
Supplementary Material of Quantized Variational
Inference

A ELBO derivation

Assumes that we have observations y , latent variables z and a model p(y, z) with p the density
fonction for the distribution y . By Bayes’ Theorem

p(z|y) = p(y |z)p(z)

p(y)

= p(y |z)p(z)∫
z p(z, y)d z

.

Using the definition of KL divergence,

KL[qλ(z)‖p(z|y)] =
∫

z
qλ(z) log

qλ(z)

p(z|y)
d z

=−
∫

z
qλ(z) log

p(z|y)

qλ(z)
d z

=−
∫

z
qλ(z) log

p(z, y)

qλ(z)
d z +

∫
z

qλ(z) log p(y)d z

=−
∫

z
qλ(z) log

p(z, y)

qλ(z)
d z + log p(y)

∫
z

qλ(z)d z

=−L (λ)+ log p(y).

Rearranging the terms gives equation (1).

B Proofs

Let f (X ) ∈ L2
Rd (Ω,A ,P) and X ΓN ,λ the the optimal quantizer of X λ. The general framework of our

study can be stated as estimating the quantity

I = E[
f (X )

]
. (1)

We define the MC and OQ estimators as

IMC = 1

N

N∑
i=1

f (Xi ), (2)

IOQ =
N∑

i=1
P

(
X ΓN ,λ = xi

)
︸ ︷︷ ︸

ωi

f (xi ) . (3)

It is direct to derive ‖I − IMC‖2 =O(N− 1
2 ). In the following we establish the approximation error

for the IOQ estimator.

In this part we demonstrates proposition 1 and proposition 2. The former is particularly important
since it establishes an asymptomatic bound on the error produced by using QVI. When considering
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it along with proposition 1 justifies QVI, for ranking models with it will produce true ranking
provided that the relative difference in ELBO is lower than the quantization error. In the following
we formally demonstrate such result (thorough investigation of optimal quantizer can be found in
[8, 7]). We begin with the definition of a stationnary quantizer.

Definition 1. Let ΓN = {x1, . . . , xN } be a quantization scheme of X λ. X ΓN ,λ is said to be stationary
quantizer if the Voronoi partition induced by ΓN satisfies P (X ∈Ci (x)) > 0 ∀i ∈ {1, . . . , N } and

E
[

X λ|X ΓN ,λ
]
= X ΓN ,λ.

One of the first question raised by using optimal quantization E
[
H(X ΓN ,λ)

]
in place for E

[
H(X λ)

]
is the error produced by such substitution. Let us remind that we denote L̂ N

OQ (λ) = E[
H(X ΓN ,λ)

]
the quantized ELBO estimator and L (λ) = E[

H(X λ)
]

the true ELBO.

Lemma 1. Let X λ ∈ L2
Rd (Ω,A ,P) and a H a continuous lipschitz function with Lipschitz constant

C, we have ∣∣∣L (λ)−L̂ N
OQ (λ)

∣∣∣≤C
∥∥∥X λ−X ΓN ,λ

∥∥∥
2

.

Proof. ∣∣∣E[
H(X λ)

]
−E

[
H(X ΓN ,λ)

]∣∣∣≤ E[
E
[∣∣∣H(X λ)−H(X ΓN ,λ)

∣∣∣ |X ΓN ,λ
]]

(4)

≤C
∥∥∥X λ−X ΓN ,λ

∥∥∥
1

≤C
∥∥∥X λ−X ΓN ,λ

∥∥∥
2

. (5)

We use Jensen inequality in equation 4 and the monoticity of the Lp (Ω,A ,P) norm as a function
of p in equation 5.

Proposition 1. Let X λ ∈ L2
Rd (Ω,A ,P) and X ΓN ,λ the associated optimal quantizer, under the hy-

pothesis that H is a convex lipschitz function,

L̂ N
OQ (λ) ≤L (λ).

Proof.

L̂ N
OQ (λ) = E

[
H(X ΓN ,λ)

]
= E

[
H

(
E
[

X λ|X ΓN ,λ
])]

(6)

≤ E
[
E
[

H(X λ)|X ΓN ,λ
]]

= E
[

H(X λ)
]

(7)

=L (λ)

When we used Lemma 1 in equation 6 and the conditional Jensen inequality to obtain 7.

Proposition 2. Let λ∗ = min
λ∈RK

L (λ) and λ∗
q = min

λ∈RK
L̂ N

OQ (λ). Under the same assumptions than

proposition 1,

L (λ∗)−L̂ N
OQ (λ∗

q ) ≤C
[

2‖X λ∗ −X Γ,λ∗‖2 +‖X λ∗q −X Γ,λ∗q ‖2

]
.
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Proof. A immediate consequence of proposition 1 is that L̂ N
OQ (λ∗

q ) ≤L (λ∗). Then, we can write

L (λ∗)−L̂ N
OQ (λ∗

q ) =L (λ∗)−L̂ N
OQ (λ∗)

+L̂ N
OQ (λ∗)−L (λ∗

q )

+L (λ∗
q )−L̂ N

OQ (λ∗
q )

≤C‖X λ∗ −X Γ,λ∗‖2

+C‖X λ∗q −X Γ,λ∗q ‖2

+C‖X λ∗ −X Γ,λ∗‖2

Using Lemma 1 and noting that

L̂ N
OQ (λ∗)−L (λ∗

q ) ≤ L̂ N
OQ (λ∗)−L (λ∗),

proposition 2 follows.

Finally, Zador’s theorem is used to derive non-asymptotic bound (see [5] for a complete proof).

Theorem 1 (Zador’s Theorem). Let X λ ∈ L2
Rd (Ω,A ,P) and X ΓN ,λ the associated optimal quantizer

at level N , there exists a real constant Cd ,p such that

∀N ≥ 1,
∥∥X − X̂ Γx

∥∥
p ≤Cd ,p N− 1

d

Where Cd ,p dependens only d and p. This result can be vastly improved when H exhibits more

regularity. For instance, if H is an α hölderian function, we can obtain a bound in O(N− 1+α
d ) [7].

C Experiments

Bayesian Linear Regression. We used three different real-world dataset, namely Forests Fire,
Boston housing datasets from the UCI repository [2] and Life Expectancy dataset from the Global
Health Observatory repository. The generative Bayesian Linear Gaussian Model used is as follow.

bi ∼N
(
µβ,σβ

)
, intercepts

yi ∼N
(
x>i bi ,ε

)
, output

Let D be the dimension of the feature space. The dimension of the parameter space for a gaussian
variationnal distribution under the mean-field assumption is K = 2D .

Poisson Generalized Linear Model. The frisk dataset is a record of stops and searches practice
on civilians in New York City for fifteen months in 1998−1999. It contains information about
locations, ethnicity and crime statistics for each area. The question is whether these stops tar-
geted particular groups after taking into account population and crime rates in each group for a
particular precinct.
We can trace back the use of Poisson Generalized Linear Model for this use case to [3]. The model
writes as follow

µ∼N
(
0,102) mean offset (8)

logσ2
α, logσ2

β ∼N
(
0,102) group variances (9)

αe ∼N
(
0,σ2

α

)
ethnicity effect (10)

βp ∼N
(
0,σ2

β

)
precinct effect (11)

logλep =µ+αe +βp + log Nep log rate (12)

Yep ∼ Poisson
(
λep

)
stops events (13)

(14)

Yep denotes the number of frisk events for the ethnic group e in the precinct p. Nep is the number
of arrests for the ethnic group e in the precinct p. Hence, in this model, αe and αp represents the
ethnicity and precinct effect. The dataset contains three ethnicities and thirty-two precinct, which
therefore exhibits K = 70 variational parameters.
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Bayesian Neural Network. The Bayesian Neural Network (BNN) consists of a Multi Layer Per-
ceptron (MLP) ψ of 30 ReLU activated neurons with normal prior weights and inverse Gamma
hyperprior on the mean and variance. Regression is performed on the metro dataset.

α∼ Gamma(1,0.1) weights hyper prior (15)

τ∼ Gamma(1,0.1) group variances (16)

w ∼N

(
0,

1

α

)
, neural network weights (17)

y ∼N

(
ψ(w, x),

1

τ

)
output (18)

D Thanks to open source libraries

This work and many others would have been impossible without free, open-source computational
frameworks and libraries. We particularly acknowledge Python 3 [9], Tensorflow [1], Numpy [6]
and Matplotlib [4].
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