x‖, and the component ∆⊥ in S⊥ should be in the direction of x⊥. Hence in this case,
we have ‖yt,⊥‖/‖yt‖ being non-decreasing, since ν can be arbitrarily small. Also, it admits the following
recurrence formula:

‖yt+1,⊥‖ = (1 + (
√
ρε− ν)/!)‖yt,⊥‖+ ‖∆⊥‖/! (50)

≤ (1 +
√
ρε/!)‖yt,⊥‖+ ‖∆‖/! (51)

≤
(
1 +

√
ρε/!+

‖∆‖
!‖yt,⊥‖

)
‖yt,⊥‖, (52)

where the second inequality is due to the fact that ν can be an arbitrarily small positive number. Note that since
‖yt,⊥‖/‖yt‖ is non-decreasing in this worst-case scenario, we have

‖∆‖
‖yt,⊥‖

≤ ‖∆‖
‖yt‖

· ‖y0‖
‖y0,⊥‖

≤ 2‖∆‖
‖yt‖

≤ 2ρr, (53)

which leads to

‖yt+1,⊥‖ ≤ (1 +
√
ρε/!+ 2ρr/!)‖yt,⊥‖. (54)

On the other hand, suppose for some value t, we have αk ≥ αmin with any 1 ≤ k ≤ t. Then,

‖yt+2,‖‖ = (1 +
√
ρε/!)‖yt+1,⊥‖ − ‖∆‖‖/! (55)

≥
(
1 +

√
ρε/!− ‖∆‖

!‖yt,‖‖

)
‖yt,‖‖. (56)

Note that since ‖yt,‖‖/‖yt‖ ≥ αmin, we have

‖∆‖
‖yt,‖‖

≥ ‖∆‖
αmin‖yt‖

= ρr/αmin, (57)

which leads to

‖yt+1,‖‖ ≥ (1 +
√
ρε/!− ρr/(αmin!))‖yt,‖‖. (58)

Then we can observe that
‖yt,‖‖
‖yt,⊥‖

≥
‖y0,‖‖
‖y0,⊥‖

·
(1 +√

ρε/!− ρr/(αmin!)

1 +
√
ρε/!+ 2ρr/!

)t
, (59)

where
1 +

√
ρε/!− ρr/(αmin!)

1 +
√
ρε/!+ 2ρr/!

≥ (1 +
√
ρε/!− ρr/(αmin!))(1−

√
ρε/!− 2ρr/!) (60)

≥ 1− ρε/!2 − 2ρr
αmin!

≥ 1− 1
T

, (61)
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by which we can derive that

‖yt,‖‖

‖yt,⊥‖
≥

‖y0,‖‖
‖y0,⊥‖

(1− 1/T )t (62)

≥
‖y0,‖‖
‖y0,⊥‖

exp
(
− t

T − 1

)
≥

‖y0,‖‖
2‖y0,⊥‖

, (63)

indicating

αt =
‖yt,‖‖√

‖yt,‖‖2 + ‖yt,⊥‖2
≥

‖y0,‖‖
4‖y0,⊥‖

≥ αmin. (64)

Hence, as long as αk ≥ αmin for any 1 ≤ k ≤ t − 1, we can also have αt ≥ αmin if t ≤ T . Since we have
α0 ≥ αmin, we can thus claim that αt ≥ αmin for any t ≤ T using recurrence.

B.2 Proof of Proposition 5

To make it easier to analyze the properties and running time of Algorithm 2, we introduce a new Algorithm 4,
which has a more straightforward structure and has the same effect as Algorithm 2 near any saddle point x̃.

Algorithm 4: Accelerated Negative Curvature Finding without Renormalization(x̃, r′,T ′).
1 x0 ←Uniform(B0(r′)) where B0(r′) is the !2-norm ball centered at x̃ with radius r′;
2 z0 ← x0;
3 for t = 1, ...,T ′ do
4 xt+1 ← zt − η

(
‖zt−x̃‖

r′ ∇f
(
r′ · zt−x̃

‖zt−x̃‖ + x̃
)
−∇f(x̃)

)
;

5 vt+1 ← xt+1 − xt;
6 zt+1 ← xt+1 + (1− θ)vt+1;

7 Output xT ′−x̃
‖xT ′−x̃‖ .

Quantitatively, this is demonstrated in the following lemma:
Lemma 18. Under the setting of Proposition 5, suppose the perturbation in Line 5 of Algorithm 2 is added at
t = 0. Then with the same value of r′, T ′, x̃ and x0, the output of Algorithm 4 is the same as the unit vector ê
in Algorithm 2 obtained T ′ steps later. In other words, if we separately denote the iteration sequence of {xt}
in Algorithm 2 and Algorithm 4 as

{x1,0,x1,1, . . . ,x1,T ′} , {x2,0,x2,1, . . . ,x2,T ′} , (65)

we have
x1,T ′ − x̃

‖x1,T ′ − x̃‖ =
x2,T ′ − x̃

‖x2,T ′ − x̃‖ . (66)

Proof. Without loss of generality, we assume x̃ = 0 and ∇f(x̃) = 0. Use recurrence to prove the desired
relationship. Suppose the following identities holds for all k ≤ t with t being some natural number:

x2,k

‖x2,k‖
=

x1,k

r
,

z2,k
‖x2,k‖

=
z1,k
r′

. (67)

Then,

x2,t+1 = z2,t − η · ‖z2,t‖
r′

∇f(z2,t · r′/‖z2,t‖) =
‖z2,t‖
r′

(z1,t − η∇f(z1,t)). (68)

Adopting the notation in Algorithm 2, we use x′
1,t+1 and z′1,t+1 to separately denote the value of x1,t+1 and

z1,t+1 before renormalization:

x′
1,t+1 = z1,t − η∇f(z1,t), z′1,t+1 = x′

1,t+1 + (1− θ)(x′
1,t+1 − x1,t). (69)

Then,

x2,t+1 =
‖z2,t‖
r′

(z1,t − η∇f(z1,t)) =
‖z2,t‖
r′

· x′
1,t+1, (70)

which further leads to

z2,t+1 = x2,t+1 + (1− θ)(x2,t+1 − x2,t) =
‖z2,t‖
r′

· z′1,t+1. (71)
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Note that z1,t+1 = r′

‖z′1,t+1‖
· z′1,t+1, we thus have

z2,t+1

‖z2,t+1‖
=

z1,t+1

r′
. (72)

Hence,

x2,t+1 =
‖z2,t‖
r′

· x′
1,t+1 =

‖z2,t‖
r′

· ‖z1,t+1‖
‖z1,t‖

· x1,t+1 =
‖z2,t+1‖

r′
· x1,t+1. (73)

Since (67) holds for k = 0, we can now claim that it also holds for k = T ′.

Lemma 18 shows that, Algorithm 4 also works in principle for finding the negative curvature near any saddle
point x̃. But considering that Algorithm 4 may result in an exponentially large ‖xt‖ during execution, and it is
hard to be merged with the AGD algorithm for large gradient scenarios. Hence, only Algorithm 2 is applicable
in practical situations.

Use H(x̃) to denote the Hessian matrix of f at x̃.Observe that H(x̃) admits the following eigen-decomposition:

H(x̃) =
n∑

i=1

λiuiu
T
i , (74)

where the set {ui}ni=1 forms an orthonormal basis of Rn. Without loss of generality, we assume the eigenvalues
λ1,λ2, . . . ,λn corresponding to u1,u2, . . . ,un satisfy

λ1 ≤ λ2 ≤ · · · ≤ λn, (75)

in which λ1 ≤ −√
ρε. If λn ≤ −√

ρε/2, Proposition 5 holds directly, since no matter the value of ê, we can
have f(xT ′) − f(x̃) ≤ −

√
ε3/ρ/384. Hence, we only need to prove the case where λn > −√

ρε, in which
there exists some p with

λp ≤ −√
ρε < λp+1. (76)

We use S‖ to denote the subspace of Rn spanned by {u1,u2, . . . ,up}, and use S⊥ to denote the subspace
spanned by {up+1,up+2, . . . ,un}. Then we can have the following lemma:

Lemma 19. Under the setting of Proposition 5, we use α′
t to denote

α′
t =

‖xt,‖‖
‖xt‖

, (77)

in which xt,‖ is the component of xt in the subspace S‖. Then, during all the T ′ iterations of Algorithm 4, we
have α′

t ≥ α′
min for

α′
min =

δ0
8

√
π
n
, (78)

given that α′
0 ≥

√
π
nδ0.

Proof. Without loss of generality, assume x̃ = 0 and ∇f(x̃) = 0. In this proof, we consider the worst case,
where the initial value α′

0 =
√

π
nδ0 and the component x0,1 along u1 equals 0. Also, the eigenvalues satisfy

λ2 = λ3 = · · · = λp = −√
ρε, λp+1 = λp+2 = · · · = λn−1 = −√

ρε+ ν, (79)

for an arbitrarily small positive constant ν, which can make components of xt in S⊥ as large as possible to
make α′

t smaller. Out of the same reason, we assume that each time we make a gradient call at point zt, the
derivation term ∆ from pure quadratic approximation

∆ =
‖zt‖
r′

·
(
∇f(zt · r′/‖zt‖)−H(0) · r′

‖zt‖
· zt

)
, (80)

lies in the direction that can make α′
t as small as possible. Then, the component ∆‖ in S‖ should be in the

opposite direction to z‖, and the component ∆⊥ in S⊥ should be in the direction of z⊥. Hence in this case,
we have both ‖xt,⊥‖/‖xt‖ and ‖zt,⊥‖/‖zt‖ being non-decreasing, since ν can be arbitrarily small. Also, it
admits the following recurrence formula:

‖xt+2,⊥‖ ≤ (1 + η(
√
ρε− ν))

(
‖xt+1,⊥‖+ (1− θ)(‖xt+1,⊥‖ − ‖xt,⊥‖)

)
+ η‖∆⊥‖ (81)

≤ (1 + η
√
ρε)

(
‖xt+1,⊥‖+ (1− θ)(‖xt+1,⊥‖ − ‖xt,⊥‖)

)
+ η‖∆⊥‖, (82)
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where the second inequality is due to the fact that ν can be an arbitrarily small positive number. Note that since
‖xt,⊥‖/‖xt‖ is non-decreasing in this worst-case scenario, we have

‖∆⊥‖
‖xt+1,⊥‖

≤ ‖∆‖
‖xt+1‖

· ‖x0‖
‖x0,⊥‖

≤ 2‖∆‖
‖xt+1‖

≤ 2ρr′, (83)

which leads to

‖xt+2,⊥‖ ≤ (1 + η
√
ρε+ 2ηρr′)

(
(2− θ)‖xt+1,⊥‖ − (1− θ)‖xt,⊥‖

)
. (84)

On the other hand, suppose for some value t, we have α′
k ≥ α′

min with any 1 ≤ k ≤ t+ 1. Then,

‖xt+2,‖‖ ≥ (1 + η(
√
ρε− ν))

(
‖xt+1,‖‖+ (1− θ)(‖xt+1,‖‖ − ‖xt,‖‖)

)
+ η‖∆‖‖ (85)

≥ (1 + η
√
ρε)

(
‖xt+1,‖‖+ (1− θ)(‖xt+1,‖‖ − ‖xt,‖‖)

)
− η‖∆‖. (86)

Note that since ‖xt+1,‖‖/‖xt‖ ≥ α′
min, we have

‖∆‖
‖zt+1,‖‖

≥ ‖∆‖
α′
min‖zt+1‖

= ρr′/α′
min, (87)

which leads to

‖xt+2,‖‖ ≥ (1 + η
√
ρε− ηρr′/α′

min)
(
(2− θ)‖xt+1,‖‖ − (1− θ)‖xt,‖‖

)
. (88)

Consider the sequences with recurrence that can be written as

ξt+2 = (1 + κ)
(
(2− θ)ξt+1 − (1− θ)ξt

)
(89)

for some κ > 0. Its characteristic equation can be written as

x2 − (1 + κ)(2− θ)x+ (1 + κ)(1− θ) = 0, (90)

whose roots satisfy

x =
1 + κ
2

(
(2− θ)±

√
(2− θ)2 − 4(1− θ)

1 + κ

)
, (91)

indicating

ξt =
(1 + κ

2

)t(
C1(2− θ + µ)t + C2(2− θ − µ)t

)
, (92)

where µ :=
√

(2− θ)2 − 4(1−θ)
1+κ , for constants C1 and C2 being






C1 = −2− θ − µ
2µ

ξ0 +
1

(1 + κ)µ
ξ1,

C2 =
2− θ + µ

2µ
ξ0 −

1
(1 + κ)µ

ξ1.
(93)

Then by the inequalities (84) and (88), as long as α′
k ≥ α′

min for any 1 ≤ k ≤ t − 1, the values ‖xt,⊥‖ and
‖xt,‖‖ satisfy

‖xt,⊥‖ ≤
(
− 2− θ − µ⊥

2µ⊥
ξ0,⊥ +

1
(1 + κ⊥)µ⊥

ξ1,⊥
)
·
(1 + κ⊥

2

)t
· (2− θ + µ⊥)

t (94)

+
(2− θ + µ⊥

2µ⊥
ξ0,⊥ − 1

(1 + κ⊥)µ⊥
ξ1,⊥

)
·
(1 + κ⊥

2

)t
· (2− θ − µ⊥)

t, (95)

and

‖xt,‖‖ ≥
(
−

2− θ − µ‖

2µ‖
ξ0,‖ +

1
(1 + κ‖)µ‖

ξ1,‖
)
·
(1 + κ‖

2

)t
· (2− θ + µ‖)

t (96)

+
(2− θ + µ‖

2µ‖
ξ0,‖ − 1

(1 + κ‖)µ‖
ξ1,‖

)
·
(1 + κ‖

2

)t
· (2− θ − µ‖)

t, (97)

where

κ⊥ = η
√
ρε+ 2ηρr′, ξ0,⊥ = ‖x0,⊥‖, ξ1,⊥ = (1 + κ⊥)ξ0,⊥, (98)

κ‖ = η
√
ρε− ηρr′/α′

min, ξ0,‖ = ‖x0,‖‖, ξ1,‖ = (1 + κ‖)ξ0,‖. (99)

Further we can derive that

‖xt,⊥‖ ≤ ‖x0,⊥‖ ·
(1 + κ⊥

2

)t
· (2− θ + µ⊥)

t, (100)
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and

‖xt,‖‖ ≥
‖x0,‖‖

2
·
(1 + κ‖

2

)t
· (2− θ + µ‖)

t. (101)

Then we can observe that
‖xt,‖‖
‖xt,⊥‖

≥
‖x0,‖‖
2‖x0,⊥‖

·
( 1 + κ‖

1 + κ⊥

)t
·
( 2− θ + µ‖

2− θ + µ⊥

)t
, (102)

where
1 + κ‖

1 + κ⊥
≥ (1 + κ‖)(1− κ⊥) (103)

≥ 1− (2 + 1/α′
min)ηρr

′ − κ‖κ⊥ (104)

≥ 1− 2ηρr′/α′
min, (105)

and
2− θ + µ‖

2− θ + µ⊥
=

1 + µ‖/(2− θ)

1 + µ⊥/(2− θ)
(106)

=
1 +

√
1− 4(1−θ)

(1+κ‖)(2−θ)2

1 +
√

1− 4(1−θ)
(1+κ⊥)(2−θ)2

(107)

≥
(
1 +

1
2− θ

√
θ2 + κ‖(2− θ)2

1 + κ‖

)(
1− 1

2− θ

√
θ2 + κ⊥(2− θ)2

1 + κ⊥

)
(108)

≥ 1−
2(κ⊥ − κ‖)

θ
≥ 1− 3ηρr′

α′
minθ

, (109)

by which we can derive that

‖xt,‖‖

‖xt,⊥‖
≥

‖x0,‖‖
2‖x0,⊥‖

·
(
1− 4ρr′

α′
minθ

)t
(110)

≥
‖x0,‖‖
2‖x0,⊥‖

(1− 1/T ′)t (111)

≥
‖x0,‖‖
2‖x0,⊥‖

exp
(
− t

T ′ − 1

)
≥

‖x0,‖‖
4‖x0,⊥‖

, (112)

indicating

α′
t =

‖xt,‖‖√
‖xt,‖‖2 + ‖xt,⊥‖2

≥
‖x0,‖‖
8‖x0,⊥‖

≥ α′
min. (113)

Hence, as long as α′
k ≥ α′

min for any 1 ≤ k ≤ t− 1, we can also have α′
t ≥ α′

min if t ≤ T ′. Since we have
α′
0 ≥ α′

min and α′
1 ≥ α′

min, we can claim that α′
t ≥ α′

min for any t ≤ T ′ using recurrence.

Equipped with Lemma 19, we are now ready to prove Proposition 5.

Proof. By Lemma 18, the unit vector ê in Line 7 of Algorithm 2 obtained after T ′ iterations equals to the
output of Algorithm 4 starting from x̃. Hence in this proof we consider the output of Algorithm 4 instead of
the original Algorithm 2.

If λn ≤ −√
ρε/2, Proposition 5 holds directly. Hence, we only need to prove the case where λn > −√

ρε/2,
in which there exists some p′ with

λ′
p ≤ −√

ρε/2 < λp+1. (114)

We use S′
‖, S′

⊥ to denote the subspace of Rn spanned by {u1,u2, . . . ,up′}, {up′+1,up+2, . . . ,un}. Fur-

thermore, we define xt,‖′ :=
∑p′

i=1 〈ui,xt〉ui, xt,⊥′ :=
∑n

i=p′ 〈ui,xt〉ui, vt,‖′ :=
∑p′

i=1 〈ui,vt〉ui,
vt,⊥′ :=

∑n
i=p′ 〈ui,vt〉ui respectively to denote the component of x′

t and v′
t in Algorithm 4 in the sub-

spaces S′
‖, S′

⊥, and let α′
t := ‖xt,‖‖/‖xt‖. Consider the case where α′

0 ≥
√

π
nδ0, which can be achieved

with probability

Pr

{
α′
0 ≥

√
π
n
δ0

}
≥ 1−

√
π
n
δ0 ·

Vol(Bn−1
0 (1))

Vol(Bn
0 (1))

≥ 1−
√
π
n
δ0 ·

√
n
π

= 1− δ0, (115)
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we prove that there exists some t0 with 1 ≤ t0 ≤ T ′ such that

‖xt0,⊥′‖
‖xt0‖

≤
√
ρε

8!
. (116)

Assume the contrary, for any t with 1 ≤ t ≤ T ′, we all have
‖xt,⊥′‖
‖xt‖ >

√
ρε
8( and

‖zt,⊥′‖
‖zt‖ >

√
ρε
8( . Focus on

the case where ‖xt,⊥′‖, the component of xt in subspace S′
⊥, achieves the largest value possible. Then in this

case, we have the following recurrence formula:

‖xt+2,⊥′‖ ≤ (1 + η
√
ρε/2)

(
‖xt+1,⊥′‖+ (1− θ)(‖xt+1,⊥′‖ − ‖xt,⊥′‖)

)
+ η‖∆⊥′‖. (117)

Since
‖zk,⊥′‖
‖zk‖

≥
√

ρε
8( for any 1 ≤ k ≤ t+ 1, we can derive that

‖∆⊥‖
‖xt+1,⊥‖+ (1− θ)(‖xt+1,⊥‖ − ‖xt,⊥‖)

≤ ‖∆‖
‖zt,⊥′‖ ≤ 2ρr′

√
ρε

, (118)

which leads to

‖xt+2,⊥′‖ ≤ (1 + η
√
ρε/2)

(
‖xt+1,⊥′‖+ (1− θ)(‖xt+1,⊥′‖ − ‖xt,⊥′‖)

)
+ η‖∆⊥′‖ (119)

≤ (1 + η
√
ρε/2 + 2ρr′/

√
ρε)

(
(2− θ)‖xt+1,⊥′‖ − (1− θ)‖xt,⊥′‖

)
. (120)

Using similar characteristic function techniques shown in the proof of Lemma 19, it can be further derived that

‖xt,⊥′‖ ≤ ‖x0,⊥′‖ ·
(1 + κ⊥′

2

)t
· (2− θ + µ⊥′)t, (121)

for κ⊥′ = η
√
ρε/2 + 2ρr′/

√
ρε and µ⊥′ =

√
(2− θ)2 − 4(1−θ)

1+κ⊥′
, given

‖xk,⊥′‖
‖xk‖

≥
√

ρε
8( and

‖zk,⊥′‖
‖zk‖

≥
√

ρε
8(

for any 1 ≤ k ≤ t− 1. Due to Lemma 19,

α′
t ≥ α′

min =
δ0
8

√
π
n
, ∀1 ≤ t ≤ T ′. (122)

and it is demonstrated in the proof of Lemma 19 that,

‖xt,‖‖ ≥
‖x0,‖‖

2
·
(1 + κ‖

2

)t
· (2− θ + µ‖)

t, ∀1 ≤ t ≤ T ′, (123)

for κ‖ = η
√
ρε− ηρr′/α′

min and µ‖ =
√

(2− θ)2 − 4(1−θ)
1+κ‖

. Observe that

‖xT ′,⊥′‖
‖xT ′,‖‖

≤ 2‖x0,⊥′‖
‖x0,‖‖

·
(1 + κ⊥′

1 + κ‖

)T ′

·
(2− θ + µ⊥′

2− θ + µ‖

)T ′

(124)

≤ 2
δ0

√
n
π

(1 + κ⊥′

1 + κ‖

)T ′

·
(2− θ + µ⊥′

2− θ + µ‖

)T ′

, (125)

where

1 + κ⊥′

1 + κ‖
≤ 1

1 + (κ‖ − κ⊥′)
= 1− 1

η
√
ρε/2 + ρr′(η/αmin′ + 2/

√
ρε)

≤ 1−
η
√
ρε

4
, (126)

and

2− θ + µ⊥′

2− θ + µ‖
=

1 +
√

1− 4(1−θ)
(1+κ⊥′ )(2−θ)2

1 +
√

1− 4(1−θ)
(1+κ‖)(2−θ)2

(127)

≤ 1

1 +
(√

1− 4(1−θ)
(1+κ⊥′ )(2−θ)2

−
√

1− 4(1−θ)
(1+κ‖)(2−θ)2

) (128)

≤ 1−
κ‖ − κ⊥′

θ
(129)

≤ 1−
η
√
ρε

4θ
= 1− (ρε)1/4

16
√
!
. (130)

Hence,

‖xT ′,⊥′‖
‖xT ′,‖‖

≤ 2
δ0

√
n
π

(
1− (ρε)1/4

16
√
!

)T ′

≤
√
ρε

8!
. (131)
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Since ‖xT ′,‖‖ ≤ ‖xT ′‖, we have
‖xT ′,⊥′‖
‖xT ′‖ ≤

√
ρε
8( , contradiction. Hence, there here exists some t0 with

1 ≤ t0 ≤ T ′ such that
‖xt0,⊥′‖
‖xt0‖ ≤

√
ρε
8( . Consider the normalized vector ê = xt0/r, we use ê⊥′ and

ê‖′ to separately denote the component of ê in S′
⊥ and S′

‖. Then, ‖ê⊥′‖ ≤ √
ρε/(8!) whereas ‖ê‖′‖ ≥

1− ρε/(8!)2. Then,

êTH(0)ê = (ê⊥′ + ê‖′)
TH(0)(ê⊥′ + ê‖′), (132)

since H(0)ê⊥′ ∈ S′
⊥ and H(0)ê‖′ ∈ S′

‖, it can be further simplified to

êTH(0)ê = êT
⊥′H(0)ê⊥′ + êT

‖′H(0)ê‖′ , (133)

Due to the !-smoothness of the function, all eigenvalue of the Hessian matrix has its absolute value upper
bounded by !. Hence,

êT
⊥′H(0)ê⊥′ ≤ !‖êT

⊥′‖22 =
ρε
64!2

. (134)

Further according to the definition of S‖, we have

êT
‖′H(0)ê‖′ ≤ −

√
ρε

2
‖ê‖′‖2. (135)

Combining these two inequalities together, we can obtain

êTH(0)ê = êT
⊥H(0)ê⊥′ + êT

‖′H(0)ê‖′ ≤ −
√
ρε

2
‖ê‖′‖2 +

ρε
64!2

≤ −
√
ρε

4
. (136)

C Proof details of escaping from saddle points by negative curvature finding

C.1 Algorithms for escaping from saddle points using negative curvature finding

In this subsection, we first present algorithm for escaping from saddle points using Algorithm 1 as Algorithm 5.

Algorithm 5: Perturbed Gradient Descent with Negative Curvature Finding
1 Input: x0 ∈ Rn;
2 for t = 0, 1, ..., T do
3 if ‖∇f(xt)‖ ≤ ε then
4 ê←NegativeCurvatureFinding(xt, r,T ) ;
5 xt ← xt − f ′

ê(x0)
4|f ′

ê(x0)|

√
ε
ρ · ê;

6 xt+1 ← xt − 1
#∇f(xt);

Observe that Algorithm 5 and Algorithm 2 are similar to perturbed gradient descent and perturbed accelerated
gradient descent but the uniform perturbation step is replaced by our negative curvature finding algorithms.
One may wonder that Algorithm 5 seems to involve nested loops since negative curvature finding algorithm are
contained in the primary loop, contradicting our previous claim that Algorithm 5 only contains a single loop.
But actually, Algorithm 5 contains only two operations: gradient descents and one perturbation step, the same
as operations outside the negative curvature finding algorithms. Hence, Algorithm 5 is essentially single-loop
algorithm, and we count their iteration number as the total number of gradient calls.

C.2 Proof details of escaping saddle points using Algorithm 1

In this subsection, we prove:
Theorem 20. For any ε > 0 and 0 < δ ≤ 1, Algorithm 5 with parameters chosen in Proposition 3 satisfies
that at least 1/4 of its iterations will be ε-approximate second-order stationary point, using

Õ
( (f(x0)− f∗)

ε2
· log n

)

iterations, with probability at least 1− δ, where f∗ is the global minimum of f .
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Proof. Let the parameters be chosen according to (2), and set the total step number T to be:

T = max

{
8!(f(x0)− f∗)

ε2
, 768(f(x0)− f∗) ·

√
ρ
ε3

}
, (137)

similar to the perturbed gradient descent algorithm [21, Algorithm 4]. We first assume that for each xt we
apply negative curvature finding (Algorithm 1) with δ0 contained in the parameters be chosen as

δ0 =
1

384(f(x0 − f∗)

√
ε3

ρ
δ, (138)

we can successfully obtain a unit vector ê with êTHê ≤ −√
ρε/4, as long as λmin(H(xt)) ≤ −√

ρε. The
error probability of this assumption is provided later.

Under this assumption, Algorithm 1 can be called for at most 384(f(x0)− f∗)
√ ρ

ε3
≤ T

2 times, for otherwise
the function value decrease will be greater than f(x0)− f∗, which is not possible. Then, the error probability
that some calls to Algorithm 1 fails is upper bounded by

384(f(x0)− f∗)

√
ρ
ε3

· δ0 = δ. (139)

For the rest of iterations in which Algorithm 1 is not called, they are either large gradient steps, ‖∇f(xt)‖ ≥ ε,
or ε-approximate second-order stationary points. Within them, we know that the number of large gradient steps
cannot be more than T/4 because otherwise, by Lemma 10 in Appendix A:

f(xT ) ≤ f(x0)− Tηε2/8 < f∗,

a contradiction. Therefore, we conclude that at least T/4 of the iterations must be ε-approximate second-order
stationary points, with probability at least 1− δ.

The number of iterations can be viewed as the sum of two parts, the number of iterations needed for gradient
descent, denoted by T1, and the number of iterations needed for negative curvature finding, denoted by T2. with
probability at least 1− δ,

T1 = T = Õ
( (f(x0)− f∗)

ε2

)
. (140)

As for T2, with probability at least 1 − δ, Algorithm 1 is called for at most 384(f(x0) − f∗)
√ ρ

ε3
times, and

by Proposition 3 it takes Õ
(

logn√
ρε

)
iterations each time. Hence,

T2 = 384(f(x0)− f∗)

√
ρ
ε3

· Õ
( log n
√
ρε

)
= Õ

( (f(x0)− f∗)
ε2

· log n
)
. (141)

As a result, the total iteration number T1 + T2 is

Õ
( (f(x0)− f∗)

ε2
· log n

)
. (142)

C.3 Proof details of escaping saddle points using Algorithm 2

We first present here the Negative Curvature Exploitation algorithm proposed in proposed in [22, Algorithm 3]
appearing in Line 16 of Algorithm 2:

Algorithm 6: Negative Curvature Exploitation(xt,vt, s)

1 if ‖vt‖ ≥ s then
2 xt+1 ← xt;
3 else
4 ξ = s · vt/‖v‖t;
5 xt ← argminx∈{xt+ξ,xt−ξ}f(x);

6 Output (zt+1,0).

Now, we give the full version of Theorem 7 as follows:
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Theorem 21. Suppose that the function f is !-smooth and ρ-Hessian Lipschitz. For any ε > 0 and a constant
0 < δ ≤ 1, we choose the parameters appearing in Algorithm 2 as follows:

δ0 =
δ

384∆f

√
ε3

ρ
, T ′ =

32
√
!

(ρε)1/4
log

( !
δ0

√
n
ρε

)
, ζ =

!
√
ρε

, (143)

r′ =
δ0ε
32

√
π
ρn

, η =
1
4!

, θ =
1

4
√
ζ
, (144)

E =

√
ε3

ρ
· c−7

A , γ =
θ2

η
, s =

γ
4ρ

, (145)

where ∆f := f(x0) − f∗ and f∗ is the global minimum of f , and the constant cA is chosen large enough to
satisfy both the condition in Lemma 15 and cA ≥ (384)1/7. Then, Algorithm 2 satisfies that at least one of the
iterations zt will be an ε-approximate second-order stationary point in

Õ
( (f(x0)− f∗)

ε1.75
· log n

)
(146)

iterations, with probability at least 1− δ.

Proof. Set the total step number T to be:

T = max

{
4∆f (T̃ + T ′)

E
, 768∆fT ′

√
ρ
ε3

}
= Õ

( (f(x0)− f∗)
ε1.75

· log n
)
, (147)

where T̃ =
√
ζ · cA as defined in Lemma 15, similar to the perturbed accelerated gradient descent algorithm

[22, Algorithm 2]. We first assert that for each iteration xt that a uniform perturbation is added, after T ′

iterations we can successfully obtain a unit vector ê with êTHê ≤ −√
ρε/4, as long as λmin(H(xt)) ≤ −√

ρε.
The error probability of this assumption is provided later.

Under this assumption, the uniform perturbation can be called for at most 384(f(x0) − f∗)
√ ρ

ε3
times, for

otherwise the function value decrease will be greater than f(x0) − f∗, which is not possible. Then, the
probability that at least one negative curvature finding subroutine after uniform perturbation fails is upper
bounded by

384(f(x0)− f∗)

√
ρ
ε3

· δ0 = δ. (148)

For the rest of steps which is not within T ′ steps after uniform perturbation, they are either large gradient
steps, ‖∇f(xt)‖ ≥ ε, or ε-approximate second-order stationary points. Next, we demonstrate that at least one
of these steps is an ε-approximate stationary point.

Assume the contrary. We use NT̃ to denote the number of disjoint time periods with length larger than T̃
containing only large gradient steps and do not contain any step within T ′ steps after uniform perturbation.
Then, it satisfies

NT̃ ≥ T

2(T̃ + T ′)
− 384∆f

√
ρ
ε3

≥ (2c7A − 384)∆f

√
ρ
ε3

≥ ∆f

E
. (149)

From Lemma 15, during these time intervals the Hamiltonian will decrease in total at least NT̃ · E = ∆f ,
which is impossible due to Lemma 16, the Hamiltonian decreases monotonically for every step except for
the T ′ steps after uniform perturbation, and the overall decrease cannot be greater than ∆f , a contradiction.
Therefore, we conclude that at least one of the iterations must be an ε-approximate second-order stationary
point, with probability at least 1− δ.

D Proofs of the stochastic setting

D.1 Proof details of negative curvature finding using stochastic gradients

In this subsection, we demonstrate that Algorithm 3 can find a negative curvature efficiently. Specifically, we
prove the following proposition:
Proposition 22. Suppose the function f : Rn → R is !-smooth and ρ-Hessian Lipschitz. For any 0 < δ < 1,
we specify our choice of parameters and constants we use as follows:

Ts =
8!
√
ρε

· log
( !n
δ
√
ρε

)
, ι = 10 log

(nT 2
s

δ
log

(√n
ηrs

))
, (150)

rs =
δ

480ρnTs

√
ρε
ι
, m =

160(!+ !̃)
δ
√
ρε

√
Tsι, (151)
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Then for any point x̃ ∈ Rn satisfying λmin(H(x̃)) ≤ −√
ρε, with probability at least 1 − 3δ, Algorithm 3

outputs a unit vector ê satisfying

êTH(x̃)ê ≤ −
√
ρε

4
, (152)

where H stands for the Hessian matrix of function f , using O(m · Ts) = Õ
(

log2 n
δε1/2

)
iteartions.

Similarly to Algorithm 1 and Algorithm 2, the renormalization step Line 6 in Algorithm 3 only guarantees that
the value ‖yt‖ would not scales exponentially during the algorithm, and does not affect the output. We thus
introduce the following Algorithm 7, which is the no-renormalization version of Algorithm 3 that possess the
same output and a simpler structure. Hence in this subsection, we analyze Algorithm 7 instead of Algorithm 3.

Algorithm 7: Stochastic Negative Curvature Finding without Renormalization(x̃, rs,Ts,m).
1 z0 ← 0;
2 for t = 1, ...,Ts do
3 Sample

{
θ(1), θ(2), · · · , θ(m)

}
∼ D;

4 g(zt−1)← ‖zt−1‖
rs

· 1
m

∑m
j=1

(
g
(
x̃+ rs

‖zt−1‖zt−1; θ(j)
)
− g(x̃; θ(j))

)
;

5 zt ← zt−1 − 1
# (g(zt−1) + ξt), ξt ∼ N

(
0, r2s

d I
)

;

6 Output zT /‖zT ‖.

Without loss of generality, we assume x̃ = 0 by shifting Rn such that x̃ is mapped to 0. As argued in the proof
of Proposition 3, H(0) admits the following following eigen-decomposition:

H(0) =
n∑

i=1

λiuiu
T
i , (153)

where the set {ui}ni=1 forms an orthonormal basis of Rn. Without loss of generality, we assume the eigenvalues
λ1,λ2, . . . ,λn corresponding to u1,u2, . . . ,un satisfy

λ1 ≤ λ2 ≤ · · · ≤ λn, (154)

where λ1 ≤ −√
ρε. If λn ≤ −√

ρε/2, Proposition 22 holds directly. Hence, we only need to prove the case
where λn > −√

ρε/2, where there exists some p, p′ with

λp ≤ −√
ρε < λp+1, λp′ ≤ −√

ρε/2 < λp′+1. (155)

Notation: Throughout this subsection, let H̃ := H(x̃). Use S‖, S⊥ to separately denote the subspace
of Rn spanned by {u1,u2, . . . ,up}, {up+1,up+2, . . . ,un}, and use S′

‖, S′
⊥ to denote the subspace of

Rn spanned by {u1,u2, . . . ,up′}, {up′+1,up+2, . . . ,un}. Furthermore, define zt,‖ :=
∑p

i=1 〈ui, zt〉ui,
zt,⊥ :=

∑n
i=p 〈ui, zt〉ui, zt,‖′ :=

∑p′

i=1 〈ui, zt〉ui, zt,⊥′ :=
∑n

i=p′ 〈ui, zt〉ui respectively to denote the
component of zt in Line 5 of Algorithm 7 in the subspaces S‖, S⊥, S′

‖, S′
⊥, and let γ = −λ1.

To prove Proposition 22, we first introduce the following lemma:
Lemma 23. Under the setting of Proposition 22, for any point x̃ ∈ Rn satisfying λmin(∇2f(x̃) ≤ −√

ρε,
with probability at least 1− 3δ, Algorithm 3 outputs a unit vector ê satisfying

‖ê⊥′‖ :=
∥∥∥

n∑

i=p′

〈ui, ê〉ui

∥∥∥ ≤
√
ρε

8!
(156)

using O(m · Ts) = Õ
(

log2 n
δε1/2

)
iteartions.

D.1.1 Proof of Lemma 23

In the proof of Lemma 23, we consider the worst case, where λ1 = −γ = −√
ρε is the only eigenvalue less

than −√
ρε/2, and all other eigenvalues equal to −√

ρε/2 + ν for an arbitrarily small constant ν. Under this
scenario, the component zt,⊥′ is as small as possible at each time step.

The following lemma characterizes the dynamics of Algorithm 7:
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Lemma 24. Consider the sequence {zi} and let η = 1/!. Further, for any 0 ≤ t ≤ Ts we define

ζt := g(zt−1)−
‖zt‖
rs

(
∇f

(
x̃+

rs
‖zt‖

zt
)
−∇f(x̃)

)
, (157)

to be the errors caused by the stochastic gradients. Then zt = −qh(t)− qsg(t)− qp(t), where:

qh(t) := η
t−1∑

τ=0

(I − ηH̃)t−1−τ∆τ ẑτ , (158)

for ∆τ =
∫ 1

0
Hf

(
ψ rs

‖zτ‖zτ
)
dψ − H̃, and

qsg(t) := η
t−1∑

τ=0

(I − ηH̃)t−1−τζτ , qp(t) := η
t−1∑

τ=0

(I − ηH̃)t−1−τξτ . (159)

Proof. Without loss of generality we assume x̃ = 0. The update formula for zt can be written as

zt+1 = zt − η
(‖zt‖

rs

(
∇f

( rs
‖zt‖

zt
)
−∇f(0)

)
+ ζt + ξt

)
, (160)

where

‖zt‖
rs

(
∇f

( rs
‖zt‖

zt
)
−∇f(0)

)
=

‖zt‖
rs

∫ 1

0

Hf

(
ψ

rs
‖zt‖

zt
) rs
‖zt‖

ztdψ = (H̃+∆t)zt, (161)

indicating

zt+1 = (I − ηH̃)xt − η(∆tzt + ζt + ξt) (162)

= −η
t∑

τ=0

(I − ηH̃)t−τ (∆tzt + ζt + ξt), (163)

which finishes the proof.

At a high level, under our parameter choice in Proposition 22, qp(t) is the dominating term controlling the
dynamics, and qh(t) + qsg(t) will be small compared to qp(t). Quantitatively, this is shown in the following
lemma:
Lemma 25. Under the setting of Proposition 22 while using the notation in Lemma 12 and Lemma 24, we have

Pr
(
‖qh(t) + qsg(t)‖ ≤ β(t)ηrsδ

20
√
n

·
√
ρε

16!
, ∀t ≤ Ts

)
≥ 1− δ, (164)

where −γ := λmin(H̃) = −√
ρε.

Proof. Divide qp(t) into two parts:

qp,1(t) := 〈qp(t),u1〉u1, (165)

and

qp,⊥′(t) := qp(t)− qp,1(t). (166)

Then by Lemma 13, we have

Pr
(
‖qp,1(t)‖ ≤ β(t)ηrs√

n
·
√
ι
)
≥ 1− 2e−ι, (167)

and

Pr
(
‖qp,1(t)‖ ≥ β(t)ηrs

20
√
n

· δ
)
≥ 1− δ/4. (168)

Similarly,

Pr
(
‖qp,⊥′(t)‖ ≤ β⊥′(t)ηrs ·

√
ι
)
≥ 1− 2e−ι, (169)

and

Pr
(
‖qp,⊥′(t)‖ ≥ β⊥′(t)ηrs

20
· δ

)
≥ 1− δ/4, (170)
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where β⊥′(t) := (1+ηγ/2)t√
ηγ . Set t⊥′ := logn

ηγ . Then for all τ ≤ t⊥′ , we have

β(τ)
β⊥′(τ)

≤
√
n, (171)

which further leads to

Pr
(
‖qp,⊥′(τ)‖ ≤ 2β⊥′(t)ηrs ·

√
ι
)
≥ 1− 2e−ι. (172)

Next, we use induction to prove that the following inequality holds for all t ≤ t⊥′ :

Pr
(
‖qh(τ) + qsg(τ)‖ ≤ β⊥′(τ)ηrs ·

δ
20

, ∀τ ≤ t
)
≥ 1− 10nt2 log

(√n
ηrs

)
e−ι. (173)

For the base case t = 0, the claim holds trivially. Suppose it holds for all τ ≤ t for some t. Then due to
Lemma 13, with probability at least 1− 2t⊥′e−ι, we have

‖zt‖ ≤ η‖qp(t)‖+ η‖qh(t) + qsg(t)‖ ≤ 3β⊥′(τ)ηrs ·
√
ι. (174)

By the Hessian Lipschitz property, ∆τ satisfies:
‖∆τ‖ ≤ ρrs. (175)

Hence,

‖qh(t+ 1)‖ ≤
∥∥η

t∑

τ=0

(I − ηH̃)t−τ∆τzτ
∥∥ (176)

≤ ηρrs

t∑

τ=0

(I − ηH̃)t−τ‖zτ‖ (177)

≤ (ηρrsnTs) · (3β⊥′(t)ηrs) ·
√
ι (178)

≤ β⊥′(t+ 1)ηrs
10

√
n

·
δ
√
ρε

16!
. (179)

As for qsg(t), note that ζ̂τ |Fτ−1 ∼ nSG((!+ !̃)‖ẑτ‖/
√
m). By applying Lemma 14 with b = α2(t) · η2(!+

!̃)2/m and b = α2(t)η2(!+ !̃)2η2r2s/(mn), with probability at least

1− 4n · log
(√n
ηrs

)
· e−ι, (180)

we have

‖qsg(t+ 1)‖ ≤ η(!+ !̃)
√
t

m
· (β⊥(t)ηrs) ·

√
ι ≤ β⊥′(t+ 1)ηrs

20
·
δ
√
ρε

8!
. (181)

Then by union bound, with probability at least

1− 10n(t+ 1)2 log
(√n
ηrs

)
e−ι, (182)

we have

‖qh(t+ 1) + qsg(t+ 1)‖ ≤ β⊥′(t+ 1)ηrs ·
δ
20

·
√
ρε

8!
, (183)

indicating that (173) holds. Then with probability at least

1− 10nt2⊥′ log
(√n
ηrs

)
e−ι − δ/4, (184)

we have

‖qh(t⊥′) + qsg(t⊥′)‖ ≤ ‖qp,1(t⊥′)‖ ·
√
ρε

16!
. (185)

Based on this, we prove that the following inequality holds for any t⊥′ ≤ t ≤ Ts:

Pr
(
‖qh(τ) + qsg(τ)‖ ≤ β(τ)ηrs

20
√
n

·
δ
√
ρε

16!
, ∀t⊥′ ≤ τ ≤ t

)
≥ 1− 10nt2 log

(√n
ηrs

)
e−ι. (186)

We still use recurrence to prove it. Note that its base case τ = t⊥′ is guaranteed by (173). Suppose it holds for
all τ ≤ t for some t. Then with probability at least 1− 2te−ι, we have

‖zt‖ ≤ η‖qp(t)‖+ η‖qh(t) + qsg(t)‖ (187)
≤ 2‖qp,1(t)‖+ η‖qh(t) + qsg(t)‖ (188)

≤ 3β(τ)ηrs√
n

·
√
ι. (189)
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Then following a similar procedure as before, we can claim that

‖qh(t+ 1) + qsg(t+ 1)‖ ≤ β(t+ 1)ηrs√
n

· δ
20

·
√
ρε

8!
, (190)

holds with probability

1− 10n(t+ 1)2 log
(√n
ηrs

)
e−ι − δ

4
, (191)

indicating that (186) holds. Then under our choice of parameters, the desired inequality

‖qh(t) + qsg(t)‖ ≤ β(t)ηrsδ

20
√
n

·
√
ρε

16!
(192)

holds with probability at least 1− δ.

Equipped with Lemma 25, we are now ready to prove Lemma 23.

Proof. First note that under our choice of Ts, we have

Pr
(‖qp,⊥′(Ts)‖

‖qp,1(Ts)‖
≤

√
ρε

16!

)
≥ 1− δ. (193)

Further by Lemma 25 and union bound, with probability at least 1− 2δ,

‖qh(Ts) + qsg(Ts)‖
‖qp(Ts)‖

≤ ‖qh(Ts) + qsg(Ts)‖ ·
20

√
n

δβ(t)ηrs
≤

√
ρε

16!
. (194)

For the output ê, observe that its component ê⊥′ = ê − ê1, since u1 is the only component in subspace S‖′ .
Then with probability at least 1− 3δ,

‖ê⊥′‖ ≤ √
ρε/(8!). (195)

D.1.2 Proof of Proposition 22

Based on Lemma 23, we present the proof of Proposition 22 as follows:

Proof. By Lemma 23, the component ê⊥′ of output e satisfies

‖ê⊥′‖ ≤
√
ρε

8!
. (196)

Since ê = ê‖′ + ê⊥′ , we can derive that

‖ê‖′‖ ≥
√

1− ρε
(8!)2

≥ 1− ρε
(8!)2

. (197)

Note that

êT H̃ê = (ê⊥′ + ê‖′)
T H̃(ê⊥′ + ê‖′), (198)

which can be further simplified to

êT H̃ê = êT
⊥′H̃ê⊥′ + êT

‖′H̃ê‖′ . (199)

Due to the !-smoothness of the function, all eigenvalue of the Hessian matrix has its absolute value upper
bounded by !. Hence,

êT
⊥H̃ê⊥ ≤ !‖êT

⊥‖22 =
ρε
64!2

, (200)

whereas

êT
‖′H̃ê‖′ ≤ −

√
ρε

2
‖ê‖′‖2. (201)

Combining these two inequalities together, we can obtain

êT H̃ê = êT
⊥′H̃ê⊥′ + êT

‖′H̃ê‖′ ≤ −
√
ρε

2
‖ê‖′‖2 +

ρε
64!2

≤ −
√
ρε

4
. (202)
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Algorithm 8: Stochastic Gradient Descent with Negative Curvature Finding.
1 Input: x0 ∈ Rn;
2 for t = 0, 1, ..., T do
3 Sample

{
θ(1), θ(2), · · · , θ(M)

}
∼ D;

4 g(xt) =
1
M

∑M
j=1 g(xt; θ(j));

5 if ‖g(xt)‖ ≤ 3ε/4 then
6 ê←StochasticNegativeCurvatureFinding(xt, rs,Ts,m);
7 xt ← xt − f ′

ê(x0)
4|f ′

ê(x0)|

√
ε
ρ · ê;

8 Sample
{
θ(1), θ(2), · · · , θ(M)

}
∼ D;

9 g(xt) =
1
M

∑M
j=1 g(xt; θ(j));

10 xt+1 ← xt − 1
#g(xt; θt);

D.2 Proof details of escaping saddle points using Algorithm 3

In this subsection, we demonstrate that Algorithm 3 can be used to escape from saddle points in the stochastic
setting. We first present the explicit Algorithm 8, and then introduce the full version Theorem 9 with proof.

Theorem 26 (Full version of Theorem 9). Suppose that the function f is !-smooth and ρ-Hessian Lipschitz.
For any ε > 0 and a constant 0 < δs ≤ 1, we choose the parameters appearing in Algorithm 8 as

δ =
δs

2304∆f

√
ε3

ρ
Ts =

8!
√
ρε

· log
( !n
δ
√
ρε

)
, ι = 10 log

(nT 2
s

δ
log

(√n
ηrs

))
, (203)

rs =
δ

480ρnTs

√
ρε
ι
, m =

160(!+ !̃)
δ
√
ρε

√
Tsι, M =

16!∆f

ε2
(204)

where ∆f := f(x0) − f∗ and f∗ is the global minimum of f . Then, Algorithm 8 satisfies that at least 1/4 of
the iterations xt will be ε-approximate second-order stationary points, using

Õ
( (f(x0)− f∗)

ε4
· log2 n

)
(205)

iterations, with probability at least 1− δs.

Proof. Let the parameters be chosen according to (2), and set the total step number T to be:

T = max

{
8!(f(x0)− f∗)

ε2
, 768(f(x0)− f∗) ·

√
ρ
ε3

}
. (206)

We will show that the following two claims hold simultaneously with probability 1− δs:

1. At most T/4 steps have gradients larger than ε;

2. Algorithm 3 can be called for at most 384∆f

√ ρ
ε3

times.

Therefore, at least T/4 steps are ε-approximate secondary stationary points. We prove the two claims sepa-
rately.

Claim 1. Suppose that within T steps, we have more than T/4 steps with gradients larger than ε. Then with
probability 1− δs/2,

f(xT )− f(x0) ≤ −η
8

T−1∑

i=0

‖∇f(xi)‖2 + c · σ
2

M!
(T + log(1/δs)) ≤ f∗ − f(x0), (207)

contradiction.

Claim 2. We first assume that for each xt we apply negative curvature finding (Algorithm 3), we can suc-
cessfully obtain a unit vector ê with êTH(xt)ê ≤ −√

ρε/4, as long as λmin(H(xt)) ≤ −√
ρε. The error

probability of this assumption is provided later.
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Under this assumption, Algorithm 3 can be called for at most 384(f(x0)− f∗)
√ ρ

ε3
≤ T

2 times, for otherwise
the function value decrease will be greater than f(x0)− f∗, which is not possible. Then, the error probability
that some calls to Algorithm 3 fails is upper bounded by

384(f(x0)− f∗)

√
ρ
ε3

· (3δ) = δs/2. (208)

The number of iterations can be viewed as the sum of two parts, the number of iterations needed in large
gradient scenario, denoted by T1, and the number of iterations needed for negative curvature finding, denoted
by T2. With probability at least 1− δs,

T1 = O(M · T ) = Õ
( (f(x0)− f∗)

ε4

)
. (209)

As for T2, with probability at least 1− δs, Algorithm 3 is called for at most 384(f(x0)− f∗)
√ ρ

ε3
times, and

by Proposition 22 it takes Õ
(

log2 n
δ
√
ρε

)
iterations each time. Hence,

T2 = 384(f(x0)− f∗)

√
ρ
ε3

· Õ
( log2 n
δ
√
ρε

)
= Õ

( (f(x0)− f∗)
ε4

· log2 n
)
. (210)

As a result, the total iteration number T1 + T2 is

Õ
( (f(x0)− f∗)

ε4
· log2 n

)
. (211)

E More numerical experiments

In this section, we present more numerical experiment results that support our theoretical claims from a few
different perspectives compared to Section 4. Specifically, considering that previous experiments all lies in
a two-dimensional space, and theoretically our algorithms have a better dependence on the dimension of the
problem n, it is reasonable to check the actual performance of our algorithm on high-dimensional test functions,
which is presented in Appendix E.1. Then in Appendix E.2, we introduce experiments on various landscapes
that demonstrate the advantage of Algorithm 2 over PAGD [22]. Moreover, we compare the performance of our
Algorithm 2 with the NEON+ algorithm [30] on a few test functions in Appendix E.3. To be more precise, we
compare the negative curvature extracting part of NEON+ with Algorithm 2 at saddle points in different types
of nonconvex landscapes.

E.1 Dimension dependence

Recall that n is the dimension of the problem. We choose a test function h(x) = 1
2x

THx+ 1
16x

4
1 where H is

an n-by-n diagonal matrix: H = diag(−ε, 1, 1, ..., 1). The function h(x) has a saddle point at the origin, and
only one negative curvature direction. Throughout the experiment, we set ε = 1. For the sake of comparison,
the iteration numbers are chosen in a manner such that the statistics of Algorithm 1 and PGD in each category
of the histogram are of similar magnitude.

E.2 Comparison between Algorithm 2 and PAGD on various nonconvex landscapes

Quartic-type test function Consider the test function f(x1, x2) = 1
16x

4
1 − 1

2x
2
1 + 9

8x
2
2 with a saddle

point at (0, 0). The advantage of Algorithm 2 is illustrated in Figure 4.

Triangle-type test function. Consider the test function f(x1, x2) = 1
2 cos(πx1) + 1

2

(
x2 +

cos(2πx1)−1
2

)2
− 1

2 with a saddle point at (0, 0). The advantage of Algorithm 2 is illustrated in Figure 5.

Exponential-type test function. Consider the test function f(x1, x2) = 1

1+ex
2
1
+ 1

2

(
x2 −x2

1e
−x2

1
)2 − 1

with a saddle point at (0, 0). The advantage of Algorithm 2 is illustrated in Figure 6.
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Figure 3: Dimension dependence of Algorithm 1 and PGD. We set ε = 0.01, r = 0.1, n = 10p for p = 1, 2, 3.
The iteration number of Algorithm 1 and PGD are separately set to be 30p and 20p2 + 10, and the sample size
M = 100. As we can see, to maintain the same performance, the number of iterations in PGD grows faster
than the number of iterations in Algorithm 1.

Figure 4: Run Algorithm 2 and PAGD on landscape f(x1, x2) = 1
16x

4
1 − 1

2x
2
1 +

9
8x

2
2. Parameters: η = 0.05

(step length), r = 0.08 (ball radius in PAGD and parameter r in Algorithm 2), M = 300 (number of sam-
plings).
Left: The contour of the landscape is placed on the background with labels being function values. Blue points
represent samplings of Algorithm 2 at time step tANCGD = 10 and tANCGD = 20, and red points represent sam-
plings of PAGD at time step tPAGD = 20 and tPAGD = 40. Similarly to Algorithm 1, Algorithm 2 transforms an
initial uniform-circle distribution into a distribution concentrating on two points indicating negative curvature,
and these two figures represent intermediate states of this process. It converges faster than PAGD even when
tANCGD - tPAGD.
Right: A histogram of descent values obtained by Algorithm 2 and PAGD, respectively. Set tANCGD = 20 and
tPAGD = 40. Although we run two times of iterations in PAGD, there are still over 20% of PAGD paths with
function value decrease no greater than 0.9, while this ratio for Algorithm 2 is less than 5%.
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Figure 5: Run Algorithm 2 and PAGD on landscape f(x1, x2) = 1
2 cos(πx1) + 1

2

(
x2 +

cos(2πx1)−1
2

)2
− 1

2 .
Parameters: η = 0.01 (step length), r = 0.1 (ball radius in PAGD and parameter r in Algorithm 2), M = 300
(number of samplings).
Left: The contour of the landscape is placed on the background with labels being function values. Blue points
represent samplings of Algorithm 2 at time step tANCGD = 10 and tANCGD = 20, and red points represent
samplings of PAGD at time step tPAGD = 40 and tPAGD = 80. Algorithm 2 converges faster than PAGD even
when tANCGD - tPAGD.
Right: A histogram of descent values obtained by Algorithm 2 and PAGD, respectively. Set tANCGD = 20 and
tPAGD = 80. Although we run four times of iterations in PAGD, there are still over 20% of gradient descent
paths with function value decrease no greater than 0.9, while this ratio for Algorithm 2 is less than 5%.

Figure 6: Run Algorithm 2 and PAGD on landscape f(x1, x2) = f(x1, x2) = 1

1+ex
2
1
+ 1

2

(
x2−x2

1e
−x2

1
)2−1.

Parameters: η = 0.03 (step length), r = 0.1 (ball radius in PAGD and parameter r in Algorithm 2), M = 300
(number of samplings).
Left: The contour of the landscape is placed on the background with labels being function values. Blue points
represent samplings of Algorithm 2 at time step tANCGD = 10 and tANCGD = 20, and red points represent
samplings of PAGD at time step tPAGD = 30 and tPAGD = 60. Algorithm 2converges faster than PAGD even
when tANCGD - tPAGD.
Right: A histogram of descent values obtained by Algorithm 2 and PAGD, respectively. Set tANCGD = 20 and
tPAGD = 60. Although we run three times of iterations in PAGD, its performance is still dominated by our
Algorithm 2.

Compared to the previous experiment on Algorithm 1 and PGD shown as Figure 1 in Section 4, these exper-
iments also demonstrate the faster convergence rates enjoyed by the general family of "momentum methods".
Specifically, using fewer iterations, Algorithm 2 and PAGD achieve larger function value decreases separately
compared to Algorithm 1 and PGD.

E.3 Comparison between Algorithm 2 and NEON+ on various nonconvex landscapes

Triangle-type test function. Consider the test function f(x1, x2) = 1
2 cos(πx1) + 1

2

(
x2 +

cos(2πx1)−1
2

)2
− 1

2 with a saddle point at (0, 0). The advantage of Algorithm 2 is illustrated in Figure 7.

Exponential-type test function. Consider the test function f(x1, x2) = 1

1+ex
2
1
+ 1

2

(
x2 −x2

1e
−x2

1
)2 − 1

with a saddle point at (0, 0). The advantage of Algorithm 2 is illustrated in Figure 8.
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Figure 7: Run Algorithm 2 and NEON+ on landscape f(x1, x2) = 1
2 cos(πx1)+ 1

2

(
x2 +

cos(2πx1)−1
2

)2 − 1
2 .

Parameters: η = 0.04 (step length), r = 0.1 (ball radius in NEON+ and parameter r in Algorithm 2), M = 300
(number of samplings).
Left: The contour of the landscape is placed on the background with labels being function values. Red points
represent samplings of NEON+ at time step tNEON = 20, and blue points represent samplings of Algorithm 2
at time step tANCGD = 10. Algorithm 2 and the negative curvature extracting part of NEON+ both transform an
initial uniform-circle distribution into a distribution concentrating on two points indicating negative curvature.
Note that Algorithm 2 converges faster than NEON+ even when tANCGD - tNEON.
Right: A histogram of descent values obtained by Algorithm 2 and NEON+, respectively. Set tANCGD = 10
and tNEON = 20. Although we run two times of iterations in NEON+, none of NEON+ paths has function
value decrease greater than 0.95, while this ratio for Algorithm 2 is larger than 90%.

Figure 8: Run Algorithm 2 and NEON+ on landscape f(x1, x2) = 1

1+ex
2
1
+ 1

2

(
x2−x2

1e
−x2

1
)2−1. Parameters:

η = 0.03 (step length), r = 0.1 (ball radius in NEON+ and parameter r in Algorithm 2), M = 300 (number
of samplings).
Left: The contour of the landscape is placed on the background with labels being function values. Red points
represent samplings of NEON+ at time step tNEON = 40, and blue points represent samplings of Algorithm 2
at time step tANCGD = 20. Algorithm 2 converges faster than NEON+ even when tANCGD - tNEON.
Right: A histogram of descent values obtained by Algorithm 2 and NEON+, respectively. Set tANCGD = 20
and tNEON = 40. Although we run two times of iterations in NEON+, there are still over 20% of NEON+ paths
with function value decrease no greater than 0.9, while this ratio for Algorithm 2 is less than 10%.

Compared to the previous experiments on Algorithm 2 and PAGD in Appendix E.2, these two experiments
also reveal the faster convergence rate of both NEON+ and Algorithm 2 against PAGD [22] at small gradient
regions.
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