
A More Discussions about the Distributions361

Fig. 9 depicts the ideas of Dirac delta, Gaussian, and the proposed General distributions, where the assumption362

goes from rigid (Dirac delta) to flexible (General). We also list several key comparisons about these distributions363

in Table 5. It can be observed that the loss objective of the Gaussian assumption is actually a dynamically364

weighted L2 Loss, where its training weight is related to the predicted variance σ. It is somehow similar to that365

of Dirac delta (standard L2 Loss) when optimized at the edge level. Moreover, it is not clear how to integrate366

the Gaussian assumption into the IoU-based Loss formulations, since it heavily couples the expression of the367

target representation with its optimization objective. Therefore, it can not enjoy the benefits of the IoU-based368

optimization [24], as it is proved to be very effective in practice. In contrast, our proposed General distribution369

decouples the representation and loss objective, making it feasible for any type of optimizations, including both370

edge level and box level.371

Dirac delta distribution General distribution (ours)Gaussian distribution

rigid flexible

Figure 9: Illustrations of three distributions, from rigid (Dirac delta) to flexible (General). The proposed General distribution is more flexible
as its shape can be arbitrary. In contrast, Dirac delta distribution roots at a fixed point and Gaussian distribution follows a relatively rigid,

symmetric expression, e.g., 1
σ
√

2π
e
− (x−µ)2

2σ2 , which both have more limitations in modeling real data distribution.

Type Dirac delta [26, 31] Gaussian [4, 10] General (ours)
Probability Density δ(x− y) N(x, σ2) P (x)

Inference Target x x
∫
P (x)xdx

Loss Objective (for box part) (x−y)2
2 IoU-based Loss (x−y)2

2σ2 + 1
2 log(σ

2)
(
∫
P (x)x dx−y)2

2 IoU-based Loss
Optimization Level edge box edge edge box

Table 5: Comparisons between three distributions. “edge” level denotes optimization over four respective directions, whilst “box” level means
IoU-based Losses [24] that consider the bounding box as a whole.

1

2

2

3

3

4

General 
distribution
(ours)

Dirac delta 
distribution
(existing work)

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4

Softmax 

Disturbance

Target 1.5 Target 2.5 Target 3.5

(1,1)

(0.75,0.75)

(1.25,1.25)

(1.75,1.75)

Figure 10: We demonstrate an example in 2D space by fixing the input feature vector and introduce a small disturbance (norm of 0.1) over it.
The regression targets are 1.5, 2.5, 3.5 respectively. It is observed that Dirac delta distribution leads to more regression errors after the same
disturbance, and the error increases with the growth of regression target. In contrast, our proposed General distribution remains stable and
insensitive to the disturbance.

We also find that the bounding box regression of Dirac delta distribution (including Gaussian distribution372

based on the analysis from Table 5) behaves more sensitive to feature perturbations, making it less robust and373

susceptible to noise, as shown in the simulation experiment (Fig. 10). It proves that General distribution enjoys374

more benefits than the other counterparts.375

B Global Minimum of GFL(pyl , pyr)376

Let’s review the definition of GFL:377

GFL(pyl , pyr ) = −
∣∣y− (ylpyl + yrpyr )

∣∣β((yr − y) log(pyl) + (y− yl) log(pyr )
)
, given pyl + pyr = 1.
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For simplicity, GFL(pyl , pyr ) can then be expanded as:378

GFL(pyl , pyr ) = −
∣∣y − (ylpyl + yrpyr )

∣∣β((yr − y) log(pyl) + (y − yl) log(pyr )
)

=
{∣∣y − (ylpyl + yrpyr )

∣∣β}︸ ︷︷ ︸
L(·,·)

{
−
(
(yr − y) log(pyl) + (y − yl) log(pyr )

)}︸ ︷︷ ︸
R(·,·)

= L(pyl , pyr )R(pyl , pyr ),

R(pyl , pyr ) = −
(
(yr − y) log(pyl) + (y − yl) log(pyr )

)
= −

(
(yr − y) log(pyl) + (y − yl) log(1− pyl)

)
≥ −

(
(yr − y) log(

yr − y
yr − yl

) + (y − yl) log(
y − yl
yr − yl

)
)

= R(p∗yl , p
∗
yr ) > 0, where p∗yl =

yr − y
yr − yl

, p∗yr =
y − yl
yr − yl

.

L(pyl , pyr ) =
∣∣y − (ylpyl + yrpyr )

∣∣β
≥ L(p∗yl , p

∗
yr ) = 0, where p∗yl =

yr − y
yr − yl

, p∗yr =
y − yl
yr − yl

.

Furthermore, given ε 6= 0, for arbitrary variable (pyl , pyr ) = (p∗yl + ε, p∗yr − ε) in the domain of definition, we379

can have:380
R(pyl , pyr ) = R(p∗yl + ε, p∗yr − ε) > R(p∗yl , p

∗
yr ) > 0,

L(pyl , pyr ) = L(p∗yl + ε, p∗yr − ε) =
∣∣ε(yr − yl)∣∣β > 0 = L(p∗yl , p

∗
yr ).

Therefore, it is easy to deduce:381

GFL(pyl , pyr ) = L(pyl , pyr )R(pyl , pyr ) ≥ L(p∗yl , p
∗
yr )R(p∗yl , p

∗
yr ) = 0,

where “=” holds only when pyl = p∗yl , pyr = p∗yr .382

The global minimum property of GFL somehow explains why the IoU or centerness guided variants in Fig. 6383

would not have obvious advantages. In fact, the weighted guidance does not essentially change the global384

minimum of the original classification loss (e.g., Focal Loss), whilst their optimal classification targets are still385

one-hot labels. In contrast, the proposed GFL indeed modifies the global minimum and force the predictions to386

approach the accurate IoU between the estimated boxes and ground-truth boxes, which is obviously beneficial387

for the rank process of NMS.388

C FL, QFL and DFL are special cases of GFL389

In this section, we show how GFL can be specialized into the form of FL, QFL and DFL, respectively.390

FL: Letting β = γ, yl = 0, yr = 1, pyr = p, pyl = 1− p and y ∈ {1, 0} in GFL, we can obtain FL:391

FL(p) = GFL(1− p, p) = −
∣∣y − p∣∣γ((1− y) log(1− p) + y log(p)

)
, y ∈ {1, 0}

= −(1− pt)γ log(pt), pt =
{

p, when y = 1
1− p, when y = 0

(9)

QFL: Having yl = 0, yr = 1, pyr = σ and pyl = 1− σ in GFL, the form of QFL can be written as:392

QFL(σ) = GFL(1− σ, σ) = −
∣∣y − σ∣∣β((1− y) log(1− σ) + y log(σ)

)
. (10)

DFL: By substituting β = 0, yl = yi, yr = yi+1, pyl = P (yl) = P (yi) = Si, pyr = P (yr) = P (yi+1) =393

Si+1 in GFL, we can have DFL:394

DFL(Si,Si+1) = GFL(Si,Si+1) = −
(
(yi+1 − y) log(Si) + (y − yi) log(Si+1)

)
. (11)

D Details of Experimental Settings395

Training Details: The ImageNet pretrained models [9] with FPN [17] are utilized as the backbones. During396

training, the input images are resized to keep their shorter side being 800 and their longer side less or equal to397

1333. In ablation study, the networks are trained using the Stochastic Gradient Descent (SGD) algorithm for398

90K iterations (denoted as 1x schedule) with 0.9 momentum, 0.0001 weight decay and 16 batch size. The initial399

learning rate is set as 0.01 and decayed by 0.1 at iteration 60K and 80K, respectively.400

Inference Details: During inference, the input image is resized in the same way as in the training phase, and401

then passed through the whole network to output the predicted bounding boxes with a predicted class. Then we402
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use the threshold 0.05 to filter out a variety of backgrounds, and output top 1000 candidate detections per feature403

pyramid. Finally, NMS is applied under the IoU threshold 0.6 per class to produce the final top 100 detections404

per image as results.405

E Why is IoU-branch always superior than centerness-branch?406

The ablation study in original paper also demonstrates that for FCOS/ATSS, IoU performs consistently better407

than centerness, as a measurement of localization quality. Here we give a convincing reason why this is the case.408

We discover the major problem of centerness is that its definition leads to unexpected small ground-truth label,409

which makes a possible set of ground-truth bounding boxes extremely hard to be recalled (as shown in Fig. 11).410

From the label distributions demonstrated in Fig. 12, we observe that most of IoU labels is larger than 0.4 yet411

centerness labels tend to be much smaller (even approaching 0). The small values of centerness labels prevent a412

set of ground-truth bounding boxes from being recalled, as their final scores for NMS would be potentially small413

since their predicted centerness scores are already supervised by these extremely small signals.

centerness label = 0.1
IoU label > 0.4 (usually)

ground-truth bounding box predicted bounding box positive point 

centerness as measurement: IoU as measurement:

mmdet/models/anchor_heads/atsssmcsc_head.py

Figure 11: We demonstrate possible cases of ground-truth/predicted bounding box along with the positive points. The matrix points denote the
feature pyramid layer with stride = 8. Centerness label is easier to get very small values by its definition, whilst IoU label is more reliable as
the supervisions from bounding boxes will always push it close to 1.0.
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Figure 12: Label distributions over all positive training samples on COCO, based on pretrained GFL detector (ResNet-50 backbone).

F More Examples of Distributed Bounding Boxes415

We demonstrate more examples with General distributed bounding boxes predicted by GFL (ResNet-50 back-416

bone). As demonstrated in Fig. 13, we show several cases with boundary ambiguities: does the slim and almost417

invisible backpack strap belong to the box of the bag (left top)? does the partially occluded umbrella handle418

belong to the entire umbrella (left middle)? In these cases, our models even produce more reasonable coordinates419

of bounding boxes than the ground-truth ones. In Fig. 14, more examples with clear boundaries and sharp420

General distributions are shown, where GFL is very confident to generate accurate bounding boxes, e.g., the421

bottom parts of the orange and the skiing woman.422
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Certain and Sharp

Ambiguous and Flatten

Figure 13: Examples with huge boundary ambiguities and uncertainties, where the learned General distributions tend to be flatten. In some
cases, we even observe a distribution with two peaks. Interestingly, they do correspond to two different most likely boundaries in the image, e.g.,
the boundaries of the umbrella whether its heavily occluded handle is considered. Predictions are marked green in images, whilst ground-truth
boxes are white.

Figure 14: Examples with extremely clear boundaries. The learned General distributions are relatively sharp whilst producing very accurate
box estimations. Predictions are marked green in images, whilst ground-truth boxes are white.
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