
A Free energy density f computation

The detailed derivation of the average free energy density f = − 1
Nβ [logZ]DM in (9) using the

replica method is illustrated. Our method provides a unified framework for the statistical mechanics
analysis of any `1-regularizedM -estimator of the form (2). As a result, for generality, in the following
derivations, we first focus on a generic `1-regularized M -estimator (2) with a generic loss function
` (·). After obtaining the generic results, specific results for both the `1-LinR estimator (4) with
square loss ` (x) = 1

2 (x− 1)
2 and the `1-LogR estimator with logistic loss ` (x) = log

(
1 + e−2x

)
are provided. For the IS estimator, the results can be easily obtained by substituting ` (x) = e−x,
though the specific results are not shown.

A.1 Energy term ξ of f

The key of replica method is to compute the replicated partition function [Zn]DM . According to the
definition in (10) and Ansatz (A1) in Sec. 3.2, the average replicated partition function [Zn]DM can
be re-written as

[Zn]DM =

∫ n∏
a=1

dJae−βλM
∑n
a=1

∑
j|Jaj |

{∑
s

PIsing (s|J∗) exp

[
−β

n∑
a=1

` (s0h
a)

]}M
,

≈
∫ n∏

a=1

dwae
−βλM

(∑n
a=1

∑
j∈Ψ|J̄j|+

∑n
a=1

1√
N
‖wa‖1

)
×

∑
s

PIsing (s|J∗)
∏
a

∫
dhawδ

haw − 1√
N

∑
j∈Ψ̄

waj sj

 e−β
∑n
a=1 `(s0(

∑
j∈Ψ J̄jsj+h

a
w))


αN

=

∫ n∏
a=1

dwae
−βλM

(
n
∑
j∈Ψ|J̄j|+

∑n
a=1

‖wa‖1√
N

)
×

{∑
s0,sΨ

∫ n∏
a=1

dhawP (s0, sΨ, {haw}a |J
∗, {wa}a) e−β

∑n
a=1 `(s0(

∑
j∈Ψ J̄jsj+h

a
w))

}αN

≈
∫ n∏

a=1

dwae
−βλM

(
n
∑
j∈Ψ|J̄j|+

∑n
a=1

‖wa‖1√
N

)
×

{∑
s0,sΨ

P (s0, sΨ|J∗)
∫ n∏

a=1

dhawPnoise ({haw}a | {w
a}a) e−β

∑n
a=1 `(s0(

∑
j∈Ψ J̄jsj+h

a
w))

}αN
,

(29)

where
{

1√
N
waj , j ∈ Ψ

}
in the finite active set Ψ are neglected in the second line when N is large,

P (s0, sΨ|J∗) =
∑
sΨ̄
PIsing (s|J∗) is the marginal distribution of s0, sΨ that can be computed

as [7], Pnoise ({haw}a | {wa}a) is the distribution of the “noise” part haw ≡ 1√
N

∑
j∈Ψ̄ w

a
j sj of the

local field. In the last line, the asymptotic independence between haw and (s0, sΨ) are applied as
discussed in [7]. Regarding the marginal distribution P (s0, sΨ|J∗), in general we have to take into
account the cavity fields in the marginal distribution. In the case considered in this paper, however,
the paramagnetic assumption simplifies the marginal distribution and finally it is proportional to
es0

∑
j∈Ψ J

∗
j sj [7]. When Ψ has a small cardinality d, we can compute the expectation w.r.t. (s0, sΨ)

exactly by exhaustive enumeration. For large d, MC methods like the Metropolis–Hastings algorithm
[44, 45, 46] might be used.

To proceed with the calculation, according to the CLT, the noise part {haw}
n
a=1 can be regarded as

Gaussian variables so that Pnoise ({haw}a | {wa}a) can be approximated as a multivariate Gaussian
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distribution. Under the RS ansatz, two auxiliary order parameters are introduced, i.e.,

Q ≡ 1

N

∑
i,j∈Ψ̄

wai C
\0
ij w

a
j , (30)

q ≡ 1

N

∑
i,j∈Ψ̄

wai C
\0
ij w

b
j , (a 6= b) , (31)

where C\0 =
{
C
\0
ij

}
is the covariance matrix of the original Ising model without s0. To write the

integration in terms of the order parameters Q, q, we introduce the following trivial identities

1 = N

∫
dQδ

∑
i,j 6=0

wai C
\0
ij w

a
j −NQ

 , a = 1, ..., n (32)

1 = N

∫
dqδ

∑
i,j 6=0

wai C
\0
ij w

b
j −Nq

 , a < b, (33)

so that [Zn]DM in (29) can be rewritten as

[Zn]DM = e−βλMn
∑
j∈Ψ|J̄j|

∫
dQdq

∫ n∏
a=1

dwae
−λβ M√

N

∑n
a=1‖w

a‖1

×
n∏
a=1

δ

∑
i,j

wai C
\0
ij w

a
j −NQ

∏
a<b

δ

∑
i,j

wai C
\0
ij w

b
j −Nq

×
{∑
s0,sΨ

P (s0, sΨ|J∗)
∫ n∏

a=1

dhawPnoise ({haw}a | {w
a}a) e−β

∑n
a=1 `(s0(

∑
j∈Ψ J̄jsj+h

a
w))

}αN
(34)

=

∫
dQdqIeM logL, (35)

where

I ≡
∫ n∏

a=1

dwae
−λβ M√

N

∑n
a=1‖w

a‖1
n∏
a=1

δ

∑
i,j

wai C
\0
ij w

a
j −NQ

∏
a<b

δ

∑
i,j

wai C
\0
ij w

b
j −Nq

 ,

(36)

L ≡ e−βλn
∑
j∈Ψ|J̄j|

∑
s0,sΨ

P (s0, sΨ|J∗)
∫ n∏

a=1

dhawPnoise ({haw}a | {w
a}a) e−β

∑n
a=1 `(s0(

∑
j∈Ψ J̄jsj+h

a
w)).

(37)

According to CLT and (30) and (31), the noise parts haw, a = 1, . . . , n follow a multivariate Gaussian
distribution with zero mean (paramagnetic assumption) and covariances〈

hawh
b
w

〉\0
= Qδab + (1− δab) q. (38)

Consequently, by introducing two auxiliary i.i.d. standard Gaussian random variables va ∼
N (0, 1) , z ∼ N (0, 1), the noise parts haw, a = 1, . . . , n can be written in a compact form

haw =
√
Q− qva +

√
qz, a = 1, . . . , n (39)
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so that L in (37) could be written as

L = e−βλn
∑
j∈Ψ|J̄j|

∑
s0,sΨ

P (s0, sΨ|J∗)
∫ n∏

a=1

dhawPnoise ({haw}a | {w
a}a) e−β

∑n
a=1 `(s0(

∑
j∈Ψ J̄jsj+h

a
w))

= e−βλn
∑
j∈Ψ|J̄j|

∑
s0,sΨ

P (s0, sΨ|J∗)
∫
Dz
∏
a

Dvae−β
∑n
a=1 `(s0(

∑
j∈Ψ J̄jsj+

√
Q−qva+

√
qz))

= e−βλn
∑
j∈Ψ|J̄j|

∑
s0,sΨ

P (s0, sΨ|J∗)
∫
Dz

∫ Dve−β`(s0(∑j∈Ψ J̄jsj+
√
Q−qv+

√
qz))︸ ︷︷ ︸

A


n

= e−βλn
∑
j∈Ψ|J̄j|

∑
s0,sΨ

P (s0, sΨ|J∗)Ez (An) , (40)

where Dz = dz√
2π
e−

z2

2 . As a result, using the replica formula, we have

lim
n→0

1

n
logL

=− βλ
∑
j∈Ψ

∣∣J̄j∣∣+ lim
n→0

log
∑
s0,sΨ

P (s0, sΨ|J∗)Ez (An)

n

=− βλ
∑
j∈Ψ

∣∣J̄j∣∣+ Ez

[∑
s0,sΨ

P (s0, sΨ|J∗) logA

]

=− βλ
∑
j∈Ψ

∣∣J̄j∣∣+
∑
s0,sΨ

P (s0, sΨ|J∗)
∫
Dz log

∫
Dve−β`(s0(

∑
j∈Ψ J̄jsj+

√
Q−qv+

√
qz))

=− βλ
∑
j∈Ψ

∣∣J̄j∣∣+
∑
s0,sΨ

P (s0, sΨ|J∗)
∫
Dz log

∫
dy√

2π (Q− q)
e−

[y−s0(
∑
j∈Ψ J̄jsj+

√
qz)]

2

2(Q−q) e−β`(y),

(41)

where in the last line, a change of variable y = s0

(∑
j∈Ψ J̄jsj +

√
Q− qv +

√
qz
)

is used.

As a result, from (9), the average free energy density in the limit β →∞ reads

f (β →∞) = lim
β→∞

− 1

Nβ

{
lim
n→0

∂

∂n
log I +M lim

n→0

∂

∂n
logL

}
= −Extr {−ξ + S} , (42)

where Extr {·} denotes extremization w.r.t. some relevant variables, and ξ, S are the corresponding
energy and entropy terms of f , respectively:

S = lim
n→0

1

Nβ

∂

∂n
log I, (43)

I =

∫ n∏
a=1

dwae−λβ
∑n
a=1‖w

a‖1
n∏
a=1

δ

∑
i,j

wai Cijw
a
j −NQ

∏
a<b

δ

∑
i,j

wai Cijw
b
j −Nq

 ,

(44)

ξ = αλ
∑
j∈Ψ

∣∣J̄j∣∣+ αEs,z

min
y


(
y − s0

(√
Qz +

∑
j∈Ψ J̄jsj

))2

2χ
+ ` (y)


 , (45)

and the relation limβ→∞ β (Q− q) ≡ χ is used [6, 7]. The extremization in the free energy result
(42) comes from saddle point method in the large N limit.
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A.2 Entropy term S of f

To obtain the final result of free energy density, there is still one remaining entropy term S to compute,
which requires the result of I (44). However, unlike the `2-norm, the `1-norm in (44) breaks the
rotational invariance property, which makes the computation of I difficult and the methods in [7, 29]
are no loner applicable. To address this problem, applying the Haar Orthogonal Ansatz (A2) in Sec.
3.2, we employ a method to replace I with an average [I]O over the orthogonal matrix O generated
from the Haar orthogonal measure.

Specifically, also under the RS ansatz, two auxiliary order parameters are introduced, i.e.,

R ≡ 1

N

∑
i,j

wai w
a
j , (46)

r ≡ 1

N

∑
i,j

wai w
b
j , (a 6= b) . (47)

Then, by inserting the delta functions
∏
a δ
(

(wa)
T
wa −NR

)∏
a<b δ

(
(wa)

T
wb −Nr

)
, we

obtain

I =

∫ n∏
a=1

dwae
−λβM√

N

∑n
a=1‖w

a‖1
n∏
a=1

δ
(

(wa)
T
Cwa −NQ

)∏
a<b

δ
(

(wa)
T
Cwb −Nq

)
×
∫
dRdr

∏
a

δ
(

(wa)
T
wa −NR

)∏
a<b

δ
(

(wa)
T
wb −Nr

)
. (48)

Moreover, replacing the original delta functions in (48) as the following identities δ
(

(wa)
T
Cwa −NQ

)
=
∫
dQ̂e−

Q̂
2 ((wa)TCwa−NQ),

δ
(

(wa)
T
Cwb −Nq

)
=
∫
dq̂eq̂((wa)TCwb−Nq),

and taking average over the orthogonal matrix O, after some algebra, the I is replaced with the
following average [I]O

[I]O =

∫
dRdrdQ̂dq̂

n∏
a=1

dwae
−λβM√

N

∑n
a=1‖w

a‖1
∏
a

δ
(

(wa)
T
wa −NR

)∏
a<b

δ
(

(wa)
T
wb −Nr

)
× exp

{
Nn

2
Q̂Q− Nn

2
(n− 1) q̂q

}
×
[
e

1
2 Tr(CLn)

]
O
, (49)

Ln = −
(
Q̂+ q̂

) n∑
a=1

wa (wa)
T

+ q̂

(
n∑
a=1

wa

)(
n∑
b=1

wb

)T
. (50)

To proceed with the computation, the eigendecompostion of the matrix Ln is performed. After some
algebra, for the configuration of wa that satisfies both (wa)

T
wa = NR and (wa)

T
wb = Nr, the

eigenvalues and associated eigenvectors of matrix Ln can be calculated as follows
λ1 = −N

(
Q̂+ q̂ − nq̂

)
(R− r + nr) ,

u1 =
∑n
a=1 w

a,

λ2 = −N
(
Q̂+ q̂

)
(R− r) ,

ua = wa − 1
n

∑n
b=1 w

b, a = 2, ..., n,

(51)

where λ1 is the eigenvalue corresponding to the eigenvector u1 while λ2 is the degenerate eigenvalue
corresponding to eigenvectors ua, a = 2, ..., n. To compute

[
e

1
2 Tr(CLn)

]
O

, we define a function

G (x) as

G (x) ≡ 1

N
log
[
exp

(x
2
TrC

(
11T

))]
O

= Extr
Λ

{
−1

2

∫
log (Λ− γ) ρ (γ) dγ +

Λ

2
x

}
− 1

2
log x− 1

2
, (52)
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and ρ (γ) is the eigenvalue distribution (EVD) of C. Then, combined with (51), after some algebra,
we obtain that
1

N
log
[
e

1
2 Tr(CLn)

]
O

= G
(
−
(
Q̂+ q̂ − nq̂

)
(R− r + nr)

)
+ (n− 1)G

(
−
(
Q̂+ q̂

)
(R− r)

)
.

(53)

Furthermore, replacing the original delta functions in (48) as δ
(

(wa)
T
wa −NR

)
=
∫
dR̂e−

R̂
2 ((wa)Twa−NR),

δ
(

(wa)
T
wb −Nr

)
=
∫
dr̂er̂((wa)Twb−Nr),

we obtain

[I]0 =

∫
dRdrdQ̂dq̂dR̂dr̂

n∏
a=1

dwa exp

−
n∑
a=1

λβM√
N
‖wa‖1 −

R̂+ r̂

2

n∑
a=1

(wa)
T
wa +

r̂

2

∑
a,b

(wa)
T
wb


× exp

{
Nn

2
R̂R− Nn

2
(n− 1) r̂r +

Nn

2
Q̂Q− Nn

2
(n− 1) q̂q

}
×
[
e

1
2 Tr(CLn)

]
O
. (54)

In addition, using a Gaussian integral, the following result can be linearized as∫ n∏
a=1

dwa exp

−
n∑
a=1

λβM√
N
‖wa‖1 −

R̂+ r̂

2

n∑
a=1

(wa)
T
wa +

r̂

2

∑
a,b

(wa)
T
wb


=

∫ n∏
a=1

dwa exp

−
n∑
a=1

N∑
i=1

λβM√
N
|wai | −

R̂+ r̂

2

n∑
a=1

N∑
i=1

(wai )
2

+
r̂

2

N∑
i=1

(
n∑
a=1

wai

)2


=
∏
i

∫
Dzi

∫ n∏
a=1

dwa exp

{
−

n∑
a=1

λβM√
N
|wai | −

R̂+ r̂

2

n∑
a=1

(wai )
2

+
√
r̂zi
∑
a

wai

}

=
∏
i

∫
Dzi

{∫
dw exp

[
− R̂+ r̂

2
w2
i +

(√
r̂z − λβM√

N
sign (wi)

)
wi

]}n
,

where Dzi = dzi√
2π
e−

zi
2

2 . Consequently, the entropy term S of the free energy density f is computed
as

lim
n→0

1

N

∂

∂n
log [I]O =

(
q̂ (R− r)−

(
Q̂+ q̂

)
r
)
G
′
(
−
(
Q̂+ q̂

)
(R− r)

)
+G

(
−
(
Q̂+ q̂

)
(R− r)

)
+
R̂R

2
+
r̂r

2
+
Q̂Q

2
+
q̂q

2

+

∫
Dz log

∫
dw exp

[
− R̂+ r̂

2
w2 +

(√
r̂z − λβM√

N
sign (w)

)
w

]
.

For β → ∞, according to the characteristic of the Boltzmann distribution, the following scaling
relations are assumed to hold, i.e., 

Q̂+ q̂ ≡ βE
q̂ ≡ β2F

R̂+ r̂ ≡ βK
r̂ ≡ β2H

β (Q− q) ≡ χ
β (R− r) ≡ η

(55)

Finally, the entropy term is computed as

S = (−ER+ Fη)G
′
(−Eη) +

1

2
EQ− 1

2
Fχ+

1

2
KR− 1

2
Hη− (56)∫

min
w

{
K

2
w2 −

(√
Hz − λM√

N
sign (w)

)
w

}
Dz. (57)
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A.3 Free energy density result

Combining the results (45) and (57) together, the free energy density for general loss function ` (·) in
the limit β →∞ is obtained as

f (β →∞) = −Extr
Θ


−αEs,z

(
min
y

[
(y−s0(

√
Qz+

∑
j∈Ψ J̄jsj))

2

2χ + ` (y)

])
− αλ

∑
j∈Ψ

∣∣J̄j∣∣
+ (−ER+ Fη)G

′
(−Eη) + 1

2EQ−
1
2Fχ

+ 1
2KR−

1
2Hη − Ez

(
min
w

{
K
2 w

2 −
(√

Hz − λM√
N

sign (w)
)
w
})

 ,

(58)

where the values of the parameters Θ =
{
χ,Q,E,R, F, η,K,H,

{
J̄j
}
j∈Ψ

}
can be calculated by

the extremization condition, i.e., solving the equations of state (EOS). For general loss function ` (y),
the EOS for (58) is as follows



ŷ (s, z, χ,Q, J) = arg max
y

{
− (y−s0(

√
Qz+

∑
j∈Ψ J̄jsj))

2

2χ − ` (y)

}
E = α√

Q
Es,z

(
s0z

d`(y)
dy |y=ŷ(s,z,χ,Q,J)

)
F = αEs,z

((
d`(y)
dy |y=ŷ(s,z,χ,Q,J)

)2
)

R = 1
K2

[(
H + λ2M2

N

)
erfc

(
λM√
2HN

)
− 2λM

√
H
N

1√
2π
e−

λ2M2

2HN

]
Eη = −

∫ ρ(γ)

Λ̃−γ dγ

Q = F
E2 +RΛ̃− (−ER+ Fη) η 1∫ ρ(λ)

(Λ̃−λ)2 dλ

K = EΛ̃+ 1
η

χ = 1
E + ηΛ̃

H = R
η2 + FΛ̃+ (−ER+ Fη)E 1∫ ρ(λ)

(Λ̃−λ)2 dλ

η = 1
K erfc

(
λM√
2HN

)
J̄j,j∈Ψ = arg min

Jj,j∈Ψ

{
Es,z

([
(ŷ(s,z,χ,Q,J)−s0(

√
Qz+

∑
j∈Ψ Jjsj))

2

2χ + ` (ŷ (s, z, χ,Q, J))

])
+ λ

∑
j∈Ψ |Jj |

}
(59)

where Λ̃ satisfying Eη = −
∫ ρ(γ)

Λ̃−γ dγ is determined by the extremization condition in (52) combined
with the free energy result (58). In general, there are no analytic solutions for the EOS (59) but it can
be solved numerically.

A.3.1 quadratic loss ` (y) = (y − 1)
2
/2

In the case of square lass ` (y) = (y − 1)
2
/2 for the `1-LinR estimator, there is an analytic solu-

tion to y in min
y

[
(y−s0(

√
Qz+

∑
j∈Ψ J̄jsj))

2

2χ + ` (y)

]
and thus the results can be further simplified.

Specifically, the free energy can be written as follows

f (β →∞) = −Extr
Θ


− α

2(1+χ)Es,z
[(
s0 −

∑
j∈Ψ sj J̄j −

√
Qz
)2
]
− αλ

∑
j∈Ψ

∣∣J̄j∣∣
+ (−ER+ Fη)G

′
(−Eη) + 1

2EQ−
1
2Fχ

+ 1
2KR−

1
2Hη − Ez

[
min
w

{
K
2 w

2 −
(√

Hz − λM√
N

sign (w)
)
w
}]

 ,

(60)
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and the corresponding EOS can be written as

E = α
(1+χ) , (a)

F = α
(1+χ)2

[
Es
(
si −

∑
j∈Ψ sj J̄j

)2

+Q

]
, (b)

R = 1
K2

[(
H + λ2M2

N

)
erfc

(
λM√
2HN

)
− 2λM

√
H
N

1√
2π
e−

λ2M2

2HN

]
, (c)

Eη = −
∫ ρ(γ)

Λ̃−γ dγ, (d)

Q = F
E2 +RΛ̃− (−ER+ Fη) η∫ ρ(γ)

(Λ̃−γ)2 dγ
, (e)

K = EΛ̃+ 1
η , (f)

χ = 1
E + ηΛ̃, (g)

H = R
η2 + FΛ̃+ (−ER+ Fη) E∫ ρ(γ)

(Λ̃−γ)2 dγ
, (h)

η = 1
K erfc

(
λM√
2HN

)
, (i)

J̄j = soft(tanh(K0),λ(1+χ))
1+(d−1) tanh2(K0)

, j ∈ Ψ, (j)

(61)

Note that the mean estimates
{
J̄j , j ∈ Ψ

}
in (61) is obtained by solving the following reduced

optimization problem

arg min
{J̄j}

 1

2 (1 + χ)
Es,z


s0 −

∑
j∈Ψ

sj J̄j −
√
Qz

2
− λ∑

j∈Ψ

∣∣J̄j∣∣
 , (62)

where the corresponding fixed-point equation associated with any J̄k, k ∈ Ψ can be written as follows

1

1 + χ
Es

sk
s0 −

∑
j∈Ψ

sj J̄j

− λsign (J̄k) = 0,∀k ∈ Ψ, (63)

where the sign(·) denotes an element-wise application of the standard sign function. For a RR graph
G ∈ GN,d,K0 with degree d and coupling strength K0, without loss of generality, assuming that
all the active couplings are positive, we have Es (s0sk) = tanh (K0) ,∀k ∈ Ψ, and Es (sksj) =

tanh2 (K0) , ∀k, j ∈ Ψ, k 6= j. Given these results and thanks to the the symmetry, we obtain

J̄j =
soft (tanh (K0) , λ (1 + χ))

1 + (d− 1) tanh2 (K0)
, j ∈ Ψ, (64)

where soft (z, τ) = sign (z) (|z| − τ)+ is the soft-thresholding function, i.e.,

soft (z, τ) ≡ sign (z) (|z| − τ)+ ≡


z − τ, z > τ

0, |z| ≤ τ
z + τ, z < −τ

(65)

On the other hand, in the inactive set Ψ̄, each component of the scaled noise estimates can be statisti-
cally described as the solution to the scalar estimator min

w

{
K
2 w

2 −
(√

Hz − λM√
N

sign (w)
)
w
}

in

(58). Consequently, recalling the definition of w in (11), the estimates
{
Ĵj , j ∈ Ψ̄

}
in the inactive

set Ψ̄ are

Ĵj =

√
H

K
√
N
soft

(
zj ,

λM√
HN

)

= arg min
Jj

1

2

(
Jj −

1

K

√
H

N
zj

)2

+
λM

KN
|Jj |

 , j ∈ Ψ̄, (66)

which zj ∼ N (0, 1) , j ∈ Ψ̄ are i.i.d. random Gaussian noise.

Consequently, it can be seen that from (64) and (66), statistically, the `1-LinR estimator is decoupled
into two scalar thresholding estimators for the active set Ψ and inactive set Ψ̄, respectively.
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A.3.2 Logistic loss ` (y) = log
(
1 + e−2y

)
In the case of logistic lass ` (y) = log

(
1 + e−2y

)
for the `1-LogR estimator, however, there is no

analytic solution to y in min
y

[
(y−s0(

√
Qz+

∑
j∈Ψ J̄jsj))

2

2χ + ` (y)

]
and we have to solve it together

iteratively with other parametersΘ. After some algebra, we obtain the EOS for the `1-LogR estimator:

ŷ(s,z,χ,Q,J)−s0(
√
Qz+

∑
j∈Ψ J̄jsj)

χ = 1− tanh (ŷ (s, z, χ,Q, J)) ,

E = αEs,z
(
s0z√
Q

tanh (ŷ (S, z, χ,Q, J))
)
,

F = αEs,z
(

(1− tanh (ŷ (S, z, χ,Q, J)))
2
)
,

R = 1
K2

[(
H + λ2M2

N

)
erfc

(
λM√
2HN

)
− 2λM

√
H
N

1√
2π
e−

λ2M2

2HN

]
,

Eη = −
∫ ρ(γ)

Λ̃−γ dγ,

Q = F
E2 +RΛ̃− (−ER+ Fη) η 1∫ ρ(λ)

(Λ̃−λ)2 dλ
,

K = EΛ̃+ 1
η ,

χ = 1
E + ηΛ̃,

H = R
η2 + FΛ̃+ (−ER+ Fη)E 1∫ ρ(λ)

(Λ̃−λ)2 dλ
,

η = 1
K erfc

(
λM√
2HN

)
,

J̄j =
soft(Es,z(ŷ(s,z,χ,Q,J)s0

∑
j∈Ψ sj),λdχ)

d(1+(d−1) tanh2(K0))
, j ∈ Ψ.

(67)

In the active set Ψ, the mean estimates
{
J̄j , j ∈ Ψ

}
can be obtained by solving a reduced `1-

regularized optimization problem

min
{J̄j}

j∈Ψ

Es,z

min
y


(
y − s0

(√
Qz +

∑
j∈Ψ J̄jsj

))2

2χ
+ log

(
1 + e−2y

)
+ λ

∑
j∈Ψ

∣∣J̄j∣∣
 .

(68)
In contrast to the `1-LinR estimator, the mean estimates

{
J̄j , j ∈ Ψ

}
in (68) for the `1-LogR estimator

do not have analytic solutions and also have to be solved numerically. For a RR graph G ∈ GN,d,K0

with degree d and coupling strength K0, after some algebra, the corresponding fixed-point equations
for
{
J̄j = J, j ∈ Ψ

}
are obtained as follows

J =
soft

(
Es,z

(
ŷ (s, z, χ,Q, J) s0

∑
j∈Ψ sj

)
, λdχ

)
d
(
1 + (d− 1) tanh2 (K0)

) , (69)

which can be solved iteratively.

The estimates in the inactive set Ψ̄ are the same as (66) that of `1-LinR, which can be described by a
scalar theresholding estimator once the EOS is solved.

B Check the consistency of ansatz (A1)

To check the consistency of Ansatz (A1), first we categorize the estimators based on the distance or
generation from the focused spin s0. Considering the original Ising model whose coupling network is
a tree-like graph, we can naturally define generations of the spins according to the distance from the
focused spin s0. We categorize the spins directly connected to s0 as the first generation and denote
the corresponding index set as Ω1 = {i|J∗i 6= 0, i ∈ {1, . . . , N − 1}}. Each spin in Ω1 is connected
to some other spins except for s0, and those spins constitute the second generation and we denote its
index set as Ω2. This recursive construction of generations can be unambiguously continued on the
tree-like graph, and we denote the index set of the g-th generation from spin s0 as Ωg. The overall
construction of generations is graphically represented in Fig. 4. Generally, assume that the set of
nonzero values of the `1-LinR estimator is denoted as Ψ = {Ω1, . . . ,Ωg}. Then, Ansatz (A1) means
that the correct active set of the mean estimates is Ψ = {Ω1}.
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Figure 4: Schematic of generations of spins. In general, the g-th generation of spin s0 is denoted as
Ωg , whose distance from spin s0 is g.

To verify this, we examine the values of mean estimates based on (60). Due to the symmetry, it is
expected that for each a = 1, ..., g, the values of the mean estimates J̄j∈Ωa = Ja are identical to each
other within the same set Ωa, a = 1...g. In addition, if the solutions satisfy Ansatz (A1) in (11), i.e.,
J1 = J, Ja = 0, a ≥ 2, from (60) we obtain{

1
1+χ

[
tanh (K0)−

(
1 + (d− 1) tanh2 (K0)

)
J
]
− λ = 0, j ∈ Ω1;∣∣∣ 1

1+χ

[
tanha (K0)− tanha−1 (K0)

(
1 + (d− 1) tanh2 (K0)

)
J
]∣∣∣ ≤ λ, j ∈ Ωa, a ≥ 2,

(70)

where the result Es (sisj) = tanhd0 (K0) is used for any two spins si, sj whose distance is d0

in the RR graph G ∈ GN,d,K0
. Note that the solution of the first equation in (70) automatically

satisfies the second equation (sub-gradient condition) since |tanh (K0)| ≤ 1, which indicates that
J1 = J, Ja = 0, a ≥ 2 is one valid solution. Moreover, the convexity of the quadratic loss function
indicates that this is the unique and correct solution, which checks the Ansatz (A1).

C Check the consistency of ansatz (A2)

We here check the consistency of a part of the Ansatz (A2) in Sec.3.2, the orthogonal matrix O
diagonalizing the covariance matrix C is distributed from the Haar orthogonal measure. To achieve
this, we compare certain properties of the orthogonal matrix generated from the diagonalization
of the covariance matrix C with the orthogonal matrix which is actually generated from the Haar
orthogonal measure. Specifically, we compute the cumulants of the trace of the power k of the
orthogonal matrix. All cumulants with degree r ≥ 3 are shown to disappear in the large N limit
[41, 42]. The nontrivial cumulants are only second order cumulant with the same power k. We have
computed these cumulants about the orthogonal matrix from the covariance matrix C and found that
they exhibit the same behavior as the ones generated from the true Haar measure, as shown in Fig. 5.

D Details of the High-dimensional asymptotic result

Here the asymptotic performance of Precision and Recall are considered for both the `1-LinR
estimator and the `1-LogR estimator. Recall that perfect Ising model selection is achieved if and only
if Precision = 1 and Recall = 1
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Figure 5: The RR graph G ∈ GN,d,K0
with N = 1000, d = 3,K0 = 0.4 is generated and we

compute the associated covariance matrix C and then diagonalize it as C = OΛOT , obtaining the
orthogonal matrix O. Then the Tr

(
Ok
)
, Tr

(
O−k

)
for several k (k = 1 ∼ 8) are computed, where

Tr (·) is the trace operation. This procedure is repeated 200 times with different random numbers,
from which we obtain the ensemble of Tr

(
Ok
)

and Tr
(
O−k

)
. Consequently, the cumulants of 1st,

2nd, and 3rd orders are computed. All of them exhibit the expected theoretical behavior.

D.1 Recall rate

According to the definition in (5), the recall rate is only related to the statistical properties of estimates
in the active set Ψ and thus the mean estimates

{
J̄j
}
j∈Ψ

in the limit M →∞ are considered.

D.1.1 quadratic loss

In this case, in the limit M →∞, the mean estimates
{
J̄j = J

}
j∈Ψ

in the active set Ψ are shown in
(64) and rewritten as follows for ease of reference

J =
soft (tanh (K0) , λ (1 + χ))

1 + (d− 1) tanh2 (K0)
. (71)

As a result, as long as λ (1 + χ) < tanh (K0), J > 0 and thus we can successfully recover the active
set so that Recall = 1. In addition, when M = O (logN), χ→ 0 as N →∞, as demonstrated later
by the relation in (81). As a result, the regularization parameter needs to satisfy 0 < λ < tanh (K0).

D.1.2 Logistic loss

In this case, in the limit M →∞, the mean estimates
{
J̄j = J

}
j∈Ψ

in the active set Ψ are shown in
(69) and rewritten as follows for ease of reference

J =
soft

(
Es,z

(
ŷ (s, z, χ,Q, J) s0

∑
j∈Ψ sj

)
, λdχ

)
d
(
1 + (d− 1) tanh2 (K0)

) . (72)

There is no analytic solution for ŷ (s, z, χ,Q, J) and the following fixed-point equation has to be
solved numerically

ŷ (s, z, χ,Q, J)− s0

(√
Qz + J

∑
j∈Ψ sj

)
χ

= 1− tanh (ŷ (s, z, χ,Q, J)) . (73)

Then one can determine the valid choice of λ to enable J > 0. Numerical results show that the choice
of λ is similar to that of the quadratic loss.
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D.2 Precision rate

According to the definition in (5), to compute the Precision, the number of true positives TP and
false positives FP are needed, respectively. On the one hand, as discussed in Appendix D.1, in the
limitM →∞, the recall rate approach to one and thus we have TP = d for a RR graphG ∈ GN,d,K0

.
On the other hand, the number of false positives FP can be computed as FP = FPR ·N , where
FPR is the false positive rate (FPR).

As shown in Appendix A.3, the estimator in the inactive set Ψ̄ can be statistically described by a
scalar estimator (66) and thus the FPR can be computed as

FPR = erfc
(

λM√
2HN

)
, (74)

which depends on λ,M,N,H . However, for both the quadratic loss and logistic loss, there is no
analytic result for H in (59). Nevertheless, we can obtain some asymptotic result using perturbative
analysis.

Specifically, we focus on the asymptotic behavior of the macroscopic parameters, e.g.,
χ,Q,K,E,H, F , in the regime FPR→ 0, which is necessary for successful Ising model selection.
From η = 1

K erfc
(

λM√
2HN

)
in EOS (59) and the FPR in (74), there is FPR = Kη. Moreover, by

combining Eη = −
∫ ρ(γ)

Λ̃−γ dγ and K = EΛ̃+ 1
η , the following relation can be obtained

erfc
(

λM√
2HN

)
= 1−

∫
ρ (γ)

1− γ

Λ̃

dγ. (75)

Thus as FPR = erfc
(

λM√
2HN

)
→ 0, there is

∫ ρ(γ)
1− γ

Λ̃

dγ → 1, implying that the magnitude of

Λ̃→∞. Consequently, using the truncated series expansion, we obtain

Eη = −
∫

ρ (γ)

Λ̃− γ
dγ

= − 1

Λ̃

∞∑
k=0

〈
γk
〉

Λ̃k

' − 1

Λ̃
− 〈γ〉
Λ̃2

, (76)

where
〈
γk
〉

=
∫
ρ (γ) γkdγ. Then, solving the quadratic equation (76), we obtain the solution (the

other solution is not considered since it is a smaller value) of Λ̃ as

Λ̃ =
−1−

√
1− 4Eη 〈γ〉
2Eη

' 〈γ〉 − 1

Eη
. (77)

To compute
∫ ρ(γ)

(Λ̃−γ)
2 dγ, we use the following relation

f
(
Λ̃
)

= −
∫

ρ (γ)

Λ̃− γ
dγ ' − 1

Λ̃
− 〈γ〉
Λ̃2

, (78)

df
(
Λ̃
)

dΛ̃
=

∫
ρ (γ)(
Λ̃− γ

)2 dγ '
1

Λ̃2
+ 2
〈γ〉
Λ̃3

. (79)

Substituting the results (77) - (79) into (59), after some algebra, we obtain
K ' E 〈γ〉 , (80)
χ ' η 〈γ〉 , (81)

Q ' 〈γ〉
3
E2η2R− 〈γ〉3EFη3 + 3 〈γ〉2 Fη2 −R 〈γ〉

3Eη 〈γ〉 − 1
, (82)

H ' 〈γ〉
3
E2η2F − 〈γ〉3RηE3 + 3 〈γ〉2RE2 − F 〈γ〉

3Eη 〈γ〉 − 1
. (83)
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Figure 6: E,F,H versus αwhen α = 50(logN)/N forN = 102 ∼ 1012 for RR graphG ∈ GN,d,K0

with d = 3,K0 = 0.4. Note that in this case, there is 〈γ〉 = 1.

In addition, as FPR = erfc
(

λM√
2HN

)
→ 0, from (59) we obtain

R =
1

K2

[(
H +

λ2M2

N

)
erfc

(
λM√
2HN

)
− 2λM

√
H

N

1√
2π
e−

λ2M2

2HN

]

' H

K2
erfc

(
λM√
2HN

)
' H

K
η ' H

E 〈γ〉
η, (84)

where the first result in ' uses the asymptotic relation erfc (x) ' 1
x
√
π
e−x

2

as x→∞ and the last
result in ' results from the asymptotic relation in (80). Then, substituting (84) into (83) leads to the
following relation

(3Eη 〈γ〉 − 1)H ' 〈γ〉3E2η2F − 〈γ〉2 η2E2H + 3Eη 〈γ〉H − F 〈γ〉 . (85)

Interestingly, the common terms 3Eη 〈γ〉H in both sides of (85) cancel with each other. Therefore,
the key result for H is obtained as follows

H ' F 〈γ〉 . (86)

In addition, from (86) and (82), Q can be simplified as

Q ' R 〈γ〉 . (87)

As shown in (59), F = αEs,z
(
d`(y)
dy |y=ŷ(s,z,χ,Q,J)

)2

, thus the result H ' F 〈γ〉 in (86) implies
that there is a linear relation between H and α ≡ M/N . The relation between E,F,H and α are
also verified numerically in Fig. 6 when M = 50(logN) for N = 102 ∼ 1012 using the `1-LinR
estimator.

In the paramagnetic phase, it can be obtained that the mean value of the eigenvalue 〈γ〉. Specifically,
we have 〈γ〉 = 1

N

∑N
i=1 γi = 1

N TrC = (1/N) × N = 1. Denote by H ' F 〈γ〉 ≡ α4, where

4 = Es,z
(
d`(y)
dy |y=ŷ(s,z,χ,Q,J)

)2

= O (1), then the FPR in (74) can be rewritten as follows

FPR = erfc
(

λM√
2α4N

)
= erfc

(
λ

√
M

24

)

≤ 1√
π
e
−λ2M

24 −
1
2 log

(
λ2M
24

)
, (88)
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where the last inequality uses the upper bound of erfc function, i.e., erfc (x) ≤ 1
x
√
π
e−x

2

. Conse-
quently, the number of false positives FP satisfies

FP ≤ N√
π
e
−λ2M

24 −
1
2 log

(
λ2M
24

)

=
1√
π
e
−λ2M

24 −
1
2 log

(
λ2M
24

)
+logN

<
1√
π
e−

λ2M
24 +logN , (89)

where the last inequality holds when λ2M
24 > 1, which is necessary when FP → 0 as N → ∞.

Consequently, to ensure FP → 0 as N →∞, from (89), the term λ2M
24 should grow at least faster

than logN , i.e.,

M >
24 logN

λ2
. (90)

Meanwhile, the number of false positives FP will decay as O
(
e−c logN

)
for some constant c (> 0).

D.2.1 Quadratic loss

In this case, when 0 < λ < tanh (K0), from (61), we can obtain an analytic result for4 as follows

4 ' Es0

s−∑
j∈Ψ

sj J̄j

2

(91)

=
1− tanh2K0 + dλ2

1 + (d− 1) tanh2K0

. (92)

On the other hand, from the discussion in Appendix D.1, the recall rate Recall → 1 as M → ∞
when 0 < λ < tanhK0. Overall, for a RR graph G ∈ GN,d,K0 with degree d and coupling strength
K0, given M i.i.d. samples DM =

{
s(1), ..., s(M)

}
, using `1-LinR estimator (4) with regularization

parameter λ, perfect recovery of the graph structure G can be achieved as N →∞ if the number of
samples M satisfies

M >
c (λ,K0) logN

λ2
, λ ∈ (0, tanh (K0)) (93)

where c (λ,K0) is a value dependent on the regularization parameter λ and coupling strength K0,
which can be approximated in the limit N →∞ as:

c (λ,K0) =
2
(
1− tanh2 (K0) + dλ2

)
1 + (d− 1) tanh2 (K0)

. (94)

D.2.2 Logistic loss

In this case, from (67), the value of4 can be computed as

4 ' Es,z
(

(1− tanh (ŷ (S, z, χ,Q, J)))
2
)
. (95)

However, different from the case of `1-LinR estimator, there is no analytic solution but it can be
calculated numerically. It can be seen that the `1-LinR estimator only differs in the value of scaling
factor4 with the `1-LogR estimator for Ising model selection.

E Details of the non-asymptotic result for moderate M,N

As demonstrated in Appendix A.3, from the replica analysis, both `1-LinR and `1-LogR estimators
are decoupled and their asymptotic behavior can be described by two scalar estimators for the active
set and inactive set, respectively. It is desirable to obtain the non-asymptotic result for moderate
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M,N . However, it is found that the behavior of the two scalar estimators by simply inserting the
finite values of M,N into the EOS does not always lead to good consistency with the experimental
results, especially for the Recall when M is small. This can be explained by the derivation of the
free energy density. In calculating the energy term ξ, the limit M → ∞ is taken implicitly when
assuming the limit N → ∞ with α ≡ M/N . As a result, the scalar estimator associated with the
active set can only describe the asymptotic performance in the limit M → ∞. Thus, one cannot
describe the fluctuating behavior of the estimator in the active set such as the recall rate for finite
M . To characterize the non-asymptotic behavior of the estimates in the active set Ψ, we replace the
expectation Es(·) in (58) by the sample average over M samples, and the corresponding estimates
are obtained as

{
Ĵj

}
j∈Ψ

= arg min
Jj,j∈Ψ

 1

M

M∑
µ=1

min
yµ


(
yµ − sµ0

(√
Qzµ +

∑
j∈Ψ Jjs

µ
j

))2

2χ
+ ` (yµ)

+ λ
∑
j∈Ψ

|Jj |

 ,

(96)
where zµ ∼ N (0, 1) and sµ0 , s

µ
j,j∈Ψ ∼ P (s0, sΨ|J∗) are random samples µ = 1, ...,M . Note that

the mean estimates
{
J̄j
}
j∈Ψ

are replaced by
{
Ĵj

}
j∈Ψ

in (96) as we now focus on its fluctuating

behavior due to the finite size effect. In the limit M →∞, the sample average will converge to the
expectation and thus (96) is equivalent to (68) when M →∞.

E.1 quadratic loss ` (y) = (y − 1)
2
/2

In the case of quadratic loss ` (y) = (y − 1)
2
/2, there is an analytic solution to y in

min
y

[
(y−s0(

√
Qz+

∑
j∈Ψ J̄jsj))

2

2χ + ` (y)

]
. Consequently, similar to (62), the result of (96) for the

`1-LinR estimator becomes

{
Ĵj

}
j∈Ψ

= arg min
Jj,j∈Ψ

 1

2 (1 + χ)M

M∑
µ=1

sµi −∑
j∈Ψ

sµj Jj −
√
Qzµ

2

+ λ
∑
j∈Ψ

|Jj |

 . (97)

As the mean estimates
{
J̄j
}
j∈Ψ

are modified as in (97), the corresponding solution to the EOS in
(61) also needs to be modified, and this can be solved iteratively as sketched in Algorithm 1. For a
practical implementation of Algorithm 1, the details are described in the following.

First, in the EOS (19), we need to obtain Λ̃ satisfying the following relation

Eη = −
∫

ρ (γ)

Λ̃− γ
dγ, (98)

which is difficult to solve directly. To obtain Λ̃, we introduce an auxiliary variable Γ ≡ − 1
Λ̃

, by
which (98) can be rewritten as

Γ =
Eη∫ ρ(γ)

1+Γγ dγ
, (99)

which can be solved iteratively. Accordingly, the χ,Q,K,H in EOS (19) can be equivalently written
in terms of Γ .

Second, when solving the EOS (19) iteratively using numerical methods, it is helpful to improve
the convergence of the solution by introducing a small amount of damping factor damp ∈ [0, 1) for
χ,Q,E,R, F, η,K,H, Γ in each iteration.

The detailed implementation of Algorithm 1 is shown in Algorithm 2.
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Algorithm 2: Detailed implementation of Algorithm 1 for the `1-LinR estimator with moderate
M,N .
Input: M,N, λ,K0, ρ (γ), damp, TMC

Output: χ,Q,E,R, F, η,K,H, Γ, {Ĵ tj,j∈Ψ}
TMC
t=1

Initialization: χ,Q,E,R, F, η,K,H, Γ
1 MC sampling: For t = 1...TMC , draw random samples sµ,t0 ,

{
sµ,tj
}
j∈Ψ
∼ P (s0, sΨ|J∗) and

zµ,t ∼ N (0, 1), µ = 1...M
2 repeat
3 for t = 1 to TMC do

4 Solve Ĵ tj,j∈Ψ = arg min
Jj,j∈Ψ

[∑M
µ=1(s

µ,t
0 −

∑
j∈Ψ s

µ,t
j Jj−

√
Qzµ,t)

2

2(1+χ)M + λ
∑
j∈Ψ |Jj |

]
5 Compute4 (t) = 1

M

∑M
µ=1

(
sµ,t0 −

∑
j∈Ψ s

µ,t
j Ĵ tj

)2

6 Set 4̄ = 1
TMC

∑TMC

t1=14 (t)

7 E = (1− damp) α
(1+χ) + damp · E

8 F = (1− damp) α
(1+χ)2

(
4̄+Q

)
+ damp · F

9 R = (1− damp) 1
K2

[(
H + λ2M2

N

)
erfc

(
λM√
2HN

)
− 2λM

√
H
N

1√
2π
e−

λ2M2

2HN

]
+ damp ·R

10 repeat
11 Γ = (1− damp) Eη∫ ρ(γ)

1+Γγ dγ
+ damp · Γ

12 until convergence

13 K = (1− damp)
(
−EΓ + 1

η

)
+ damp ·K

14 χ = (1− damp)
(
− η
Γ + 1

E

)
+ damp · χ

15 Q = (1− damp)

(
F
E2 − R

Γ −
(−ER+Fη)η

Γ 2
∫ ρ(γ)

(1+Γγ)2
dγ

)
+ damp ·Q

16 H = (1− damp)

(
R
E2 − F

Γ −
(−ER+Fη)E

Γ 2
∫ ρ(γ)

(1+Γγ)2
dγ

)
+ damp ·H

17 η = (1− damp) 1
K erfc

(
λM√
2HN

)
+ damp · η

18 until convergence

E.2 Logistic loss ` (y) = log
(
1 + e−2y

)
In the case of square lass ` (y) = log

(
1 + e−2y

)
, since there is no analytic solution to y in

min
y

[
(y−s0(

√
Qz+

∑
j∈Ψ J̄jsj))

2

2χ + ` (y)

]
, the result of (96) for the `1-LogR estimator becomes

Ĵj,j∈Ψ = arg min
Jj,j∈Ψ

 1

M

M∑
µ=1

min
yµ


(
yµ − sµ0

(√
Qzµ +

∑
j∈Ψ Jjs

µ
j

))2

2χ
+ log

(
1 + e−2y

)+ λ
∑
j∈Ψ

∣∣Jµj ∣∣
 ,

(100)
Similarly as the case for quadratic loss, as the mean estimates

{
J̄j
}
j∈Ψ

are modified as in (100), the
corresponding solutions to the EOS in (67) also need to be modified, which can be solved iteratively
as shown in Algorithm 3.

F Eigenvalue Distribution ρ (γ)

From the replica analysis presented, the learning performance will depend on the eigenvalue distribu-
tion (EVD) ρ (γ) of the covariance matrix C of the original Ising model.

There are two issues to be noted. One is about the formula connecting the performance of the estimator
and the spectral density, and the other is the numeric values of quantities which are computed from
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Algorithm 3: Detailed implementation of solving the EOS (67) together with (100) for `1-LogR
with moderate M,N .
Input: M,N, λ,K0, ρ (γ), damp, TMC

Output: χ,Q,E,R, F, η,K,H, Γ, {Ĵ tj,j∈Ψ}
TMC
t=1

Initialization: χ,Q,E,R, F, η,K,H, Γ
1 MC sampling: For t = 1...TMC , draw random samples sµ,t0 ,

{
sµ,tj
}
j∈Ψ
∼ P (s0, sΨ|J∗) and

zµ,t ∼ N (0, 1), µ = 1...M
2 repeat
3 for t = 1 to TMC do
4 Initialization Ĵ tj,j∈Ψ

5 repeat

6 ŷµ,t = arg min
yµ,t

[
(yµ−sµ,t0 (

√
Qzµ,t+

∑
j∈Ψ Ĵjs

µ,t
j ))2

2χ
+ log

(
1 + e−2yµ

)]
, µ = 1...M

7 Ĵtj,j∈Ψ = arg min
Jj,j∈Ψ

{
1
M

∑M
µ=1

[
(ŷµ,t−sµ,t0 (

√
Qzµ,t+

∑
j∈Ψ Jtjs

µ,t
j ))2

2χ
+ log

(
1 + e−2ŷµ,t

)]
+

λ
∑
j∈Ψ |Jj |

}
8 until convergence

9 Compute41 (t) = 1
M

∑M
µ=1

(
sµ,t0 zµ,t

−
√
Q

(1− tanh (ŷµ,t))
)

10 Compute42 (t) = 1
M

∑M
µ=1 (1− tanh (ŷµ,t))

2

11 Set 4̄1 = 1
TMC

∑TMC

t=1 41 (t) and 4̄2 = 1
TMC

∑TMC

t=1 42 (t)

12 E = (1− damp) · α4̄1 + damp · E
13 F = (1− damp) · α4̄2 + damp · F
14 R = (1− damp) 1

K2

[(
H + λ2M2

N

)
erfc

(
λM√
2HN

)
− 2λM

√
H
N

1√
2π
e−

λ2M2

2HN

]
+ damp ·R

15 repeat
16 Γ = (1− damp) Eη∫ ρ(γ)

1+Γγ dγ
+ damp · Γ

17 until convergence

18 K = (1− damp)
(
−EΓ + 1

η

)
+ damp ·K

19 χ = (1− damp)
(
− η
Γ + 1

E

)
+ damp · χ

20 Q = (1− damp)

(
F
E2 − R

Γ −
(−ER+Fη)η

Γ 2
∫ ρ(γ)

(1+Γγ)2
dγ

)
+ damp ·Q

21 H = (1− damp)

(
R
E2 − F

Γ −
(−ER+Fη)E

Γ 2
∫ ρ(γ)

(1+Γγ)2
dγ

)
+ damp ·H

22 η = (1− damp) 1
K erfc

(
λM√
2HN

)
+ damp · η

23 until convergence

the formula. For the first point, no assumption about the spectral density is needed to obtain the
formula itself and this formula is valid when the graph structure is tree-like and the Ising model
defined on the graph is in the paramagnetic phase. For the second point, we need the specific form
of the spectral density to obtain numeric solutions in general. As a demonstration, we assume the
random regular graph with constant coupling strength for which the spectral density can be obtained
analytically as has already been known before in [7].

In general, it is difficult to obtain this EVD; however, for sparse tree-like graphs such as RR graph
G ∈ GN,d,K0 with constant node degree d and sufficiently small coupling strength K0 that yields the
paramagnetic state (Es(s) = 0), it can be computed analytically. For this, we express the covariances
as

Cij = Es(sisj)− Es(si)Es(sj) =
∂2 logZ(θ)

∂θi∂θj
, (101)
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where Z(θ) =
∫
dsPIsing(s|J∗) exp(

∑N−1
i=0 θisi) and the assessment is carried out at θ = 0.

In addition, for technical convenience we introduce the Gibbs free energy as

A (m) = max
θ

{
θTm− logZ (θ)

}
. (102)

The definition of (102) indicates that following two relations hold:
∂mi

∂θj
=
∂2 logZ(θ)

∂θi∂θj
= Cij ,

∂θi
∂mj

= [C−1]ij =
∂2A(m)

∂mi∂mj
, (103)

where the evaluations are performed at θ = 0 andm = arg minmA(m) (= 0 under the paramag-
netic assumption).

Consequently, we can focus on the computation of A (m) to obtain the EVD of C−1. The inverse
covariance matrix of a RR graph G ∈ GN,d,K0

can be computed from the Hessian of the Gibbs free
energy [7, 47, 48] as[

C−1
]
ij

=
∂A (m)

∂mi∂mj

=

(
d

1− tanh2K0

− d+ 1

)
δij −

tanh (Jij)

1− tanh2 (Jij)
(1− δij) , (104)

and in matrix form, we have

C−1 =

(
d

1− tanh2K0

− d+ 1

)
I− tanh (J)

1− tanh2 (J)
, (105)

where I is an identity matrix of proper size, and the operations tanh (·) , tanh2 (·) on matrix J are
defined in the component-wise manner. For RR graph G ∈ GN,d,K0

, J is a sparse matrix, therefore
the matrix tanh(J)

1−tanh2(J)
also corresponds to a sparse coupling matrix (whose nonzero coupling positions

are the same as J ) with constant coupling strength K1 = tanh(K0)
1−tanh2(K0)

and fixed connectivity d, the
corresponding eigenvalue (denoted as ζ) distribution can be calculated as [49]

ρζ (ζ) =
d
√

4K2
1 (d− 1)− ζ2

2π (K2
1d

2 − ζ2)
, |ζ| ≤ 2K1

√
d− 1. (106)

From (105), the eigenvalue η of C−1 is

ηi =
d

1− tanh2K0

− d+ 1− ζi, (107)

which, when combined with (106), readily yields the EVD of η as N →∞ as follows:

ρη (η) = ρζ

(
d

1− tanh2K0

− d+ 1− η
)

=
d

√
4
(

tanh(K0)
1−tanh2(K0)

)2

(d− 1)−
(

d
1−tanh2 K0

− d+ 1− η
)2

2π

((
tanh(K0)

1−tanh2(K0)

)2

d2 −
(

d
1−tanh2 K0

− d+ 1− η
)2
) , (108)

where η ∈
[

d
1−tanh2 K0

− d+ 1− 2 tanh(K0)
√
d−1

1−tanh2(K0)
, d

1−tanh2 K0
− d+ 1 + 2 tanh(K0)

√
d−1

1−tanh2(K0)

]
.

Consequently, since γ = 1/η, we obtain the EVD of ρ (γ) as follows

ρ (γ) =
1

γ2
ρη

(
η =

1

γ

)

=
d

√
4
(

tanh(K0)
1−tanh2(K0)

)2

(d− 1)−
(

d
1−tanh2 K0

− d+ 1− 1
γ

)2

2πγ2

((
tanh(K0)

1−tanh2(K0)

)2

d2 −
(

d
1−tanh2 K0

− d+ 1− 1
γ

)2
) (109)

where γ ∈
[
1/
(

d
1−tanh2 K0

− d+ 1 + 2 tanh(K0)
√
d−1

1−tanh2(K0)

)
, 1/

(
d

1−tanh2 K0
− d+ 1− 2 tanh(K0)

√
d−1

1−tanh2(K0)

)]
.
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G Additional Experimental Results

Fig. 7 and Fig. 8 show the full results of non-asymptotic learning performance prediction when
λ = 0.1 and λ = 0.3, respectively. Good agreements between replica results and experimental results
are achieved in all cases. As can be seen, there is negligible difference in Precision and Recall
between `1-LinR and `1-LogR. Meanwhile, compared to Fig. 7 when λ = 0.1, the difference in RSS
between `1-LinR and `1-LogR is reduced when λ = 0.3. In addition, by comparing Fig. 7 and Fig. 8,
it can be seen that under the same setting, when λ increases, the Precision becomes larger while the
Recall becomes smaller, implying a tradeoff in choosing λ in practice for Ising model selection with
finite M,N .

Figure 7: Theoretical and experimental results of RSS, Precision and Recall for both `1-LinR and
`1-LogR when λ = 0.1, N = 200, 400, 800 with different values of α ≡M/N . The standard error
bars are obtained from 1000 random runs. An excellent agreement between theory and experiment is
achieved, even for small N = 200 and small α ( small M ).

Fig. 9 and Fig. 10 show the full results of critical scaling prediction when λ = 0.1 and λ = 0.3,
respectively. For comparison, both the results of `1-LinR and `1-LogR are shown. It can be seen that
apart from the good agreements between replica results and experimental results, the prediction of
the scaling value c0 (λ,K0) ≡ c(λ,K0)

λ2 is very accurate.
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Figure 8: Theoretical and experimental results of RSS, Precision and Recall for both `1-LinR and
`1-LogR when λ = 0.3, N = 200, 400, 800 with different values of α ≡M/N . The standard error
bars are obtained from 1000 random runs. An excellent agreement between theory and experiment is
achieved, even for small N = 200 and small α ( small M ).

33



Figure 9: Precision and Recall versus N when M = c logN and K0 = 0.4 for `1-LinR and
`1-LogR when λ = 0.1, where c0 (λ,K0) ≡ c(λ,K0)

λ2 ≈ 137. When c > c0 (λ,K0), the Precision
increases consistently with N and approaches 1 as N →∞ while it decreases consistently with N
when c < c0 (λ,K0).

Figure 10: Precision and Recall versus N when M = c logN and K0 = 0.4 for `1-LinR and
`1-LogR when λ = 0.3, where c0 (λ,K0) ≡ c(λ,K0)

λ2 ≈ 19.4. When c > c0 (λ,K0), the Precision
increases consistently with N and approaches 1 as N →∞ while it decreases consistently with N
when c < c0 (λ,K0). The Recall increases consistently and approach to 1 as N →∞.
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