
Appendix

Algorithm 2 Vanilla Pessimistic Value Iteration
1: Input: Offline dataset D = {(sτh, aτh, rτh, sτh+1)}n,Hτ,h=1. Absolute Constant C, failure probability δ.
2: Initialization: Set V̂H+1(·)← 0.
3: for time h = H,H − 1, . . . , 1 do
4: Set Q̂h(·, ·)← r̂h(·, ·) + (P̂h · V̂h+1)(·, ·)
5: ∀sh, ah, set Γh(sh, ah) = CH log(HSA/δ)

√nsh,ah
if nsh,ah ≥ 1, o.w. set to CH log(HSA/δ)

1
.

6: Set Q̂ph(·, ·)← Q̂h(·, ·)− Γh(·, ·). // Pessmistic update
7: Set Qh(·, ·)← min{Q̂ph(·, ·), H − h+ 1}+.
8: Select π̂h(·|sh)← argmaxπh〈Qh(sh, ·), πh(·|sh)〉, ∀sh.
9: Set V̂h(sh)← 〈Qh(sh, ·), π̂h(·|sh)〉, ∀sh.

10: end for
11: Output: {π̂h}.

A On the statistical limits for Offline Learning and OPE in tabular RL

Task Dominate Bound Type

Offline policy learning
∑H
h=1

∑
sh,ah

dπ
?

h (sh, ah)

√
VarPsh,ah

(V ?h+1+rh)

dµh(sh,ah)

√
1
n Instance-dependent (Theorem 4.1,4.3)

OPE (|vπ − v̂π|)
√

1
n

∑H
h=0

∑
sh,ah

dπh(sh,ah)2

dµh(sh,ah)
VarPsh,ah

(
V πh+1 + rh

)
Upper bound, Cramer-Rao lower bound

Table 1: Showing the statistical optimalities for offline policy learning (v? − vπ̂) and offline policy
evaluation (OPE) (|vπ − v̂π|) for the non-stationary tabular MDPs. The upper bound of OPE comes
from Yin and Wang [2020], Duan et al. [2020] and the Cramer-Rao lower bound comes from Jiang
and Li [2016].

Table A shows the statistical optimality for offline policy learning and offline policy evaluation (OPE)
in the non-stationary tabular MDPs. By Cauchy-Schwartz inequality, it can be checked that the rate
between the two bounds (roughly) deviate by a factor of H (in terms of sample complexity), and this
reveals that offline learning is inherently harder than OPE from the statistical aspect.

B Proof Overview and Some Notations

Our analysis of the intrinsic learning bound in Section 4 leverage the key design feature of APVI
that V̂h+1 only depends on the transition data from time h + 1 to H while P̂h only uses transi-
tion pairs at time h. This enables concentration inequalities due the conditional independence.7
To cater for the data-adaptive bonus (4), we need to use Empirical Bernstein inequality to get

(P̂h − Ph)V̂h+1 .
√

VarP̂ (V̂h+1)/nsh,ah . Especially, to recover the
√

VarP (V ?h+1) structure to we

use a self-bounding reduction as follows. First,
√

VarP̂ (V̂h+1) −
√

VarP (V̂h+1) . H/
√
nd̄m and√

VarP (V̂h+1)−
√

VarP (V ?h+1) ≤ ||V̂h+1−V ?h+1||∞. Next, we use (3) as the intermediate step to crude

bounding ||V̂h+1 − V ?h+1||∞ . H2/
√
nd̄m (where “the use of (3)” is the more intricate self-bounding

Lemma E.7 in the actual proof) and this yields the desired structure of
√

VarP (V ?h+1) +H2/
√
nd̄m.

Lastly, we can combine this with the extended value difference lemma in Cai et al. [2020] to bound
V ?1 − V̂1 and leverage the pessimistic design for bounding V̂1 − V π̂1 .

For the per-instance lower bound, similar to Khamaru et al. [2021a], we reduce the problem
from Rn(P) to the two point testing problem and construct a problem-dependent local instance

7This trick is also leveraged in Yin et al. [2021a], but they consider the empirical optimal value V̂ π̂
?

instead.
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P ′h(sh+1|sh, ah) = Ph(sh+1|sh, ah) +
Ph(sh+1|sh,ah)

(
V ?h+1(sh+1)−EPsh,ah [V ?h+1]

)
8
√
ζ·nsh,ah ·VarPsh,ah

(V ?
h+1

)
. The design with the

subtraction of “the baseline” EPsh,ah [V ?h+1] is the key to make sure P ′ center around the instance P .

For the assumption-free offline RL, the use of pessimistic augmented MDP help characterize the
constant gap (due to the agnostic locations) via the following conclusion (Lemma E.2):

vπ −
H∑
h=1

h−1∑
t=1

∑
(st,at)∈S×A\Ch

dπt (st, at) ≤ vπ −
H∑
h=1

d†πh (s†h) ≤ v†π ≤ vπ.

Especially, the mass of the absorbing state s†h have the expression

d†πh (s†h) =

h−1∑
t=1

∑
(st,at)∈S×A\Ct

d†πt (st, at)

which absorbs all the first time exit probabilities d†πt (st, at) under M†, see Section E.2 for detailed
explanations.

We use the following notations throughout the entire appendix. First recall Ch = {(sh, ah) :
dµh(sh, ah) > 0} and d̄m := minh∈[H],(sh,ah)∈Ch{d

µ
h(sh, ah)}. Also, ι = log(HSA/δ). Next, for

any V ∈ RS , denote Th(V )(s, a) := rh(s, a) + (Ph · V )(s, a) ∀s, a ∈ S,A be the Bellman update
operator.

C Proof of VPVI (Theorem 3.1)

We begin with the following helpful lemma.
Lemma C.1. For any 0 < δ < 1, there exists an absolute constant c1 such that when total episode
n > c1 · 1/d̄m · log(HSA/δ), then with probability 1− δ, ∀h ∈ [H]

nsh,ah ≥ n · d
µ
h(sh, ah)/2, ∀ (sh, ah) ∈ Ch.

Furthermore, we denote

E := {nsh,ah ≥ n · d
µ
h(sh, ah)/2, ∀ (sh, ah) ∈ Ch, h ∈ [H].} (10)

then equivalently P (E) > 1− δ.

In addition, we denote

E ′ := {nsh,ah ≤
3

2
n · dµh(sh, ah), ∀ (sh, ah) ∈ Ch, h ∈ [H].} (11)

then similarly P (E ′) > 1− δ.

Proof of Lemma C.1. Define E := {∃h, (sh, ah) ∈ Ch s.t. nsh,ah < ndµh(sh, ah)/2}. Then combin-
ing the first part of multiplicative Chernoff bound (Lemma J.1 in the Appendix) and a union bound,
we obtain

P[E] ≤
∑
h

∑
(sh,ah)∈Ch

P[nsh,ah < ndµh(sh, ah)/2]

≤ HSA · e−
n·dm

8 := δ

solving this for n then provides the stated result.

For E ′ we can similarly use the second part of Lemma J.1 to prove.

Now in Lemma J.10, take π = π?, Q̂h = Qh and π̂ = π̂ in Algorithm 2, we have

V π
?

1 (s)− V π̂1 (s) ≤
H∑
h=1

Eπ? [ξh(sh, ah) | s1 = s]−
H∑
h=1

Eπ̂ [ξh(sh, ah) | s1 = s] (12)

here ξh(s, a) = (ThV̂h+1)(s, a)−Qh(s, a). This is true since by the definition of π̂ in Algorithm 2
〈Qh (sh, ·) , πh (·|sh)− π̂h (·|sh)〉 ≤ 0 almost surely. Next we prove the asymmetric bound for ξh,
which is the key lemma for the proof.
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Lemma C.2. Denote ξh(s, a) = (ThV̂h+1)(s, a)−Qh(s, a), where V̂h+1 and Qh are the quantities
in Algorithm 2 and Th(V ) := rh + Ph · V for any V . Then with probability 1 − δ, then for any
h, sh, ah such that dµh(sh, ah) > 0, we have (C ′ is an absolute constant)

0 ≤ ξh(sh, ah) = (ThV̂h+1)(sh, ah)−Qh(sh, ah) ≤ C ′ ·

√
H2 log(HSA/δ)

n · dµh(sh, ah)
.

Proof of Lemma C.2. Let us first consider the case where nsh,ah ≥ 1 for all (sh, ah) ∈ Ch. In this
case, by Hoeffding’s inequality and a union bound, w.p. 1− δ, since 0 ≤ rh ≤ 1,

|r̂h(sh, ah)− rh(sh, ah)| ≤ 2

√
log(HSA/δ)

nsh,ah
∀(sh, ah) ∈ Ch, h ∈ [H]. (13)

Next, recall π̂h+1 in Algorithm 2 is computed backwardly therefore only depends on sample tuple
from time h+ 1 to H . Aa a result V̂h+1 = 〈Qh+1, π̂h+1〉 also only depends on the sample tuple from
time h+ 1 to H . On the other side, by our construction P̂h only depends on the transition pairs from
h to h+ 1. Therefore V̂h+1 and P̂h are Conditionally independent (This trick is also use in Yin et al.
[2021a]) so by Hoeffding’s inequality again8 (note ||V̂h||∞ ≤ ||Qh|| ≤ H by VPVI)∣∣∣((P̂h − Ph)V̂h+1

)
(sh, ah)

∣∣∣ ≤ 2

√
H2 · log(HSA/δ)

nsh,ah
, ∀(sh, ah) ∈ Ch. (14)

Now apply Lemma C.1, we have with high probability the event E (10) is true, combining this with
(13), (14) and rescaling the constants we obtain with probability 1− δ, for all h ∈ [H],

|r̂h(sh, ah)− rh(sh, ah)| ≤ C

√
log(HSA/δ)

6n · dµh(sh, ah)∣∣∣((P̂h − Ph)V̂h+1

)
(sh, ah)

∣∣∣ ≤ C√H2 · log(HSA/δ)

6n · dµh(sh, ah)
, ∀(sh, ah) ∈ Ch.

(15)

Now we are ready to prove the Lemma.

Step1: we prove ξh(sh, ah) ≥ 0 for all (sh, ah) ∈ Ch, h ∈ [H] with probability 1− δ.

We can condition on E ′ and (15) is true since our lemma is high probability version. Indeed, if
Q̂ph(sh, ah) < 0, then Qh(sh, ah) = 0. In this case, ξh(sh, ah) = (ThV̂h+1)(sh, ah) ≥ 0. If
Q̂ph(sh, ah) ≥ 0, then by definition Qh(sh, ah) = min{Q̂ph(sh, ah), H − h + 1}+ ≤ Q̂ph(sh, ah)
and this implies

ξh(sh, ah) ≥(ThV̂h+1)(sh, ah)− Q̂ph(sh, ah)

=(rh − r̂h)(sh, ah) + (Ph − P̂h)V̂h+1(sh, ah) + Γh(sh, ah)

≥− 2C

√
H2 · log(HSA/δ)

6n · dµh(sh, ah)
+ Γh(sh, ah)

≥− C

√
2H2 · log(HSA/δ)

3n · dµh(sh, ah)
+ C

√
H2 · log(HSA/δ)

3/2 · n · dµh(sh, ah)
= 0

where the second inequality uses (15) and the third inequality uses E ′.

Step2: we prove ξh(sh, ah) ≤ C ′ ·
√

H2 log(HSA/δ)
n·dµh(sh,ah)

for all h ∈ [H], (sh, ah) ∈ Ch with probability
1− δ.

First, since the construction V̂h ≤ H − h+ 1 for all h ∈ [H], this implies

Q̂ph = Q̂h − Γh ≤ Q̂h = r̂h + (P̂hV̂h+1) ≤ 1 + (H − h) = H − h+ 1

8It is worth mentioning if sub-policy π̂h+1:t depends on the data from all time steps 1, 2, . . . , H , then V̂h+1

and P̂h are no longer conditionally independent and Hoeffding’s inequality cannot be applied.
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which uses r̂h ≤ 1 almost surely and P̂h is row-stochastic. Due to this, we have the equivalent
definition

Qh := min{Q̂ph, H − h+ 1}+ = max{Q̂ph, 0} ≥ Q̂
p
h.

Therefore

ξh(sh, ah) =(ThV̂h+1)(sh, ah)−Qh(sh, ah) ≤ (ThV̂h+1)(sh, ah)− Q̂ph(sh, ah)

=(ThV̂h+1)(sh, ah)− Q̂h(sh, ah) + Γh(sh, ah)

=(rh − r̂h)(sh, ah) + (Ph − P̂h)V̂h+1(sh, ah) + Γh(sh, ah)

≤2C

√
H2 · log(HSA/δ)

6n · dµh(sh, ah)
+ Γh(sh, ah)

≤C

√
2H2 · log(HSA/δ)

3n · dµh(sh, ah)
+ C

√
2H2 · log(HSA/δ)

n · dµh(sh, ah)

=(

√
2

3
+
√

2)C

√
H2 · log(HSA/δ)

n · dµh(sh, ah)
:= C′

√
H2 · log(HSA/δ)

n · dµh(sh, ah)

where the first inequality uses (15) and the second one uses P (E) ≥ 1− δ (10).

Combining Step 1 and Step 2 we finish the proof.

Now we can finish proving the Theorem 3.1.

Proof of Theorem 3.1. Indeed, applying Lemma C.2 to (12) and average over initial distribution s1,
we obtain with probability 1− δ

vπ
?

− vπ̂ ≤
H∑
h=1

Eπ? [ξh(sh, ah)]−
H∑
h=1

Eπ̂ [ξh(sh, ah)]

≤
H∑
h=1

Eπ? [ξh(sh, ah)]−
H∑
h=1

Eπ̂ [0]

≤C′H
H∑
h=1

Eπ?
[√

log(HSA/δ)

n · dµh(sh, ah)

]
− 0

=C′H

H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
log(HSA/δ)

dµh(sh, ah)
·
√

1

n

Note the second inequality is valid since by Line 5 of Algorithm 2 the Q-value at locations with
nsh,ah = 0 are heavily penalized with O(H), hence the greedy π̂ will search at locations where
nsh,ah > 0 (which implies dµh(sh, ah) > 0). The third inequality is valid since dπ

?

h (sh, ah) > 0 only
if dµh(sh, ah) > 0. Therefore the expectation over π?, instead of summing over all (sh, ah) ∈ S ×A,
is a sum over (sh, ah) s.t. dµh(sh, ah) > 0. This completes the proof.

D Discussion: the lower bound for single policy concentrability

To be rigorous, here we provide some detailed explanations of Rashidinejad et al. [2021]. In particular,

we can mirror their construction to obtain the Ω(
√

H3SC?

n ) lower bound in the non-stationary finite
horizon episodic setting. Indeed, their construction relies on the family with MDPs consisting
of S/4 replicas of sub-MDPs with states s0, s1, s⊕, s	. There is an additional state s−1 and in
total there are S + 1 states. Here s0, s⊕, s	 all have only 1 action a1 and s1 has two actions
a1, a2 with transition P

(
sj⊕ | s

j
1, a1

)
= P

(
sj	 | s

j
1, a1

)
= 1/2, P

(
sj⊕ | s

j
1, a2

)
= 1/2 + vjδ and

P
(
sj	 | s

j
1, a2

)
= 1/2− vjδ. vj ∈ {−1,+1} is the design choice w.r.t j-th replica and δ ∈ [0, 1/4].
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s−1 transition to itself with probability 1. The rewards for all of the states are 0 except sj⊕ has reward
1 (See their Figure 5). In such a case, if vj = 1, the optimal action at sj1 is a2, otherwise, the optimal
one is a1. We can roughly create

d?
(
sj0

)
= O(

1

S
), d?

(
sj1

)
= O(

1

HS
)

d?
(
sj⊕

)
=

(
1
21 {vj = −1}+

(
1
2 + δ

)
1 {vj = 1}

)
·H

2
· d?

(
sj1

)
,

d?
(
sj	

)
=

(
1
21 {vj = 1}+

(
1
2 − δ

)
1 {vj = −1}

)
·H

2
· d?

(
sj1

)
, d? (s−1) = 0

and the behavior policy as

µ0

(
sj0

)
=
d?
(
sj0

)
C?

, µ0

(
sj1, a2

)
=
d?
(
sj1

)
C?

, µ0

(
sj1, a1

)
= d?

(
sj1

)
·
(

1− 1

C?

)
µ0

(
sj⊕

)
= O(

H

C?
· d?

(
sj1

)
), µ0

(
sj	

)
= O(

H

C?
) · d?

(
sj1

)
µ0 (s−1) = 1−

∑
j

(
µ0

(
sj0

)
+ µ0

(
sj1

)
+ µ0

(
sj⊕

)
+ µ0

(
sj	

))
By Fano’s inequality, we can obtain: as long as O( nδ2

HSC? ) ≤ 1, then it holds

inf π̂ supP E
[
|v? − vπ̂|

]
& Hδ. One can set δ = O(

√
HSC?

n ) to obtain the result.

E Proof of Assumption-Free Offline Reinforcement Learning (Theorem 5.1)

Due to the assumption-free setting, the behavior policy µ is on longer guaranteed to trace any optimal
policy π?. Therefore, in order to characterize the gap for the state-action agnostic space, we design
the pessimistic augmented MDP M† to reformulate the system so that the stat-actions that are
agnostic to the behavior policy are subsumed into new state s†. Indeed, it comes from its optimistic
counterpart which has a long history (e.g. RMAX exploration Brafman and Tennenholtz [2002],
Jung and Stone [2010]). Recently, Liu et al. [2019], Kidambi et al. [2020], Buckman et al. [2021]
leverage this idea for continuous offline policy optimization, but their use either does not follow the
assumption-free regime (see Assumption 1 of Liu et al. [2019]) or is more empirically orientated
[Buckman et al., 2021, Kidambi et al., 2020]. We find this helps to characterize the statistical gap
when no assumption is made in offline RL, which provides a formal understanding of the hardness in
distributional mismatches.

E.1 Pessimistic augmented MDP

Let us define M† use one extra state s†h for all h ∈ {2, . . . ,H} with augmented state space S† = S ∪
{s†h} and the transition and reward is defined as follows: (recall Ch := {(sh, ah) : dµh(sh, ah) > 0})

P †h(· | sh, ah) =

{
Ph(· | sh, ah) sh, ah ∈ Ch,
δ
s
†
h+1

sh = s†h or sh, ah /∈ Ch, r†(sh, ah) =

{
r(sh, ah) sh, ah ∈ Ch
0 sh = s†h or sh, ah /∈ Ch

and we further define for any π

V †πh (s) = E†π

[
H∑
t=h

r†t

∣∣∣∣∣sh = s

]
, v†π = E†π

[
H∑
t=1

r†t

]
∀h ∈ [H]. (16)

Furthermore, denote Kh := {(sh, ah) : nsh,ah > 0}, we also create a fictitious version M̃† with:

P̃ †h(· | sh, ah) =

{
Ph(· | sh, ah) sh, ah ∈ Kh,
δ
s
†
h+1

sh = s†h or sh, ah /∈ Kh, r̃†(sh, ah) =

{
r(sh, ah) sh, ah ∈ Kh
0 sh = s†h or sh, ah /∈ Ch

(17)
and the value functions under M̃† is similarly defined. Note in Section 5, we call (17) M†. However,
it does not really matter since M̃† = M† with high probability, as stated in the following.
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Lemma E.1. For any 0 < δ < 1, there exists absolute constant c s.t. when n ≥ c · 1/d̄m ·
log(HSA/δ),

P(M̃† = M†) ≥ 1− δ.

Proof. Note {M̃† 6= M†} ⊂ {∃ dµh(sh, ah) > 0 and nsh,ah = 0}. Similar to Lemma C.1, this
happens with probability less than δ under the condition of n.

We have the following theorem to characterize the difference between the augmented MDP M† and
the original MDP M .

Theorem E.2. Denote M† = {S,A, H, r†, P †, d1} and for any π denote V †πh be the value under
M†. Then

vπ −
H+1∑
h=2

h−1∑
t=1

∑
(st,at)∈S×A\Ch

dπt (st, at) ≤ vπ −
H+1∑
h=2

d†πh (s†h) ≤ v†π ≤ vπ (18)

Before proving Theorem E.2, we first prove the following helper Lemmas E.3, E.4.

Lemma E.3. ∀h ∈ [H], (sh, ah) ∈ S ×A, dπh(sh, ah) ≥ d†πh (sh, ah).

Proof of Lemma E.3. There are two cases for (sh, ah) ∈ S ×A: either (sh, ah) ∈ Ch or (sh, ah) /∈
Ch.

Step1: by the definition of P †h , it directly holds: for all sh+1 ∈ S and (sh, ah) ∈ S × A,
P †h(sh+1|sh, ah) ≤ Ph(sh+1|sh, ah).

Step2: we prove the argument by induction. It is clear when h = 1 dπ1 (s1, a1) = d†π1 (s1, a1) (since
there is no s†1). Then for any (sh, ah) ∈ S ×A,

dπh+1(sh+1, ah+1) =
∑

sh,ah∈S×A
Pπ(sh+1, ah+1|sh, ah)dπh(sh, ah)

=
∑

sh,ah∈S×A
π(ah+1|sh+1)Pπh (sh+1|sh, ah)dπh(sh, ah)

≥
∑

sh,ah∈S×A
π(ah+1|sh+1)P †πh (sh+1|sh, ah)dπh(sh, ah)

≥
∑

sh,ah∈S×A
π(ah+1|sh+1)P †πh (sh+1|sh, ah)d†πh (sh, ah)

=
∑

sh,ah∈S×A,sh=s†h

π(ah+1|sh+1)P †πh (sh+1|sh, ah)d†πh (sh, ah) = d†πh+1(sh+1, ah+1).

where the first inequality uses Step1, the second inequality uses induction assumption and the second
to last equal sign uses P †πh (sh+1|s†h, ah) = 0 for sh+1 ∈ S . By induction we conclude the proof for
this lemma.

Next we prove the second lemma that measures d†πh (s†h).

Lemma E.4. For all h ∈ [2, H + 1], d†πh (s†h) =
∑h−1
t=1

∑
(st,at)∈S×A\Ct d

†π
t (st, at).
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Proof of Lemma E.4. Indeed,

d†πh+1(s†h+1) =
∑
ah+1

d†πh+1(s†h+1, ah+1)

=
∑
ah+1

∑
(sh,ah)/∈Ch,sh=s†h

P †(s†h+1, ah+1 | sh, ah)d†πh (sh, ah)

=
∑
ah+1

 ∑
(sh,ah)/∈Ch

P †(s†h+1, ah+1 | sh, ah)d†πh (sh, ah) +
∑
ah

P †(s†h+1, ah+1 | s†h, ah)d†πh (s†h, ah)


=
∑
ah+1

 ∑
(sh,ah)/∈Ch

P †(s†h+1, ah+1 | sh, ah)d†πh (sh, ah) +
∑
ah

π(ah+1 | s†h+1)d†πh (s†h, ah)


=
∑
ah+1

 ∑
(sh,ah)/∈Ch

P †(s†h+1, ah+1 | sh, ah)d†πh (sh, ah)

+ d†πh (s†h)

=
∑
ah+1

 ∑
(sh,ah)/∈Ch

π(ah+1 | s†h+1)d†πh (sh, ah)

+ d†πh (s†h) =
∑

(sh,ah)/∈Ch

d†πh (sh, ah) + d†πh (s†h).

Apply the above recursively we obtain the result.

Now we are ready to prove Theorem E.2.

Proof of Theorem E.2. Step1: we first show v†π ≤ vπ .

Consider the stopping time T = inf{t : s.t. (st, at) /∈ Ch} ∧H . Then 1 ≤ T ≤ H .

vπ =Eπ

[
H∑
h=1

r (sh, ah)

]
= Eπ

[
T−1∑
h=1

r (sh, ah) +

H∑
h=T

r (sh, ah)

]

=E†π

[
T−1∑
h=1

r (sh, ah)

]
+ Eπ

[
H∑
h=T

r (sh, ah)

]
≥ E†π

[
T−1∑
h=1

r (sh, ah)

]
+ Eπ

[
H∑
h=T

0

]

=E†π

[
T−1∑
h=1

r (sh, ah)

]
+ E†π

[
H∑
h=T

0

]
= E†π

[
T−1∑
h=1

r (sh, ah)

]
+ E†π

[
H∑
h=T

r(sh, ah)

]
= v†π,

where the third and the fourth equal signs use the distribution of T is identical under either M or
M† by construction. The fifth equal sign uses the definition of pessimistic reward.

Step2: Next we show

vπ ≤ v†π +

H+1∑
h=2

d†πh (s†h) ≤ v†π +

H+1∑
h=2

h−1∑
t=1

∑
(st,at)∈S×A\Ct

dπt (st, at). (19)
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Indeed,

vπ =

H∑
h=1

∑
(sh,ah)∈S×A

dπh(sh, ah)r(sh, ah)

=

H∑
h=1

∑
(sh,ah)∈S×A

(
dπh(sh, ah)− d†πh (sh, ah)

)
r(sh, ah) +

H∑
h=1

∑
(sh,ah)∈S×A

d†πh (sh, ah)r(sh, ah)

≤
H∑
h=1

∑
(sh,ah)∈S×A

(
dπh(sh, ah)− d†πh (sh, ah)

)
· 1 +

H∑
h=1

∑
(sh,ah)∈S×A

d†πh (sh, ah)r(sh, ah)

=

H∑
h=1

1−
∑

(sh,ah)∈S×A

d†πh (sh, ah)

+

H∑
h=1

∑
(sh,ah)∈S×A

d†πh (sh, ah)r(sh, ah)

=

H∑
h=2

d†πh (s†h) +

H∑
h=1

∑
(sh,ah)∈S×A

d†πh (sh, ah)r(sh, ah)

=

H∑
h=2

d†πh (s†h) +

H∑
h=1

∑
(sh,ah)∈S×A

d†πh (sh, ah)
(
r(sh, ah)− r†(sh, ah)

)
+

H∑
h=1

∑
(sh,ah)∈S×A

d†πh (sh, ah)r†(sh, ah)

=

H∑
h=2

d†πh (s†h) +

H∑
h=1

∑
(sh,ah)/∈Ch

d†πh (sh, ah)
(
r(sh, ah)− r†(sh, ah)

)
+

H∑
h=1

∑
(sh,ah)∈S×A

d†πh (sh, ah)r†(sh, ah)

=

H∑
h=2

d†πh (s†h) +

H∑
h=1

∑
(sh,ah)/∈Ch

d†πh (sh, ah)
(
r(sh, ah)− r†(sh, ah)

)
+ v†π

≤
H∑
h=2

d†πh (s†h) +

H∑
h=1

∑
(sh,ah)/∈Ch

d†πh (sh, ah) · 1 + v†π =

H+1∑
h=2

d†πh (s†h) + v†π

The first inequality is due to Lemma E.3. The fourth equal sign uses d†1(s†1) = 0. The sixth
equal sign is due to r(sh, ah) = r†(sh, ah) when (sh, ah) ∈ Ch. The seventh equal sign is due to
r†(s†h, ah) = 0. The last equal sign uses Lemma E.4. The right inequality in (19) uses Lemma E.3.
Step 1 and Step 2 conclude the proof of Theorem E.2.

E.1.1 Strong adaptive assumption-free bound

Now we are ready to launch the assumption-free AVPI (Algorithm 1) with the following model-based
construction M̂† (recall Kh := {(sh, ah) : nsh,ah > 0}):

P̂ †h(· | sh, ah) =

{
P̂h(· | sh, ah) sh, ah ∈ Kh,
δ
s
†
h+1

sh = s†h or sh, ah /∈ Kh, r̂†(sh, ah) =

{
r̂(sh, ah) sh, ah ∈ S ×A
0 sh = s†h or sh, ah /∈ Ch

where P̂ , r̂ is defined as

P̂h(s′|sh, ah) =

∑n
τ=1 1[(sτh+1, a

τ
h, s

τ
h) = (s′, sh, ah)]

nsh,ah
, r̂h(sh, ah) =

∑n
τ=1 1[(aτh, s

τ
h) = (sh, ah)] · rτh
nsh,ah

,

(20)

The benefit of using M̃† (17) is that in M̃† there is no agnostic location even no assumption is made.
The M̂† creates a empirical estimate for M̃†. In this case, the pessimistic bonus is designed as

Γh(sh, ah) = 2

√√√√VarP̂ †sh,ah
(r̂†h + V̂h+1) · ι
nsh,ah

+
14H · ι
3nsh,ah

if nsh,ah ∈ Kh and 0 otherwise (here V̂h+1 is computed backwardly from the next time step in
Algorithm 1). Now let us start the proof. First of all, let us assume M̃† = M† for the moment so we
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can get rid of the tilde expression for notation convenience. We will formally recover the result for
M† at the end by Lemma E.1.

In particular, while we always use π? to denote the optimal policy in the Original MDP, we augment
it in the M†(M̃†) arbitrarily and abuse the notation as:

π?(·|sh) =

{
π?(·|sh) sh ∈ S
arbitrary distribution sh = s†h

(21)

and always use π̂ to denote the output of Algorithm 1. We rely on the following lemma that
characterize the suboptimality gap.

Lemma E.5. Recall π? in (21) and define (T †h V )(·, ·) := r†h(·, ·) + (P †hV )(·, ·) for any V ∈ RS+1.
Note π̂, Qh, V̂h are defined in Algorithm 1 and denote ξ†h(s, a) = (T †h V̂h+1)(s, a)−Qh(s, a).

V †π
?

1 (s)− V †π̂1 (s) ≤
H∑
h=1

E†π?
[
ξ†h(sh, ah) | s1 = s

]
−

H∑
h=1

E†π̂
[
ξ†h(sh, ah) | s1 = s

]
. (22)

where V †π1 is defined in (16). Furthermore, (22) holds for all V †π
?

h (s)− V †π̂h (s).

Proof of Lemma E.5. Apply Lemma J.10 with Th = T †h , π = π?, Q̂h = Qh and π̂ = π̂ in Algo-
rithm 1, we can obtain the result since by the definition of π̂ in Algorithm 1 〈Qh (sh, ·) , πh (·|sh)−
π̂h (·|sh)〉 ≤ 0 almost surely for any π. The proof for V †π

?

h (s)− V †π̂h (s) is identical.

Next we prove the adaptive asymmetric bound for ξ†h, which is the key for recover the structure of
intrinsic bound.
Lemma E.6. Denote ξ†h(s, a) = (T †h V̂h+1)(s, a)−Qh(s, a), where V̂h+1 and Qh are the quantities
in Algorithm 1 and T †h (V ) := r†h + P †h · V for any V ∈ RS+1. Then with probability 1− δ, then for
any h, sh, ah such that nsh,ah > 0, we have

0 ≤ξ†h(sh, ah) = (T †h V̂h+1)(sh, ah)−Qh(sh, ah)

≤4

√√√√VarP̂ †sh,ah
(r̂†h + V̂h+1) · log(HSA/δ)

nsh,ah
+

28H · log(HSA/δ)

3nsh,ah

Proof of Lemma E.6. Recall we are under M† (M̂†). For all (sh, ah) ∈ Kh, by Empirical Bernstein
inequality (Lemma J.4) and a union bound9, w.p. 1− δ, since 0 ≤ r†h ≤ 1,

|r̂†h(sh, ah)−r†h(sh, ah)| ≤

√
2VarP̂ †(r̂

†
h) log(HSA/δ)

nsh,ah
+

7 log(HSA/δ)

3nsh,ah
∀(sh, ah) ∈ Kh, h ∈ [H].

(23)
Next, recall π̂h+1 in Algorithm 1 is computed backwardly therefore only depends on sample tuple
from time h + 1 to H . Aa a result V̂h+1 = 〈Qh+1, π̂h+1〉 also only depends on the sample tuple
from time h + 1 to H . On the other side, by our construction P̂ †h only depends on the transition
pairs from h to h + 1. Therefore V̂h+1 and P̂ †h are Conditionally independent (This trick is also
use in Yin et al. [2021a]) so by Empirical Bernstein inequality again10 and a union bound (note
||V̂h||∞ ≤ ||Qh|| ≤ H by APVI) for all (sh, ah) ∈ Kh, w.p. 1− δ,

∣∣∣((P̂ †h − P
†
h)V̂h+1

)
(sh, ah)

∣∣∣ ≤
√√√√2VarP̂ †sh,ah

(V̂h+1) · log(HSA/δ)

nsh,ah
+

7H · log(HSA/δ)

3nsh,ah
. (24)

9Here note even though |S†| = S + 1, for state s†h we always have n
s
†
h
,ah

= 0 for any ah. Therefore apply

the union bound only provides HSA in th log term instead of H(S + 1)A.
10It is worth mentioning if sub-policy π̂h+1:t depends on the data from all time steps 1, 2, . . . , H , then V̂h+1

and P̂h are no longer conditionally independent and Hoeffding’s inequality cannot be applied.
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Now we are ready to prove the Lemma.

Step1: we prove ξh(sh, ah) ≥ 0 for all (sh, ah) ∈ Kh, h ∈ [H] with probability 1− δ.

Indeed, if Q̂ph(sh, ah) < 0, then Qh(sh, ah) = 0. In this case, ξh(sh, ah) = (ThV̂h+1)(sh, ah) ≥ 0

(note V̂h ≥ 0 by the definition). If Q̂ph(sh, ah) ≥ 0, then by definition Qh(sh, ah) =

min{Q̂ph(sh, ah), H − h+ 1}+ ≤ Q̂ph(sh, ah) and this implies

ξ†h(sh, ah) ≥ (T †h V̂h+1)(sh, ah)− Q̂ph(sh, ah)

=(r†h − r̂
†
h)(sh, ah) + (P †h − P̂

†
h)V̂h+1(sh, ah) + Γh(sh, ah)

≥− 2

√√√√VarP̂ †sh,ah
(r̂†h + V̂h+1) · log(HSA/δ)

nsh,ah
− 14H · log(HSA/δ)

3nsh,ah
+ Γh(sh, ah) = 0

where the inequality uses (23), (24) and
√
a+
√
b ≤

√
2(a+ b) and rh and sh+1 are conditionally

independent given sh, ah. The last equal sign uses Line 6 of Algorithm 1.

Step2: we prove ξ†h(sh, ah) ≤ 4

√
Var

P̂
†
sh,ah

(r̂†h+V̂h+1)·log(HSA/δ)

nsh,ah
+ 28H·log(HSA/δ)

3nsh,ah
for all h ∈

[H], (sh, ah) ∈ Kh with probability 1− δ.

First, since by construction V̂h ≤ H − h+ 1 for all h ∈ [H], this implies

Q̂ph = Q̂h − Γh ≤ Q̂h = r̂†h + (P̂ †hV̂h+1) ≤ 1 + (H − h) = H − h+ 1

which uses r̂†h ≤ 1 almost surely and P̂ †h is row-stochastic. Due to this, we have the equivalent
definition

Qh := min{Q̂ph, H − h+ 1}+ = max{Q̂ph, 0} ≥ Q̂
p
h.

Therefore

ξ†h(sh, ah) = (T †h V̂h+1)(sh, ah)−Qh(sh, ah) ≤ (T †h V̂h+1)(sh, ah)− Q̂ph(sh, ah)

=(T †h V̂h+1)(sh, ah)− Q̂h(sh, ah) + Γh(sh, ah)

=(r†h − r̂
†
h)(sh, ah) + (P †h − P̂

†
h)V̂h+1(sh, ah) + Γh(sh, ah)

≤2

√√√√VarP̂ †sh,ah
(r̂†h + V̂h+1) · log(HSA/δ)

nsh,ah
+

14H · log(HSA/δ)

3nsh,ah
+ Γh(sh, ah)

=4

√√√√VarP̂ †sh,ah
(r̂†h + V̂h+1) · log(HSA/δ)

nsh,ah
+

28H · log(HSA/δ)

3nsh,ah
.

Combining Step 1 and Step 2 we finish the proof.

E.1.2 Proof of Theorem 5.1

Now we are ready to prove the Theorem 5.1.
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First of all, by Lemma E.5 and Lemma E.6, for all t ∈ [H], s ∈ S (excluding s†) w.p. 1− δ

V †π
?

t (s)− V †π̂t (s) ≤
H∑
h=t

E†π?
[
ξ†h(sh, ah) | st = s

]
−

H∑
h=t

E†π̂
[
ξ†h(sh, ah) | st = s

]
≤

H∑
h=t

E†π?
[
ξ†h(sh, ah) | st = s

]
− 0

≤
H∑
h=t

E†π?

4

√√√√VarP̂ †sh,ah
(r̂†h + V̂h+1) · ι
nsh,ah

+
28H · ι
3nsh,ah

| st = s


≤

H∑
h=t

E†π?

4

√√√√2VarP̂ †sh,ah
(r̂†h + V̂h+1) · ι

ndµh(sh, ah)
+

56H · ι
3ndµh(sh, ah)

| st = s



(25)

here recall the expectation is only taken over sh, ah. Note by the Pessimistic MDP M̃† (M̂†), for all
(sh, ah) /∈ Kh and s†h, the pessimistic reward leads to Q†π(sh, ah), V †π(s†h) = 0 for any π, therefore
Lemma E.6 can be applied. Moreover, the last inequality is by Lemma C.1.
Lemma E.7 (self-bounding). We prove, for all t ∈ [H], w.p. 1− δ, for all s ∈ S (excluding s†),∣∣∣V †π?t (s)− V̂t(s)

∣∣∣ ≤ 8
√

2ιH2√
n · d̄m

+
112H2 · ι
3n · d̄m

.

where d̄m is defined in Theorem 5.1.
Remark E.8. The self-bounding lemma essentially provides a crude high probability bound for
|V †π

?

t − V̂t| (or |V †π
?

t − V †π̂t |) with suboptimal order Õ( H2√
nd̄m

) and we can use it to further bound

the higher order term in the main result.

Proof of Lemma E.7. Indeed, by (25), since VarP̂ †sh,ah
(r̂†h + V̂h+1) ≤ H2, we have w.p. 1− δ,∣∣∣V †π?t (s)− V †π̂t (s)

∣∣∣ ≤ 4
√

2ιH2√
n · d̄m

+
56H2 · ι
3n · d̄m

(26)

for all t ∈ [H]. Next, when apply Lemma J.10 to Lemma E.5, by (46) and (47) we essentially obtain

V †π
?

t (s)− V̂t(s) =

H∑
h=t

E†π?
[
ξ†h(sh, ah) | st = s

]
+

H∑
h=t

E†π?
[
〈Q̂h (sh, ·) , π?h (·|sh)− π̂h (·|sh)〉 | st = s

]
≤4
√

2ιH2√
n · d̄m

+
56H2 · ι
3n · d̄m

+ 0

and

V̂t(s)− V †π̂t (s) = −
H∑
h=t

E†π̂
[
ξ†h(sh, ah) | st = s

]
≥ 0.

Combing those two with (26) we obtain the result.

Lemma E.9. For all (ah, ah) ∈ Kh and any ||V ||∞ ≤ H , w.p. 1− δ,√
VarP̂ †sh,ah

(V ) ≤ 6H

√
ι

n · dµh(sh, ah)
+
√

VarP †sh,ah
(V ).

Proof. This is a direct application of Lemma J.8 with a union bound. Specifically, we apply n−1
n ≤ 1.
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Now by Lemma E.7 and Lemma E.9, for all (sh, ah) ∈ Kh, w.p. 1− δ,√
VarP̂ †sh,ah

(r̂†h + V̂h+1) ≤
√

VarP †sh,ah
(r̂†h + V̂h+1) + 6H

√
ι

n · dµh(sh, ah)

≤
√

VarP †sh,ah
(r†h + V †π

?

h+1) +
∥∥∥(r̂†h + V̂h+1)− (r†h + V †π

?

h+1)
∥∥∥
∞,s∈S

+ 6H

√
ι

n · dµh(sh, ah)

≤
√

VarP †sh,ah
(r†h + V †π

?

h+1) +
10
√

2ιH2√
n · d̄m

+
112H2 · ι
3n · d̄m

+ 6H

√
ι

n · dµh(sh, ah)

Therefore plug this into (25), and average over s1, we finally get, w.p. 1− δ,

v†π
?

− v†π̂ ≤
H∑
h=1

E†π?

4

√√√√2VarP̂ †sh,ah
(r̂†h + V̂h+1) · ι

ndµh(sh, ah)
+

56H · ι
3ndµh(sh, ah)

| s1 = s


≤C ′

H∑
h=1

E†π?


√√√√VarP †sh,ah

(r†h + V †π
?

h+1) · ι
ndµh(sh, ah)

+ Õ(
H3

n · d̄m
)

=C ′
H∑
h=1

∑
(sh,ah)∈Kh

d†π
?

(sh, ah)

√√√√VarP †sh,ah
(r†h + V †π

?

h+1) · ι
ndµh(sh, ah)

+ Õ(
H3

n · d̄m
)

here Õ absorbs log factor and even higher orders.

Note throughout the section we assume M̃† = M†. Now be Lemma E.1, we can replace the Kh in
above by Ch so the result holds in high probability.

Lastly, we end up with w.p. 1− δ

0 ≤vπ
?

− vπ̂ ≤
H+1∑
h=2

d†π
?

h (s†h) + v†π
?

− vπ̂ ≤
H+1∑
h=2

d†π
?

h (s†h) + v†π
?

− v†π̂

≤
H+1∑
h=2

d†π
?

h (s†h) + C ′
H∑
h=1

∑
(sh,ah)∈Ch

d†π
?

h (sh, ah)

√√√√VarP †sh,ah
(r†h + V †π

?

h+1) · ι
ndµh(sh, ah)

+ Õ(
H3

n · d̄m
)

(27)
where the first inequality uses Lemma E.2 with π = π? and the second one uses Lemma E.2
with π = π̂. This concludes the proof of Theorem 5.1. The rest of the results are coming from
Lemma E.3,E.4.

Remark E.10. We mention the summation of the main term in (27) does not include s†h since
V †πh (s†h) = 0 for any π due to the pessimistic MDP design. In particular, this state contributes
nothing to neither v†π

?

nor v†π̂ .

E.2 Interpretation of Theorem 5.1

The constant (in n) gap, which is incurred by the behavior agnostic space
⋃H
h=1{(sh, ah) :

dµh(sh, ah) = 0}, is bounded by

H+1∑
h=2

d†π
?

h (s†h) =

H+1∑
h=2

h−1∑
t=1

∑
(st,at)∈S×A\Ct

d†π
?

t (st, at) ≤
H+1∑
h=2

h−1∑
t=1

∑
(st,at)∈S×A\Ct

dπ
?

t (st, at),

Note for quantity d†π
?

t (st, at) (where (st, at) ∈ S ×A\Ct), it is equivalently defined as

d†π
?

t (st, at) = PM† [St, At = st, at|(St−1, At−1) ∈ Ct−1, . . . , (S1, A1) ∈ C1]
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is probability for the first time the trajectory exits the reachable regions and enters (st, at) /∈ Ct.
Therefore, d†π

?

t (st, at) is much smaller than dπ
?

t (st, at) for st, at /∈ Ch (since dπ
?

t (st, at) includes the
probability that trajectory st, at). Such a feature is reflected by the quantity that express the gap using
the mass of the absorbing state:

∑H+1
h=2 d

†π?
h (s†h)(=

∑H+1
h=2

∑h−1
t=1

∑
(st,at)∈S×A\Ct d

†π?
t (st, at)).

Especially, this gap can vary between 0 and H , depending on the exploratory ability of µ. Also,
different from AVPI, the assumption-free AVPI set 0 penalty at locations where nst,at = 0. The
interpretation is: the locations with nst,at = 0 in M† are the fully aware locations (with deterministic
transition to s† and reward 0 by design) therefore we are certain about the behaviors in those places.

F Proof of Theorem 4.1

Indeed, Theorem 4.1 can be implied by Theorem 5.1 as a special case.

Proof of Theorem 4.1. Under Assumption 2.3, dπ
?

h (sh, ah) = 0 if dµh(sh, ah) = 0. In this case,

0 ≤
H+1∑
h=2

d†π
?

h (s†h) =

H+1∑
h=2

h−1∑
t=1

∑
(st,at)∈S×A\Ct

d†π
?

t (st, at) ≤
H+1∑
h=2

h−1∑
t=1

∑
(st,at)∈S×A\Ct

dπ
?

t (st, at)

=

H+1∑
h=2

h−1∑
t=1

∑
(st,at):d

µ
t (st,at)=0

dπ
?

t (st, at) = 0

due to Lemma E.3,E.4. Therefore, the gap
∑H
h=1 d

†π?
h (s†h) vanishes when Assumption 2.3 is true.

Also, in this case M† can be replaced by a M ′, where M ′ is the sub-MDP induced by µ. i.e.,
M ′ =

⋃H
h=1 Sh × Ah with Sh × Ah = Ch.11 The transitions and the rewards remain the same in

M†.

Since there is certain π? that is fully covered by µ, for such π? we have V π
?

h |M = V π
?

h |M ′ for all
h ∈ [H]. Also, in M ′, µ can explore all the locations, therefore the probability transition to s†h is 0.
Hence, all the d†, P †, r†, V † in Theorem 4.1 are replaced by its original version.

Remark F.1. Note even though the proof can essentially leverage the reduction of the proving
procedure of Theorem 5.1, for clear presentation of the algorithm design we still include the locations
with no observation and set the severe penalty Õ(H). This is different from its assumption-free
version with 0 penalty (also see Section E.2 for related discussions).

G Proof of Theorem 4.3: Instance-dependent Lower Bound

Global minimax lower bound holds uniformly over large classes of models but lacks the character-
ization of individual instances. The more appropriate characterization of instance dependence is
the (non-asymptotic) local minimax bound, which is originated from the local minimax framework
Cai and Low [2004] and recently used in Khamaru et al. [2021a,b]. The proof essentially relies
on the reduction to the testing between two value instances with respect to the Hellinger distance.
Specifically, the choice of the alternative instance should characterize the MDP problem we are
considering and we fix the MDP problem (together with the behavior policy µ) as: P := (µ,M)
where M = (S,A, P, r,H, d1). Recall the local risk is defined as:

Rn(P) := sup
P′∈G

inf
π̂

max
Q∈{P,P′}

√
n · EQ

[
v?(Q)− vπ̂

]
and G := {(µ,M) : ∃ π? s.t. dµh(s, a) > 0 if dπ

?

h (s, a) > 0}.
For the ease of exposition, we use the notation P = (µ, P1:H , r) instead of (µ,M). We start by
considering the following two classes of alternatives instances:
S1 = {P ′ = (µ′, P ′1:H , r

′) | µ′ = µ, r′ = r,P ′ ∈ G}, S2 = {P ′ = (µ′, P ′1:H , r
′) | µ′ = µ, P ′1:H = P1:H ,P ′ ∈ G}.

(28)
11In this sub-MDP, each state might have different number of actions!
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and define the restricted local risks w.r.t. Si:

Rn(P,Si) := sup
P′∈Si

inf
π̂

max
Q∈{P,P′}

√
n · EQ

[
v?(Q)− vπ̂

]
, i = 1, 2. (29)

Then it suffices to prove the following lemma:
Lemma G.1. There exists an universal constant C > 0 such that:

Rn(P,S1) ≥ C ·
H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
VarPsh,ah (V ?h+1)

ζ · dµh(sh, ah)
,

Rn(P,S2) ≥ C ·
H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
Varsh,ah(rh)

ζ · dµh(sh, ah)
.

Given Lemma G.1, we can directly prove Theorem 4.3 as follows.

Proof of Theorem 4.3. Given Lemma G.1, we directly have

Rn(P) ≥ max{Rn(P,S1),Rn(P,S2)}

≥ 1

2
(Rn(P,S1) + Rn(P,S2))

≥ C

2
·
H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√VarPsh,ah (V ?h+1)

ζ · dµh(sh, ah)
+

√
Varsh,ah(rh)

ζ · dµh(sh, ah)


≥ C

2
·
H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
VarPsh,ah (rh + V ?h+1)

ζ · dµh(sh, ah)

where the last inequality uses
√
a +

√
b ≥

√
a+ b for all a, b ≥ 0 and VarPsh,ah (V ?h+1) +

Varsh,ah(rh) = VarPsh,ah (rh + V ?h+1) since V ?h+1 and rh are conditionally independent given
sh, ah.

For the rest of the section, we prove Lemma G.1.

G.1 Reduction to two-point optimal-value estimations

We first need the following lemma, which converts local learning risk to the following Mn via the
reduction from estimation to testing.
Lemma G.2. Define

Mn(P,S1) : = sup
P′∈S1

{√
n · |v?(P)− v?(P ′)|

∣∣dHel(Pn, P ′n)2 ≤ 0.4
}

Mn(P,S2) : = sup
P′∈S2

{√
n · |v?(P)− v?(P ′)|

∣∣dHel(pnr , p′nr ) ≤ 0.4
}
.

then we have
Rn(P,Si) ≥

1

50
Mn(P,Si), i = 1, 2.

Proof of Lemma G.2. Indeed, denote Pn to be a product measure induced by n trajectories from P ,
then for any output π̂ by the averaged risk we have:

max
Q∈{P,P′}

EQ
[
|v?(Q)− vπ̂|

]
≥ 1

2

(
EPn

[
|v?(P)− vπ̂|

]
+ EP′n

[
|v?(P ′)− vπ̂|

])
≥ 1

2
δ
[
Pn
(
|v?(P)− vπ̂| ≥ δ

)
+ P ′n

(
|v?(P ′)− vπ̂| ≥ δ

)]
,
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where the last inequality is by Markov inequality. Now choose δ = 1
2 · |v

?(P)− v?(P ′)|, we have
|v?(P)− vπ̂| ≤ δ implies |v?(P ′)− vπ̂| ≥ δ, therefore above

=
1

2
δ ·
[
1− Pn

(
|v?(P)− vπ̂| < δ

)
+ P ′n

(
|v?(P ′)− vπ̂| ≥ δ

)]
≥ 1

2
δ ·
[
1− Pn

(
|v?(P ′)− vπ̂| ≥ δ

)
+ P ′n

(
|v?(P ′)− vπ̂| ≥ δ

)]
≥ 1

2
δ · [1− ‖Pn − P ′n‖TV] ≥ 1

2
δ ·
[
1−
√

2 · dHel(Pn,P ′n)
] (30)

Then plug in the condition for dHel(Pn,P ′n) we obtain the result. The proof for the second result is
similar.

G.2 Instance-dependent lower bound

Now we complete the proof by the following lemma. Combing Lemma G.3 and Lemma G.2, we
finish the proof of Lemma G.1.
Lemma G.3. There exists an universal constant C > 0 such that:

Mn(P,S1) ≥ C ·
H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
VarPsh,ah (V ?h+1)

ζ · dµh(sh, ah)
,

Mn(P,S2) ≥ C ·
H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
Varsh,ah(rh)

ζ · dµh(sh, ah)
.

Proof of Lemma G.3. So far we haven’t leveraged the specific structure of instance P = (µ, P1:H , r).
Now we define P ′ as follows (∀h, sh, ah):12

P ′h(sh+1|sh, ah) = Ph(sh+1|sh, ah) +
Ph(sh+1|sh, ah)

(
V ?h+1(sh+1)− EPsh,ah [V ?h+1]

)
8
√
ζ · nsh,ah ·VarPsh,ah (V ?h+1)

(31)

where ζ = H/d̄m and the alternative instance as P ′ = (µ, P ′1:H , r). Denote Q̄? to be the optimal
Q-values under P ′ and Q? the optimal Q-values under P . π̄? is the optimal policy under P ′ and π?
is the optimal policy under P . The proof has two steps.

Step1: we show
2 · dHel(Pn,P ′n)2 ≤ 0.8

Define τ = (s1, a1, s2, a2, . . . , sH , aH) ∼ P (s1, a1, s2, a2, . . . , sH , aH) to be the trajectories, then

dHel(Pn,P ′n)2 = 1−
∫
τn

√
fP ′n(τn) · fPn(τn)dτn = 1−

n∏
i=1

∫
τ

√
fP ′(τ) · fP (τ)dτ

=1−
n∏
i=1

∫
s1

√
dP
′

1 (s1)dP1 (s1)

(∫
a1

√
µP ′(a1|s1)µP (a1|s1)

(∫
s2

√
P ′1(s2|s1, a1)P1(s2|s1, a1) . . . ds2

)
da1

)
ds1

≤1−
n∏
i=1

H∏
h=1

min
s,a

(∫
s′

√
P ′1(s′|s, a)P1(s′|s, a) . . . ds′

)
= 1−

n∏
i=1

H∏
h=1

(1−max
s,a

dHel(Ph,s,a,P ′h,s,a)2)

≤1−
n∏
i=1

H∏
h=1

(
1− 1

2nH

)
= 1−

(
1− 1

2nH

)nH
≤ 1− 1√

e
≤ 0.4,

(32)
12In below, it suffices to only consider the instance where nsh,ah · VarPsh,ah (V ?h+1) > 0 since, 1. when

VarPsh,ah (V ?h+1) = 0, the numerator is also 0 therefore by convention by we can define ratio to be 0; 2. if
nsh,ah = 0, then with high probability dµh(sh, ah) = 0, in this case the transition P (·|sh, ah) does not matter
since dπ

?

h (sh, ah) = 0 by theorem condition.
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where the second inequality uses independence of trajectories and the third equation comes from
the conditional probability rule. The first inequality comes from

∫
a

√
µP ′(a|s)µP (a|s)da =∫

a
µP (a|s)da = 1 and the second inequality comes from item 2 of Lemma J.12 via Definition J.11.

This verifies P ′ satisfies the condition of Mn(P,S1).

Step2: we show for this instance P ′ we have

√
n|v?(P)− v?(P ′)| ≥ C ·

H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
VarPsh,ah (V ?h+1)

ζ · dµh(sh, ah)
.

Define ξ = suph,sh,ah,sh+1,d
µ
h(sh,ah)·VarPsh,ah

(V ?h+1)>0

Ph(sh+1|sh,ah)(V ?h+1(sh+1)−EPsh,ah [V ?h+1])
4
√
ζ·dµh(sh,ah)·VarPsh,ah

(V ?h+1)
,

Q?1 − Q̄?1 =
(
r1 + Pπ

?

1 Q?2

)
−
(
r1 + P ′π̄

?

1 Q̄?2

)
≤
(
r1 + Pπ

?

1 Q?2

)
−
(
r1 + P ′π

?

1 Q̄?2

)
= Pπ

?

1

(
Q?2 − Q̄?2

)
+
(
Pπ

?

1 − P ′π
?

1

)
Q̄?2

≤ Pπ
?

1 Pπ
?

2

(
Q?3 − Q̄?3

)
+ Pπ

?

1

(
Pπ

?

2 − P ′π
?

2

)
Q̄?3 +

(
Pπ

?

1 − P ′π
?

1

)
Q̄?2

≤ . . .

≤
H∑
h=1

Pπ
?

1:h−1

(
Pπ

?

h − P ′π
?

h

)
Q̄?h+1 =

H∑
h=1

Pπ
?

1:h−1

(
Ph − P ′h

)
Q̄?h+1(·, π?(·))

≤ H · sup
h,sh,ah,sh+1

|Ph − P ′h|(sh+1|sh, ah) ·
∥∥Q̄?h+1

∥∥
∞

≤ H2 · sup
h,sh,ah,sh+1

Ph(sh+1|sh, ah)
(
V ?h+1(sh+1)− EPsh,ah [V ?h+1]

)
8
√
ζ · nsh,ah ·VarPsh,ah (V ?h+1)

≤ H2 · sup
h,sh,ah,sh+1

Ph(sh+1|sh, ah)
(
V ?h+1(sh+1)− EPsh,ah [V ?h+1]

)
8
√
ζ · ndµh(sh, ah) ·VarPsh,ah (V ?h+1)

= H2ξ

√
1

n

where the first inequality is by π̄? is the optimal policy for Q̄? and second inequality is by recursively
applying the element-wisely inequality for Q?2 − Q̄?2 and the fact that P1, P2 has non-negative
coordinates. The last inequality is by Lemma J.1. By a similar calculation, we also have

Q̄?1 −Q?1 =
(
r1 + P ′π̄

?

1 Q̄?2

)
−
(
r1 + Pπ

?

1 Q?2

)
≤ . . .

≤
H∑
h=1

P ′π̄
?

1:h−1 (P ′h − Ph)Q?h+1(·, π̄?(·)) ≤ H2ξ

√
1

n

and combing the above two we obtain
∥∥Q̄?1 −Q?1∥∥∞ ≤ H2ξ

√
1
n , and (by similar computation and

the union bound by Lemma J.1) further holds true for all Q̄?h, Q
?
h’s, with high probability

max
h

∥∥Q̄?1 −Q?1∥∥∞ ≤ H2ξ

√
1

n
(33)
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Now by the calculation again,

Q̄?1 −Q?1 = r1 + P ′π̄
?

1 Q̄?2 −
(
r1 + Pπ

?

1 Q?2

)
≥ r1 + P ′π

?

1 Q̄?2 −
(
r1 + Pπ

?

1 Q?2

)
= P ′π

?

1

(
Q̄?2 −Q?2

)
+
(
P ′π

?

1 − Pπ
?

1

)
Q?2

=
(
P ′π

?

1 − Pπ
?

1

) (
Q̄?2 −Q?2

)
+ Pπ

?

1

(
Q̄?2 −Q?2

)
+
(
P ′π

?

1 − Pπ
?

1

)
Q?2

≥
(
P ′π

?

1 − Pπ
?

1

) (
Q̄?2 −Q?2

)
+ Pπ

?

1

(
P ′π

?

2 − Pπ
?

2

) (
Q̄?3 −Q?3

)
+
(
P ′π

?

1 − Pπ
?

1

)
Q?2 + Pπ

?

1

(
P ′π

?

2 − Pπ
?

2

)
Q?3

+ Pπ
?

1 Pπ
?

2

(
Q̄?3 −Q?3

)
≥ . . .

≥
H∑
h=1

Pπ
?

1:h−1

(
P ′π

?

h − Pπ
?

h

) (
Q̄?h+1 −Q?h+1

)
+

H∑
h=1

Pπ
?

1:h−1

(
P ′π

?

h − Pπ
?

h

)
Q?h+1

=

H∑
h=1

Pπ
?

1:h−1

(
P ′π

?

h − Pπ
?

h

) (
Q̄?h+1 −Q?h+1

)
+

H∑
h=1

Pπ
?

1:h−1 (P ′h − Ph)V ?h+1

(34)
where the second inequality recursively applies Q̄?2 −Q?2 ≥ P ′π

?

2

(
Q̄?3 −Q?3

)
+
(
P ′π

?

2 − Pπ?2

)
Q?3

and the above is equivalent to

H∑
h=1

Pπ
?

1:h−1

(
Pπ

?

h − P ′π
?

h

) (
Q̄?h+1 −Q?h+1

)
+ Q̄?1 −Q?1 ≥

H∑
h=1

Pπ
?

1:h−1 (P ′h − Ph)V ?h+1.

Now by Lemma J.12 item 3,
∑H
h=1 P

π?

1:h−1 (P ′h − Ph)V ?h+1 ≥ 0, therefore multiply the initial
distribution on both sides and take the absolute value on the left hand side to get

H∑
h=1

dπ
?

1:h−1

∣∣∣Pπ?h − P ′π?h

∣∣∣ ∣∣Q̄?h+1 −Q?h+1

∣∣+ |v̄? − v?| ≥
H∑
h=1

dπ
?

1:h−1 (P ′h − Ph)V ?h+1 (35)

On one hand,

H∑
h=1

dπ
?

1:h−1

∣∣∣Pπ?h − P ′π?h

∣∣∣ ∣∣Q̄?h+1 −Q?h+1

∣∣ ≤ H · ξ√ 1

n
sup
h

∥∥Q̄?h −Q?h∥∥∞ ≤ H3ξ2 1

n
,

One the other hand,

H∑
h=1

dπ
?

1:h−1 (P ′h − Ph)V ?h+1 =

H∑
h=1

∑
sh,ah

dπ
?

h (sh, ah)
∑
sh+1

(P ′h − Ph)(sh+1|sh, ah)V ?h+1(sh+1)

=

H∑
h=1

∑
sh,ah

dπ
?

h (sh, ah)
∑
sh+1

(P ′h − Ph)(sh+1|sh, ah)
(
V ?h+1(sh+1)− EPsh,ah [V ?h+1]

)

=

H∑
h=1

∑
sh,ah

dπ
?

h (sh, ah)
∑
sh+1

Ph(sh+1|sh, ah)
(
V ?h+1(sh+1)− EPsh,ah [V ?h+1]

)2

8
√
ζ · nsh,ah ·VarPsh,ah (V ?h+1)

=

H∑
h=1

∑
sh,ah

dπ
?

h (sh, ah)

√
VarPsh,ah (V ?h+1)

82ζ · nsh,ah
≥

H∑
h=1

∑
sh,ah

dπ
?

h (sh, ah)

√
VarPsh,ah (V ?h+1)

96ζ · ndµh(sh, ah)
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The last step is by Lemma J.1. Combing those two into (35), we finally obtain

|v̄? − v?| ≥
H∑
h=1

∑
sh,ah

dπ
?

h (sh, ah)

√
VarPsh,ah (V ?h+1)

96ζ · ndµh(sh, ah)
−H3ξ2 1

n

≥ 1

2

H∑
h=1

∑
sh,ah

dπ
?

h (sh, ah)

√
VarPsh,ah (V ?h+1)

96ζ · ndµh(sh, ah)

(36)

as long as n ≥ 4H6ξ4∑H
h=1

∑
sh,ah

dπ
?

h (sh,ah)

√
VarPsh,ah

(V ?
h+1

)

96ζd
µ
h
(sh,ah)

2 .

By (36), we finish the proof of Step2.

The result for the reward can be similarly derived in the following sense. First, define the
perturbed mean reward as:

r′h(sh, ah) = rh(sh, ah) +
σr

2
√
ζ · nsh,ah

, (37)

where σr > 0 is a parameter and the realization of reward is sampled from normal r|sh,ah ∼
N (rh(sh, ah), σ2

r) and r′|sh,ah ∼ N (r′h(sh, ah), σ2
r). In this scenario, similar to (32), we have

dHel(Pn,P ′n)2 = 1−
∫
τn

√
fP ′n(τn) · fPn(τn)dτn

≤1−
n∏
i=1

H∏
h=1

(1−max
s,a

dHel(rh,s,a, r
′
h,s,a)2)

≤1−
n∏
i=1

H∏
h=1

(1−max
s,a

DKL(rh,s,a, r
′
h,s,a)2)

=1−
n∏
i=1

H∏
h=1

(1−max
s,a

|r′h(s, a)− rh(s, a)|2

2σ2
r

) = 1−
n∏
i=1

H∏
h=1

(1− max
sh,ah

1

8ζ · nsh,ah
)

≤1−
n∏
i=1

H∏
h=1

(
1− 1

2nH

)
= 1−

(
1− 1

2nH

)nH
≤ 1− 1√

e
≤ 0.4,

(38)

and similar to (34)

Q̄?1 −Q?1 = r′1 + P π̄
?

1 Q̄?2 −
(
r1 + Pπ

?

1 Q?2

)
≥ r′1 + Pπ

?

1 Q̄?2 −
(
r1 + Pπ

?

1 Q?2

)
= Pπ

?

1

(
Q̄?2 −Q?2

)
+ (r′1 − r1)

≥ . . .

≥
H∑
h=1

Pπ
?

1:h−1 (r′h − rh) =

H∑
h=1

Pπ
?

1:h−1

√
σ2
r

2ζ · nsh,ah

(39)

the last step is to average over d1 and use Lemma J.1.

H Minimax lower bound

Theorem H.1 (Adaptive minimax lower bound). Recall for each individual instance (µ,M), d̄m :=
minh∈[H]{dµh(sh, ah) : dµh(sh, ah) > 0} and D consists of n episodes. Now consider a class
of problem family G := {(µ,M) : ∃π? s.t. dµh(s, a) > 0 if dπ

?

h (s, a) > 0}. Let π̂ be the
output of any algorithm on D. Then there exists universal constants c0, p, C > 0, such that if
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n ≥ c0 · 1/d̄m · log(HSA/p), with constant probability p > 0,

inf
π̂

sup
(µ,M)∈G

Eµ,M
[
v? − vπ̂

]
∑H
h=1

∑
(sh,ah)∈Ch d

π?
h (sh, ah) ·

√
VarPsh,ah

(rh+V ?h+1)

n·dµh(sh,ah)

≥ C. (40)

For completeness, we provide the proof of minimax lower bound. The proof uses the hard instance
construction in Jin et al. [2020].

H.1 Proof of Theorem H.1

Construction of the hard MDP instances. We define a family of MDPs where each MDP instance
within in the family has three states s1, s+, s− andA actions a1, . . . , aA. The initial state is always s1.
The transition kernel at time 1 will transition s1 to either s+ or s− depending on three probabilities
p1, p2, p3(= min{p1, p2}) and the transition kernel at time h ≥ 2 will deterministically transition
back to itself, i.e.

P1(s+|s1, a1) = p1, P1(s1|s1, a1) = 1− p1,

P1(s+|s1, a2) = p2, P1(s1|s1, a2) = 1− p2,

P1(s+|s1, aj) = p3, P1(s1|s1, aj) = 1− p3, ∀j ≥ 3,

Ph(s+|s+, a) = Ph(s−|s−, a) = 1, ∀h ≥ 2, a ∈ A.

The state s+ always receives reward 1 regardless of the action and the state s1, s− will always have
reward 0. We denote such an instance as M(p1, p2, p3).

Bounding the suboptimality gap. By construction, the optimal policy at time h = 1 will be
π?1(s1) = a1 if p1 > p2 and π?1(s1) = a2 if p1 < p2. For optimal policy for h ≥ 2 is arbitrary.
Therefore, for those instances (denote j∗ = arg max

j∈{1,2}
pj)

v? = 0 + P1(s+|s1, π
?
1(s1)) · 1 +

H∑
h=3

P1(s+|s1, π
?
1(s1)) · . . . · Ph−1(s+|s+, π

?
h−1(s+)) · 1 = pj? · (H − 1)

and

vπ̂ =0 +

 A∑
j=1

pj · π̂1(aj |s1)

 · 1 +

H∑
h=3

 A∑
j=1

pj · π̂1(aj |s1)

 · . . . · Ph−1(s+|s+, π̂h−1(s+)) · 1

=

 A∑
j=1

pj · π̂1(aj |s1)

 · (H − 1).

Therefore the suboptimality gap

v? − vπ̂ = pj? · (H − 1)−
A∑
j=1

pj · π̂1(aj |s1) · (H − 1).

Let us further denote p? = pj? and denote the rest of the probabilities as p (i.e. if p1 > p2, then
p1 = p?, p2 = . . . = pA = p; if p1 < p2, then p2 = p?, p1 = p3 = . . . = pA = p), then

v? − vπ̂ =pj? · (H − 1)−
A∑
j=1

pj · π̂1(aj |s1) · (H − 1)

=(H − 1) ·

p? − p?π̂1(a?1|s1)−
A∑
j=2

pj · π̂1(aj |s1)


=(H − 1) · (1− π̂1(a?1|s1)) (p? − p).
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Let D = {(sτh, aτh, rτh, sτh+1)}h∈[H]

τ∈[n] is coming from µ where µ satisfies (µ,M) belongs to G :=

{(µ,M) : ∃π? s.t. dµh(s, a) > 0 if dπ
?

h (s, a) > 0}. Define nj =
∑n
τ=1 1[aτ1 = aj ]. Consider two

MDPsM1 = M(p?, p, p) and M2 = M(p, p?, p), then

sup
l∈{1,2}

√
nl · Eµ,Ml

[
v? − vπ̂

]
≥
√
n1n2√

n1 +
√
n2
·
(
Eµ,M1

[
v? − vπ̂

]
+ Eµ,M2

[
v? − vπ̂

])
=

√
n1n2√

n1 +
√
n2
· (p? − p) · (H − 1) · (Eµ,M1 [1− π̂1(a1|s1)] + Eµ,M2 [1− π̂1(a2|s1)])

(41)

where the first inequality uses max{x, y} ≥ a ·x+(1−a)y for any a ∈ [0, 1], x, y ≥ 0. Importantly,
we choose the above µ to satisfy µ1(a1|s1) > 0, µ1(a2|s1) > 0. In this scenario, it satisfies
dµh(s, a) > 0 if dπ

?

h (s, a) > 0 (since µ can reach both a1 and a2, hence (µ,M) ∈ G for M to be
eitherM1 orM2) and by the condition n ≥ Õ(1/d̄m), n1, n2 > 0 with high probability (depends
on p) by Chernoff bound hence the above inequality apply.

Now define the (randomized) test function:

ψ(π̂) = 1{a 6= a1}, where a ∼ π̂1(·|s1),

then

Eµ,M1
[1− π̂1(a1|s1)] + Eµ,M2

[1− π̂1(a2|s1)] = Eµ,M1
[1{ψ(π̂) = 1}] + Eµ,M2

[1{ψ(π̂) = 0}]

≥ 1− TV(PD∼(µ,M1),PD∼(µ,M2)) ≥ 1−
√

KL(PD∼(µ,M1)||PD∼(µ,M2))/2.

(42)
Now we apply the following lemma in Jin et al. [2020].

Lemma H.2 ((C.17) in Jin et al. [2020]). Let n1, n2 ≥ 4 and min{n1/n2, n2/n1} > c for some
absolute constant c. Then there exists some p 6= p? ∈ [1/4, 3/4] such that p?− p =

√
3

4
√

2(n1+n2)
and

KL(PD∼(µ,M1)||PD∼(µ,M2)) ≤ 1/2.

Note the condition of Lemma H.2 is satisfied with high probability by the condition n ≥ Õ(1/d̄m)
and the design that µ1(a1|s1) > 0, µ1(a2|s1) > 0. Hence, by (41), (42) and Lemma H.2 we have

sup
l∈{1,2}

√
nl · Eµ,Ml

[
v? − vπ̂

]
≥ C ′(H − 1), (43)

where C ′ =
√

3/(
√
c+ 1)

√
8c(c+ 1) > 0.

H.1.1 The intrinsic quantity in the hard instances

Note under the family M(p1, p2, p3), the optimal values

V ?2 (s+) = H − 1, V ?2 (s−) = 0,

also, since Ph is deterministic for h ≥ 2, therefore

VarPh(rh + V ?h+1) = 0, ∀h ≥ 2.
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For convenience, let us assume the MDP is M(p?, p, p). Then in this case

H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
VarPsh,ah (rh + V ?h+1)

n · dµh(sh, ah)

=
∑

(s1,a1)∈C1

dπ
?

1 (s1, a1) ·

√
VarPs1,a1 (r1 + V ?2 )

n · dµ1 (s1, a1)

=dπ
?

1 (s1, a1) ·

√
VarPs1,a1 (r1 + V ?2 )

n · dµ1 (s1, a1)
+ dπ

?

1 (s1, a2) ·

√
VarPs1,a2 (r1 + V ?2 )

n · dµ1 (s1, a2)

=dπ
?

1 (s1, a1) ·

√
VarPs1,a1 (r1 + V ?2 )

n · dµ1 (s1, a1)
+ 0 ·

√
VarPs1,a2 (r1 + V ?2 )

n · dµ1 (s1, a2)

=1 ·

√
VarPs1,a1 (r1 + V ?2 )

n · dµ1 (s1, a1)
≤

√
3VarPs1,a1 (r1 + V ?2 )

2ns1,a1

=

√
3VarPs1,a1 (V ?2 )

2ns1,a1
=

√
3p?(1− p?)(H − 1)2

2ns1,a1
≤ H − 1√

8ns1,a1/3
=

H − 1√
8n1/3

(44)

where the first inequality uses the Chernoff bound.

Finish the proof. By (43) and (44), we have with constant probability, for any arbitrary algorithm π̂,

sup
l∈{1,2}

Eµ,Ml
[v? − vπ̂]∑H

h=1

∑
(sh,ah)∈Ch d

π?
h (sh, ah) ·

√
VarPsh,ah

(rh+V ?h+1)

n·dµh(sh,ah)

≥ sup
l∈{1,2}

Eµ,Ml
[v? − vπ̂]
H−1√
8nl/3

= sup
l∈{1,2}

√
8

3
·
√
nl · Eµ,Ml

[v? − vπ̂]

H − 1
≥
√

8

3
C ′ := C,

this concludes the proof.

Remark H.3. In the proofing procedure H.1.1, we can actually get rid of the hard instance construc-
tion of Jin et al. [2020] by setting the hard instances at any time step t, concretely:

• From time 1 to t− 1, there is only one absorbing state sa with reward 0;

• At time t, sa can transition to either s+ or s− follow the same transition as above; from
t+ 1 to H , s+ and s− are absorbing states;

• s+ has reward 1 and s− has reward 0.

Those instances still validate the intrinsic bound is required due to the fact that there is at least
one stochastic transition kernel. This finding is interesting as it reveals the intrinsic bound is only

“hard” for offline reinforcement learning when there are stochasticity in the dynamic. Under the
deterministic family, those hard instances fail and we enter the faster convergence regime.

I Discussions and missing derivations in Section 4

We omit the Õ notation in the derivations for the simplicity.
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I.1 Derivation in Section 4.1

When the uniform data-coverage is satisfied,

v? − vπ̂ .
H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
VarPsh,ah (rh + V ?h+1)

n · dµh(sh, ah)

≤
√

1

ndm

H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·
√

VarPsh,ah (rh + V ?h+1)

≤
√

1

ndm

H∑
h=1

∑
(sh,ah)∈S×A

dπ
?

h (sh, ah) ·
√

VarPsh,ah (rh + V ?h+1)

=

√
1

ndm

H∑
h=1

∑
(sh,ah)∈S×A

√
dπ

?

h (sh, ah) ·
√
dπ

?

h (sh, ah)VarPsh,ah (rh + V ?h+1)

≤
√

1

ndm

H∑
h=1

√ ∑
(sh,ah)∈S×A

dπ
?

h (sh, ah) ·
√ ∑

(sh,ah)∈S×A

dπ
?

h (sh, ah)VarPsh,ah (rh + V ?h+1)

=

√
1

ndm

H∑
h=1

√ ∑
(sh,ah)∈S×A

dπ
?

h (sh, ah)VarPsh,ah (rh + V ?h+1)

≤
√

1

ndm

√√√√ H∑
h=1

1 ·

√√√√ H∑
h=1

∑
(sh,ah)∈S×A

dπ
?

h (sh, ah)VarPsh,ah (rh + V ?h+1)

≤
√

1

ndm

√
H ·

√√√√Varπ

[
H∑
t=1

rt

]
≤

√
H3

ndm
,

where we use the Cauchy inequality and Lemma J.6.

I.2 Uniform data-coverage in the time-invariant setting (Remark 4.5)

In the time-invariant setting, P is identical, therefore given data D = {(sτh, aτh, rτh, sτh+1)}h∈[H]

τ∈[n] , we

should modify ns,a :=
∑H
h=1

∑n
τ=1 1[sτh, a

τ
h = sh, ah] and

P̂ (s′|s, a) =

∑H
h=1

∑n
τ=1 1[(sτh+1, a

τ
h, s

τ
h) = (s′, s, a)]

ns,a
, r̂(s, a) =

∑H
h=1

∑n
τ=1 1[(aτh, s

τ
h) = (s, a)] · rτh

ns,a
,

if nsh,ah > 0 and P̂ (s′|s, a) = 1/S, r̂(s, a) = 0 if ns,a = 0. Define d̄µ(s, a) = 1
H

∑H
h=1 d

µ
h(s, a),

then since in this case

E[ns,a] =

H∑
h=1

n∑
τ=1

dµh(sh, ah) = nHd̄µ(s, a),

A similar algorithm should yield

√
1

nHdm

√
H ·

√√√√Varπ

[
H∑
t=1

rt

]
≤
√

H2

ndm
.

Formalizing this result depends on decoupling the dependence between P̂ and V̂h, which could be
more tricky (see Yin and Wang [2021], Ren et al. [2021] for two treatments under the uniform data
coverage assumption). We leave this as the future work.
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I.3 Derivation in Section 4.2

This follows from the derivation of Section 4.1 by bounding

v? − vπ̂ .

√
1

ndm

√
H ·

√√√√Varπ

[
H∑
t=1

rt

]
≤
√

H

ndm
.

I.4 Derivation in Section 4.3

Using the single concentrability coefficient C?, when π? is deterministic,

v? − vπ̂ .
H∑
h=1

∑
(sh,ah)∈Ch

dπ
?

h (sh, ah) ·

√
VarPsh,ah (rh + V ?h+1)

n · dµh(sh, ah)
≤
√
C?

n

H∑
h=1

∑
(sh,ah)∈Ch

√
dπ

?

h (sh, ah) ·VarPsh,ah (rh + V ?h+1)

≤
√
C?

n

H∑
h=1

∑
(sh,ah)∈S×A

√
dπ

?

h (sh, ah) ·VarPsh,ah (rh + V ?h+1)

=

√
C?

n

H∑
h=1

∑
sh∈S

√
dπ

?

h (sh, π?h(sh)) ·VarPsh,π?h(sh)
(rh + V ?h+1)

≤
√
C?

n

H∑
h=1

√∑
sh∈S

1

√∑
sh∈S

dπ
?

h (sh, π?h(sh)) ·VarPsh,π?h(sh)
(rh + V ?h+1)

≤
√
SC?

n

H∑
h=1

√∑
sh∈S

dπ
?

h (sh, π?h(sh)) ·VarPsh,π?h(sh)
(rh + V ?h+1) ≤

√
SC?

n

√
H ·

√√√√Varπ

[
H∑
t=1

rt

]
≤
√
H3SC?

n
.

where we use the Cauchy inequality and Lemma J.6. Also, from the discussion in Section D, we
know this is minimax rate optimal.

I.5 Derivation in Section 4.4

The derivation of Proposition 4.8 is similar to the previous cases except we use the bounds
VarPh(V ?h+1) ≤ Q?h and

∑H
h=1 rh ≤ B. The derivations for the deterministic system or the partially

deterministic system are straightforward. For the fast mixing example, we leverage the fact that for
any random variable X , |X − E[X]| ≤ rng(X), hence Q? ≤ 1 + (rngV ?)2 ≤ 2.

Last but not least, we mention the per-step environmental norm Q?h := maxsh,ah VarPsh,ah (V ?h+1)
is more general than its maximal version in Zanette and Brunskill [2019] with Q? :=
maxsh,ah,h VarPsh,ah (V ?h+1). Improvement can be made for the Q?h version, e.g. for the partially
deterministic systems, t

√
Q?/nd̄m vs H

√
Q?/nd̄m. Even though Zanette and Brunskill [2019]

considers the time-invariant setting, i.e. P is identical, the quantity Q?h := maxs,a VarPs,a(V ?h+1)
can still be much smaller than Q?, e.g. when the range of V ?t , . . . , V

?
H is relatively small and the

range of V ?1 , . . . , V
?
t−1 is relatively large.

In this sense, beyond the current adaptive regret
√
Q?SAT [Zanette and Brunskill, 2019], the more

adaptive regret should have a form like either√∑H
h=1 Q?hSAT

H
or

H∑
h=1

√
Q?hSAT
H

.

This remains an open question in online RL.

J Assisting lemmas

Lemma J.1 (Multiplicative Chernoff bound Chernoff et al. [1952]). Let X be a Binomial random
variable with parameter p, n. For any 1 ≥ θ > 0, we have that

P[X < (1− θ)pn] < e−
θ2pn

2 . and P[X ≥ (1 + θ)pn] < e−
θ2pn

3
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Lemma J.2 (Hoeffding’s Inequality Sridharan [2002]). Let x1, ..., xn be independent bounded
random variables such that E[xi] = 0 and |xi| ≤ ξi with probability 1. Then for any ε > 0 we have

P

(
1

n

n∑
i=1

xi ≥ ε

)
≤ e
− 2n2ε2∑n

i=1
ξ2
i .

Lemma J.3 (Bernstein’s Inequality). Let x1, ..., xn be independent bounded random variables such
that E[xi] = 0 and |xi| ≤ ξ with probability 1. Let σ2 = 1

n

∑n
i=1 Var[xi], then with probability

1− δ we have

1

n

n∑
i=1

xi ≤
√

2σ2 · log(1/δ)

n
+

2ξ

3n
log(1/δ)

Lemma J.4 (Empirical Bernstein’s Inequality [Maurer and Pontil, 2009]). Let x1, ..., xn be i.i.d
random variables such that |xi| ≤ ξ with probability 1. Let x̄ = 1

n

∑n
i=1 xi and V̂n = 1

n

∑n
i=1(xi −

x̄)2, then with probability 1− δ we have∣∣∣∣∣ 1n
n∑
i=1

xi − E[x]

∣∣∣∣∣ ≤
√

2V̂n · log(2/δ)

n
+

7ξ

3n
log(2/δ).

Lemma J.5 (Freedman’s inequality Tropp et al. [2011]). Let X be the martingale associated
with a filter F (i.e. Xi = E[X|Fi]) satisfying |Xi − Xi−1| ≤ M for i = 1, ..., n. Denote
W :=

∑n
i=1 Var(Xi|Fi−1) then we have

P(|X − E[X]| ≥ ε,W ≤ σ2) ≤ 2e
− ε2

2(σ2+Mε/3) .

Or in other words, with probability 1− δ,

|X − E[X]| ≤
√

8σ2 · log(1/δ) +
2M

3
· log(1/δ), Or W ≥ σ2.

Lemma J.6 (Sum of Total Variance, Lemma 3.4 of Yin and Wang [2020]).

Varπ

[
H∑
t=h

rt

]

=

H∑
t=h

(
Eπ
[
Var

[
rt + V πt+1 (st+1) | st, at

]]
+ Eπ

[
Var

[
E
[
rt + V πt+1 (st+1) | st, at

]∣∣st]])

here st, at, rt, . . . is a random trajectory.

Remark J.7. The infinite horizon discounted setting counterpart is (I−γPπ)−1σV π ≤ (1−γ)−3/2.

Lemma J.8 (Empirical Bernstein Inequality). Let n ≥ 2 and V ∈ RS be any function with
||V ||∞ ≤ H , P be any S-dimensional distribution and P̂ be its empirical version using n samples.
Then with probability 1− δ,∣∣∣∣∣√VarP̂ (V )−

√
n− 1

n
VarP (V )

∣∣∣∣∣ ≤ 2H

√
log(2/δ)

n− 1
.

Proof. This is a directly application of Theorem 10 in Maurer and Pontil [2009]. Indeed, by direct
translating Theorem 10 of Maurer and Pontil [2009],

Vn(V ) =
1

n(n− 1)

∑
1≤i<j≤n

(V (si)− V (sj))
2

=
1

n

n∑
i=1

(V (si)− V )2 = VarP̂ (V ).
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where si ∼ P are i.i.d random variables and

E[Vn] =E
[
VarP̂ (V )

]
= E

[
EP̂ [V 2]−

(
EP̂ [V ]

)2]
=E

[
1

n

n∑
i=1

V 2(si)

]
− E

( 1

n

n∑
i=1

V (si)

)2


=E
[
V 2
]
− 1

n2
E

 n∑
i=1

V 2(si) + 2
∑

1≤i<j≤n

V (si)V (sj)


=E

[
V 2
]
− 1

n
E
[
V 2
]
− 2

n(n− 1)/2

n2
(E[V ])2

=
n− 1

n
VarP (V ).

Therefore by Theorem 10 of Maurer and Pontil [2009] we directly have the result.

J.1 Extend Value Difference

The extended value difference lemma helps characterize the difference between the estimated value
V̂1 and the true value V π1 , which was first summarized in Cai et al. [2020] and also used in Jin et al.
[2020].
Lemma J.9 (Extended Value Difference (Section B.1 in Cai et al. [2020])). Let π = {πh}Hh=1 and
π′ = {π′h}Hh=1 be two arbitrary policies and let {Q̂h}Hh=1 be any given Q-functions. Then define
V̂h(s) := 〈Q̂h(s, ·), πh(· | s)〉 for all s ∈ S. Then for all s ∈ S,

V̂1(s)− V π
′

1 (s) =

H∑
h=1

Eπ′
[
〈Q̂h (sh, ·) , πh (· | sh)− π′h (· | sh)〉 | s1 = s

]
+

H∑
h=1

Eπ′
[
Q̂h (sh, ah)−

(
ThV̂h+1

)
(sh, ah) | s1 = s

] (45)

where (ThV )(·, ·) := rh(·, ·) + (PhV )(·, ·) for any V ∈ RS .

Proof. Denote ξh = Q̂h − ThV̂h+1. For any h ∈ [H], we have

V̂h − V π
′

h = 〈Q̂h, πh〉 − 〈Qπ
′

h , π
′
h〉

= 〈Q̂h, πh − π′h〉+ 〈Q̂h −Qπ
′

h , π
′
h〉

= 〈Q̂h, πh − π′h〉+ 〈Ph(V̂h+1 − V π
′

h+1) + ξh, π
′
h〉

= 〈Q̂h, πh − π′h〉+ 〈Ph(V̂h+1 − V π
′

h+1), π′h〉+ 〈ξh, π′h〉
recursively apply the above for V̂h+1 − V π

′

h+1 and use the Eπ′ notation (instead of the inner product
of Ph, π′h) we can finish the prove of this lemma.

The following lemma helps to characterize the gap between any two policies.

Lemma J.10. Let π̂ = {π̂h}Hh=1 and Q̂h(·, ·) be the arbitrary policy and Q-function and also
V̂h(s) = 〈Q̂h(s, ·), π̂h(·|s)〉 ∀s ∈ S. and ξh(s, a) = (ThV̂h+1)(s, a) − Q̂h(s, a) element-wisely.
Then for any arbitrary π, we have

V π1 (s)− V π̂1 (s) =

H∑
h=1

Eπ [ξh(sh, ah) | s1 = s]−
H∑
h=1

Eπ̂ [ξh(sh, ah) | s1 = s]

+

H∑
h=1

Eπ
[
〈Q̂h (sh, ·) , πh (·|sh)− π̂h (·|sh)〉 | s1 = x

]
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where the expectation are taken over sh, ah.

Proof. Note the gap can be rewritten as

V π1 (s)− V π̂1 (s) = V π1 (s)− V̂1(s) + V̂1(s)− V π̂1 (s).

By Lemma J.9 with π = π̂, π′ = π, we directly have

V π1 (s)−V̂1(s) =

H∑
h=1

Eπ [ξh(sh, ah) | s1 = s]+

H∑
h=1

Eπ
[
〈Q̂h (sh, ·) , πh (·|sh)− π̂h (·|sh)〉 | s1 = s

]
(46)

Next apply Lemma J.9 again with π = π′ = π̂, we directly have

V̂1(s)− V π̂1 (s) = −
H∑
h=1

Eπ̂ [ξh(sh, ah) | s1 = s] . (47)

Combine the above two results we prove the stated result.

J.2 Hellinger Distance

Definition J.11. Let f, g are the two probability densities on the same probability space X . Then the
Hellinger distance between f and g is defined as:

d2
Hel(f, g) =

1

2

∫
x∈X

(√
f(x)−

√
g(x)

)2

dx = 1−
∫
x∈X

√
f(x)g(x)dx.

In particular, it holds that

||f − g||TV ≤
√

2 · dHel(f, g).

J.3 Propoerty of Local Instance

Lemma J.12. Recall the definition of P ′ in (31)

P ′h(sh+1|sh, ah) = Ph(sh+1|sh, ah) +
Ph(sh+1|sh, ah)

(
V ?h+1(sh+1)− EPsh,ah [V ?h+1]

)
8
√
ζ · nsh,ah ·VarPsh,ah (V ?h+1)

,

where ζ = H/d̄m and P is the original instance. Then :

• with high probability, when n ≥ C · suph,sh+1,sh,ah

(
H

1/Ph(sh+1|sh,ah)−1

)2

· 1
H·Var(V ?h+1) ,

P ′ is a valid probability distribution;

• dHel(P ′h(·|sh, ah), Ph(·|sh, ah)) ≤ 1√
2nH

for n sufficiently large;

• Elementwisely, (P ′h − Ph)V ?h+1 ≥ 0 for all h ∈ [H].

Remark J.13. WLOG, let us assume nsh,ah · VarPsh,ah (V ?h+1) > 0 and this is valid since: 1.
if VarPsh,ah (V ?h+1) = 0 then these is no need to use multiple samples to test Ph(·|sh, ah) if

Ph(·|sh, ah) is deterministic or if V ?h+1 ≡ 0 then we can define
(V ?h+1(sh+1)−EPsh,ah [V ?h+1])
2
√
nsh,ah ·VarPsh,ah

(V ?h+1)
= 0. 2.

If dµh(sh, ah) > 0, then by Lemma J.1 nsh,ah > 0 with high probability.
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Proof of Lemma J.12. Proof of item 1. First,∑
sh+1

P ′h(sh+1|sh, ah) =
∑
sh+1

Ph(sh+1|sh, ah)

+
∑
sh+1

Ph(sh+1|sh, ah)
(
V ?h+1(sh+1)− EPsh,ah [V ?h+1]

)
8
√
ζ · nsh,ah ·VarPsh,ah (V ?h+1)

=1 +
EPsh,ah [V ?h+1]− EPsh,ah [V ?h+1]

8
√
ζ · nsh,ah ·VarPsh,ah (V ?h+1)

= 1

Second, the non-negativity holds as long as

nsh,ah ≥
(

H

1/Ph(sh+1|sh, ah)− 1

)2

· 1

ζ ·Var(V ?h+1)
, ∀sh, ah s.t. Var(V ?h+1) > 0.

This is guaranteed by Lemma J.1 with high probability when

n ≥ C · sup
h,sh+1,sh,ah

(
H

1/Ph(sh+1|sh, ah)− 1

)2

· 1

H ·Var(V ?h+1)
,

where the sup is over all terms such that Var(V ?h+1)dµh(sh, ah) > 0.

Proof of item 2. Denote ∆h :=
V ?h+1(sh+1)−EPsh,ah [V ?h+1]

8
√
ζ·nsh,ah ·VarPsh,ah

(V ?h+1)
By the definition, we have

d2
Hel(P

′
h(·|sh, ah), Ph(·|sh, ah)) =

∣∣∣∣∣∣1−
∑
sh+1

√
Ph(sh+1|sh, ah) · P ′h(sh+1|sh, ah)

∣∣∣∣∣∣
=

∣∣∣∣∣∣1−
∑
sh+1

√
P 2
h (sh+1|sh, ah)(1 + ∆h)

∣∣∣∣∣∣ =

∣∣∣∣∣∣1−
∑
sh+1

Ph(sh+1|sh, ah)
√

(1 + ∆h)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
sh+1

Ph(sh+1|sh, ah)−
∑
sh+1

Ph(sh+1|sh, ah)
√

(1 + ∆h)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
sh+1

Ph(sh+1|sh, ah)
(

1−
√

(1 + ∆h)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
sh+1

Ph(sh+1|sh, ah)

(
1−

(
1 +

∆

2
− ∆2

8

))∣∣∣∣∣∣ (∗)

=

∣∣∣∣∣∣
∑
sh+1

Ph(sh+1|sh, ah)

(
−∆

2
+

∆2

8

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
sh+1

Ph(sh+1|sh, ah) · ∆2

8

∣∣∣∣∣∣ =
1

83 · ζ · nsh,ah
≤ 1

2n ·H

the step (∗) comes from second order Taylor expansion (where we omit the higher order since n
is sufficiently large already) and the next equation uses

∑
sh+1

Ph(sh+1|sh, ah) · ∆ = 0 and the
last inequality uses Lemma J.1 nsh,ah such that nsh,ah · ζ ≥ C · n ·H with high probability and
d2
Hel(P

′
h(·|sh, ah), Ph(·|sh, ah)) ≤ 1

2nH .

Proof of item 3. Note
[(P ′h − Ph)V ?h+1](sh, ah) =

∑
sh+1

(P ′h(sh+1|sh, ah)− Ph(sh+1|sh, ah))V ?h+1(sh+1)

=
∑
sh+1

(P ′h(sh+1|sh, ah)− Ph(sh+1|sh, ah))(V ?h+1(sh+1)− EPsh,ah [V ?h+1])

=
1

2

√
VarPsh,ah (V ?h+1)

ζ · nsh,ah
≥ 0
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