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Figure 1: Visualization of selected camera views with self-supervised attention weights (lower
weights are visualized as blue and higher as red) for specific 3D locations (highlighted as green) in
the scene.
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Figure 2: Comparison of our attention-based view selection scheme to a random selection of frames
from the frame candidates based on the F-score.

A Additional Results

Visualization of Frame Selection. In Fig.[I| we show a 3D reconstruction of a scene from the
test set of the ScanNet dataset [1]. To visualize the view selection approach presented in the main
paper that is based on the attention weights of the used transformer networks, we render the camera
views that are selected for a specific 3D location (green point) with corresponding attention weights
(color temperature corresponding to the weight). On the right, we show the corresponding input
images. There are different colors (and, thus, attention weights) for similar views. We observed
that the attention head in the transformer architecture tends to sparsify the views, assigning a high
weight to a single view, and low weights for the rest, as other similar views tend to provide only
redundant information. Such behavior is well-suited for the task of reconstruction, where multiple
different observations are more useful, especially ones observed under different viewpoints and
camera translations. This is achieved by using multiple attention heads (in our architecture we use 8
heads), each specializing for a certain view type, and each picking only a single view representative.
This leads to elimination of very similar views that are redundant, and at the same time encourages
high weights for different views that are more useful — additionally, this enables the attention weights
to be very effective for online view selection. It is also a notable difference to existing works [3} 5],
where all views are treated the same (by averaging over view features).

Ablation on Architecture Modules. As analyzed in the main document, the different algorithmic
parts of our methods play an important role. Fig. |3|shows qualitative results for the ablation study.
Specifically, one can clearly see the impact of the spatial refinement as well as the temporal feature
fusion via our transformer architecture. For qualitative results of the setting without using transformers
for feature fusion we use predicted weights for weighted averaging of features via an MLP.

Ablation on View Selection. In Fig. 2] we show a comparison of our view selection scheme to
the baseline that takes random views from the view candidates (views that contain a specific point).
Specifically, we vary the number of views that can be selected. As can be seen, the reconstruction
quality gap between the baseline and our method increases with less views which is to be expected
since the random selection is more likely to miss important views.

Ablation on Coarse-to-fine Features. To verify the intuition that high-level pixel features (at
coarse image resolution) are well suited for coarse voxels, and similarly low-level pixel features (at
high image resolution) for fine voxels, we additionally performed an ablation where features were
switched — coarse features were used for fine voxels and fine features were used for coarse voxels.
As can be seen in Tab. |1} this modification performs considerably worse.

Generalization to a Different Sensor. We additionally evaluated our approach on TUM RGB-D
sequences [4]], featuring office-like environments. These sequences were captured with a Kinect
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Figure 3: Qualitative comparison of ablations of our approach on test set of ScanNet dataset [[1]]; note
that only RGB input is used by each method while the ground truth is reconstructed using the input
depth.

sensor, while the ScanNet data that we used for training was recorded using a StructurelO sensor
that uses an iPad RGB camera. Our approach achieves an F-score of 0.437, which is less than on the
ScanNet test set but maintains accurate capture of scene structure. We believe the difference is mainly
caused by a different RGB sensor used at test time. We note that in a practical scenario, one would
fine-tune on the respective test device’s camera and/or include recordings from multiple different
Sensors.

Table 1: Quantitative ablation on the use for pixel features: we compared our approach with modified
method where coarse image features are used for fine voxels and fine image features are used for
coarse voxels.

Method Acc] Compl| Chamfer| Prect! Recall{ F-score
Coarse/fine switch ~ 6.92 9.55 8.24 0.620 0.477 0.536
Ours 5.52 8.27 6.89 0.728 0.600 0.655
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Figure 4: Qualitative comparison of ablations on feature voxel size: we replaced the original voxel
size of 10 cm at the fine grid level with 30 cm and 15 cm.

Additional Qualitative Results. In Fig.[§|further examples are shown that demonstrate the recon-
struction capability of our approach. We show a top down, as well as a view from inside the different
reconstructed room scenes.

B Reproducibility

Table 2: Runtime analysis of our per-frame fea-  Table 3: Runtime analysis of the per-chunk mesh

ture fusion. extraction.
Task Duration Task Duration
Image loading / feature extraction  21.50ms Coarse feature refinement 28.56ms
Coarse feature fusion 11.81ms Fine feature refinement 140.79ms
Near-surface mask prediction 24.18ms MLP (occupancy prediction)  25.21ms
Fine feature fusion 73.03ms Marching cubes [2]] 48.74ms
Total 130.52ms Total 243.29ms

Runtime Analysis. In this section we provide further details about the runtime of our approach.
We benchmarked our approach using an Intel Xeon 6242R Processor and an Nvidia RTX 3090
GPU. For every new frame coarse-to-fine image features need to be extracted, and fused into global
coarse and fine feature volumes. In Tab.[2] we report execution times of the different feature fusion
steps. Coarse features are fused into the entire camera frustum, containing all coarse voxels that
fall into valid depth range [0.3m, 5m)]. Fine feature on the other hand are fused only in near-surface
areas, as predicted by coarse filtering. The execution times are averaged over a representative video
sequence of the ScanNet dataset. Note that surface reconstruction doesn’t need to be extracted for
every frame. It can either be done at the end, when all image features are already fused into the
feature volume, or incrementally every couple of frames, on a per-chunk basis, if interactive feedback
is desired. In Tab. El, we report execution times for a chunk of size 1.5 x 1.5 x 1.5 m. Both, coarse
and fine features are spatially refined using a 3D CNN and surface occupancy is computed using the
occupancy MLP at a voxel resolution of 2 cm, but only for near-surface voxels, as predicted by coarse
and fine near-surface masks. Finally, the mesh is extracted using Marching cubes [2]]. Note that our
implementation uses high-level PyTorch routines, as well as CPU code (e.g., for Marching Cubes)
and, thus, the implementation is not optimized for runtime. A more optimized implementation can be
achieved via customized CUDA code. Another interesting avenue towards higher frame rates is the
use of sparse 3D convolutions instead of dense 3D convolutions. Feature fusion timings are reported
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Figure 5: The F-score mean and standard deviation of multiple experiments of our approach and
ablations.

for our default reconstruction setting, when we store K = 16 views for every feature grid voxel. The
feature fusion execution can be further accelerated by using less views. The frames per second (FPS)
increase from 7.66 FPS for 16 views to 10.17 FPS for 8 and to 12.28 FPS for 4 views.

Reproducibility of Experiments. To ensure the reproducibility of our experiments, we ran our
approach and ablations 3 times. The resulting F-score mean and standard deviation for different
experiments is shown is Fig. 5] with standard deviations visualized as error bars.

Network Architectures. In Fig. |6l we depict the architectures of the neural networks used in
our approach. For both, the coarse and fine layer, we use independent feature fusion and feature
refinement networks. The building blocks used in these networks are detailed in Fig.[7]
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Figure 6: Overview of the used neural networks. Note that we are using a feature fusion and feature
refinement network per level (coarse and fine).
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Figure 7: Low-level network details of the building blocks of our pipeline (see Fig. [6).

C Data

To train and evaluate our method, we use the ScanNet dataset [1]], which is available under a non-
commercial academic licenseﬂ ScanNet collects data of static indoor environments, and the ScanNet
authors report that consent was obtained from the people whose private spaces were scanned. The
ScanNet scenes and locations have been anonymized.

1lhttp ://kaldir.vc.in.tum.de/scannet/ScanNet_TOS.pdf
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Figure 8: Qualitative results of representative scenes from the test-set of the ScanNet dataset [1].
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