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A Experimental Details

Below we provide experimental details for each of the inference methods described in the main text.
We have also performed additional experiments using a baseline adapted from the plan recognition as
planning (PRP) literature [1], which we include below as a useful offline benchmark.

A.1 Sequential Inverse Plan Search

We conducted experiments using two main variants of Sequential Inverse Plan Search (SIPS), the first
using data-driven rejuvenation, as described in the main text, and the second without. Rejuvenation is
necessary for the results shown in Figure 1 of the main text, and for highly sub-optimal and failed
plans more generally. However, rejuvenation is also hard to tune, and can increase runtime due to the
need to replan. We thus report results without rejuvenation in our quantitative experiments.

Parameters for qualitative experiments are given in each of the corresponding figures in section B.1.
For the quantitative experiments, we used SIPS with 10 particles per possible goal (e.g., 50 particles
for the Block Words domain), with a resampling threshold of c = 1/4. For the underlying agent
model, we assumed search noise of γ = 0.1 and persistence parameters of r = 2 and q = 0.95
(giving an average search budget of 38 nodes). We varied the search heuristic h to suit the type
of domain: For the gridworld-based domains (Taxi; Doors, Keys & Gems), we used a Manhattan
distance heuristic to the goal. For the other domains (Block Words; Intrusion Detection), we used the
hadd heuristic introduced by the HSP algorithm [2] as a generalized relaxed-distance heuristic.

SIPS also requires the specification of an observation model P (o|s), in order to score the likelihood
of a hypothesized state trajectory ŝ1, ..., ŝt given the observed states o1, ..., ot. We defined this
observation model by adding zero-mean Gaussian noise with σ = 0.25 for each numeric variable in
the state (e.g., the agent’s position in a gridworld), and Bernoulli corruption noise with p = 0.05 for
each Boolean variable in the state (e.g. whether block A is on top of block B).

All SIPS experiments were performed using Plinf.jl, a Julia implementation of our modeling and
inference architecture that integrates the Gen probabilistic programming system with PDDL.jl , a
Julia interpreter for the Planning Domain Definition Language [3]. Experiments were run on a 1.9
GHz Intel Core i7 processor with 16 GB RAM.

A.2 Bayesian Inverse Reinforcement Learning

Bayesian Inverse Reinforcement Learning (BIRL) requires computing an approximate value function
Q(s, a) offline and a posterior over goals online using the likelihood P (a | s, g) = 1

Z e
α·Q(s,a),

where Z is the partition function and α is an optimality parameter. For the quantitative experiments,
we used α = 1 which we found to perform well in preliminary trials. For qualitative comparisons,
however, we used α = 5, as this choice produced results in range more similar to human inferences.
To approximate the value function, we used value iteration (VI) with a discount factor of 0.9.
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As discussed in the main text, several of the domains considered in this work have state spaces that
are too large to enumerate, making standard VI intractable. We therefore used asynchronous VI,
sampling states instead of fully enumerating them, for 250,000 iterations for the unbiased baseline
(BIRL-U). Preliminary experiments suggested that running for up to 1,000,000 iterations did not
appreciably improve results. Taxi, which has a far smaller state space than the other domains, was
run with 10,000 iterations, which was consistently sufficient for convergence. For the oracle baseline
(BIRL-O), 2500 iterations were sufficient to reach convergence for the Taxi domain, and 10,000
iterations for the other domains.

All BIRL experiments were written in Python and run on a 2.9 GHz Intel Core i9 processor with 32
GB RAM. We made use of the PDDLGym library [4] for instantiating the PDDL planning problems
as OpenAI Gym environments. To perform asynchronous VI efficiently, we implemented state
samplers and valid action generators for each domain. The unbiased version of BIRL (BIRL-U) uses
these state samplers to sample states within asynchronous VI. For the oracle baseline (BIRL-O),
which has access to the test-time trajectories, we instead sampled one state uniformly at random from
the states visited across all test-time trajectories.

A.3 Plan Recognition as Planning

We adapted the plan recognition as planning (PRP) approach described in [1] as an offline benchmark
that achieves high accuracy at the cost of substantially more runtime (up to 30 times) than SIPS. In
the PRP approach, we use a heuristic approximation to the likelihood of a plan p given a goal g:

P (p|g) ∝ e−β(|p|−|p
g
∗|) (1)

where pg∗ is an optimal plan to the goal g, |p| denotes the length of the plan p, and β is a noise
parameter. This likelihood function model agent rationality by placing exponentially less probability
on costlier plans, where larger values of β correspond to more optimality.

In order to perform inference using this likelihood model, we first compute the optimal plan pg∗ for
each possible goal g in a domain. At each timestep t, we then construct a plan pgt to each goal g
consistent with the observations so far, by computing an optimal partial plan p+t from the current
observed state ot to g, and then concatenating it with the initial sequence of actions p−t := a1, ..., at−1
taken by the agent, giving pgt = [p−t , p

+
t ]. Under the additional approximation that pgt is the only plan

consistent with the observation sequence o1, ..., ot, we can then compute the goal posterior as

P (g|o1, ..., ot) '
e−β(|p

g
t |−|p

g
∗|)∑

g′∈G e
−β(|pg

′
t |−|p

g′
∗ |)

(2)

The main limitation of this approach is that it requires computation of an optimal partial plan p+t for
every goal g at every timestep t, which scales poorly with the number of goals and timesteps per
trajectory, especially when the observed trajectory leads the agent further and further away from most
of the goals under consideration. This is contrast to SIPS, which performs incremental computation
by extending partial plans from previous timesteps. In addition, due to the assumption that there
always exists a plan from the current observed state ot to every goal g, the PRP approach is unable to
account for irreversible failures. This is shown in our qualitative comparisons.

Nonetheless, because PRP still achieves high accuracy on many sub-optimal trajectories (at the
expense of considerably more computation, especially on domains with many goals), we include it
here as a benchmark for accuracy. All PRP experiments were performed on the same machine as the
SIPS experiments, using the implementation of A* search provided by Plinf.jl.

B Additional Results

B.1 Qualitative Comparisons for Sub-Optimal & Failed Plans

Here we present detailed qualitative comparisons of the goal inferences made for sub-optimal and
failed plans in the Doors, Keys & Gems domain. Figures S1 and S2 show the inferences made for two
sub-optimal trajectories, while Figures S3 and S4 show the inferences made for two trajectories with
irreversible failures. We omit the unbiased Bayesian IRL baseline (BIRL-U), because it is unable
to solve the underlying Markov Decision Process in any of these examples, leading to a uniform
posterior over goals over the entire trajectory.
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Figure S1: Goal inferences made by SIPS, BIRL-O, and PRP for the sub-optimal trajectory shown
in Figure 1(a) of the main text. Predicted future trajectories in panels (i)–(iv) are made by SIPS.
For SIPS, we used 30 particles per goal, search noise γ = 0.1, persistence parameters r = 2,
q = 0.95, and a Manhattan distance heuristic to the goal. Rejuvenation moves were used, with a goal
rejuvenation probability of pg = 0.25. For BIRL-O, we used α = 5. For PRP, we used β = 1.

Figure S2: Goal inferences made by SIPS, BIRL-O, and PRP for another sub-optimal trajectory.
Predicted future trajectories in panels (i)–(iv) are made by SIPS. For SIPS, we used 30 particles
per goal, search noise γ = 0.1, persistence parameters r = 2, q = 0.95, and a Manhattan distance
heuristic to the goal. Rejuvenation moves were used, with a goal rejuvenation probability of pg = 0.25.
For BIRL-O, we used α = 5. For PRP, we used β = 1.
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B.1.1 Sub-Optimal Plans

Figure S1 shows how the inferences produced by SIPS are more human-like, compared to the
BIRL and PRP baselines. In particular, SIPS adjusts its inferences in a human-like manner, initially
remaining uncertain between the 3 gems (panel i), placing more posterior mass on the yellow gem
when the agent acquires the first key (panel ii), increasing that posterior mass when agent appears to
ignore the second key and unlock the first door (panel iii), but then switching to the blue gem once
the agent backtracks towards the second key (panel iv).

While the inferences produced by BIRL display similar trends, they are much more gradual, because
BIRL assumes noise at the level of acting instead of planning. In addition, the agent model underlying
BIRL leads to strange artifacts, such as the rise in probability of the red gem when t < 9. This is
because Boltzmann action noise places lower probability P (a|g) on an action a that leads to a goal g
which is further away, due to the value function Vg associated with that goal g being smaller due to
time discounting. As a result, when t < 9, BIRL computes that P (right|red) > P (right|yellow)
and P (right|blue), leading to the red gem being inferred as the most likely goal.

Finally, PRP exhibits both over-confidence in the yellow gem and slow recovery towards the blue
gem. This is due to the assumption that the likelihood of a plan p to some goal g is exponentially
decreasing in its cost difference from the optimal plan pg∗. Between t = 10 and t = 20, all plans
consistent with the observations to the blue gem are considerably longer than the optimal plan pblue∗ .
As a result, PRP gives very low probability to the blue gem. This effect continues for many timesteps
after the agent starts to backtrack (t = 17 to t = 24), indicating that the PRP modeling assumptions
are inadequate for plans with substantial backtracking.

Similar dynamics can be observed for the trajectory in Figure S2. The BIRL baseline performs
especially poorly, placing high probability on the yellow gem even when the agent backtracks to
collect the second key (t = 19 to t = 22). This again is due to the assumption of action noise instead
of planning noise, making it much more likely under the BIRL model that an agent would randomly
walk back towards the second key. The PRP baseline exhibits the same issues with over-confidence
and slow recovery described earlier, placing so little posterior mass on the blue gem from t = 17
to t = 20 that it even considers the red gem to be more likely. In contrast, our method, SIPS,
immediately converges to the blue gem once backtracking occurs at t = 20.

B.1.2 Failed Plans

The differences between SIPS and the baseline methods are even more striking for trajectories with
irreversible failures. As shown in Figure S3, SIPS accurately infers that the blue gem is the most
likely goal when the agent ignores the two keys at the bottom, instead turning towards the first door
guarding the blue gem at t = 19. This inference also remains stable after t = 21, when the agent
irreversibly uses up its key to unlock that door. SIPS is capable of such inferences because the search
for partial plans is biased towards promising intermediate states. Since the underlying agent model
assumes a relaxed distance heuristic that considers states closer to the blue gem as promising, the
model is likely to produce partial plans that lead spatially toward the blue gem, even if those plans
myopically use up the agent’s only key.

In contrast, both BIRL and PRP fail to infer that the blue gem is the goal. BIRL initially places
increasing probability on the red gem, due to Boltzmann action noise favoring goals which take less
time to reach. While this probability decreases slightly as the agent detours from the optimal plan to
the red gem, it remains the highest probability goal even after the agent uses up its key at t = 21.
The posterior over goals stops changing after that, because there are no longer any any possible paths
to a goal. PRP exhibits a different failure mode. While it does not suffer from the artifacts due to
Boltzmann action noise, it completely fails to account for the possibility that an agent might make a
failed plan. As a result, the probability of the blue gem does not increase even after the agent turns
towards it at t = 19. Furthermore, once failure occurs at t = 21, PRP ends up defaulting to a uniform
distribution over the three gems, even though it had previously eliminated the red gem as a possibility.

The inferences in Figure S4 display similar trends. Once again, SIPS accurately infers that the blue
gem is the goal, even slightly in advance of failure (panel iii). In contrast, BIRL wrongly infers that
the red gem is the most likely, while PRP erroneously defaults to inferring upon failure that the only
remaining acquirable gem (yellow) is the goal.
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Figure S3: Goal inferences made by SIPS, BIRL-O, and PRP for the failed trajectory shown in
Figure 1(b) of the main text. Predicted future trajectories in panels (i)–(iv) are made by SIPS. For
SIPS, we used 30 particles per goal, search noise γ = 0.1, persistence parameters r = 2, q = 0.95,
and a maze-distance heuristic (i.e. distance to the goal, ignoring doors). Rejuvenation moves were
used with pg = 0.25. For BIRL-O, we used α = 5. For PRP, we used β = 1.

Figure S4: Goal inferences made by SIPS, BIRL-O, and PRP for another failed trajectory. Predicted
future trajectories in panels (i)–(iv) are made by SIPS. For SIPS, we used 30 particles per goal, search
noise γ = 0.1, persistence parameters r = 2, q = 0.95, and a Manhattan distance heuristic to the
goal. Rejuvenation moves were used, with a goal rejuvenation probability of pg = 0.25. For BIRL-O,
we used α = 5. For PRP, we used β = 1.
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B.2 Accuracy & Speed

Here we present quantitative comparisons of the accuracy and speed of each inference method. Tables
S1 and S2 show the accuracy results for the optimal and sub-optimal datasets respectively. P (gtrue|o)
represents the posterior probability of the true goal, while Top-1 represents the fraction of problems
where gtrue is top-ranked. Accuracy metrics are reported at the first (Q1), second (Q2), and third
(Q3) quartiles of each observed trajectory. The corresponding standard deviations (taken across the
dataset) are shown to the right of each accuracy mean.

Tables S3 and S4 show the runtime results for the optimal and sub-optimal datasets respectively.
Runtime is reported in terms of the start-up cost (C0), marginal cost per timestep (MC), and average
cost per timestep (AC), all measured in seconds. The corresponding standard deviations are shown to
the right of each runtime mean. The total number (N) of states visited (during either plan search or
value iteration) are also reported as a platform-independent cost metric.

Accuracy

Domain Method P (gtrue|o) Top-1
Q1 Q2 Q3 Q1 Q2 Q3

Taxi
(3 Goals)

SIPS 0.45 ±0.26 0.48 ±0.27 0.64 ±0.32 0.67 ±0.49 0.67 ±0.49 0.67 ±0.49
BIRL-U 0.33 ±0.06 0.38 ±0.17 0.79 ±0.22 0.33 ±0.47 0.42 ±0.49 0.92 ±0.28
BIRL-O 0.41 ±0.33 0.44 ±0.40 0.82 ±0.23 0.50 ±0.50 0.42 ±0.49 1.00 ±0.00
PRP 0.33 ±0.00 0.36 ±0.06 0.44 ±0.08 0.33 ±0.00 1.00 ±0.00 1.00 ±0.00

Doors,
Keys &
Gems

(3 Goals)

SIPS 0.39 ±0.18 0.51 ±0.32 0.70 ±0.35 0.73 ±0.46 0.73 ±0.46 0.80 ±0.41
BIRL-U 0.33 ±0.00 0.33 ±0.00 0.33 ±0.00 0.33 ±0.00 0.33 ±0.00 0.33 ±0.00
BIRL-O 0.41 ±0.33 0.37 ±0.06 0.41 ±0.08 0.50 ±0.50 0.67 ±0.47 0.87 ±0.34
PRP 0.40 ±0.17 0.62 ±0.30 0.81 ±0.26 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Block
Words

(5 Goals)

SIPS 0.38 ±0.27 0.71 ±0.41 0.78 ±0.41 0.73 ±0.46 0.73 ±0.46 0.80 ±0.41
BIRL-U 0.20 ±0.03 0.21 ±0.05 0.23 ±0.10 0.53 ±0.50 0.53 ±0.50 0.60 ±0.49
BIRL-O 0.22 ±0.01 0.30 ±0.03 0.46 ±0.06 0.73 ±0.44 0.87 ±0.34 1.00 ±0.00
PRP 0.38 ±0.18 0.78 ±0.28 0.91 ±0.18 0.93 ±0.26 0.93 ±0.26 1.00 ±0.00

Intrusion
Detection
(20 Goals)

SIPS 0.65 ±0.38 1.00 ±0.00 1.00 ±0.00 0.80 ±0.41 1.00 ±0.00 1.00 ±0.00
BIRL-U 0.05 ±0.00 0.05 ±0.00 0.05 ±0.00 0.05 ±0.00 0.05 ±0.00 0.05 ±0.00
BIRL-O 0.10 ±0.01 0.25 ±0.02 0.55 ±0.03 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00
PRP 0.35 ±0.13 0.96 ±0.06 0.99 ±0.01 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Table S1: Inference accuracy on the dataset of optimal trajectories.

Accuracy

Domain Method P (gtrue|o) Top-1
Q1 Q2 Q3 Q1 Q2 Q3

Taxi
(3 Goals)

SIPS 0.43 ±0.32 0.51 ±0.38 0.62 ±0.42 0.46 ±0.51 0.50 ±0.51 0.67 ±0.48
BIRL-U 0.34 ±0.06 0.33 ±0.00 0.79 ±0.23 0.33 ±0.47 0.42 ±0.49 0.92 ±0.28
BIRL-O 0.35 ±0.29 0.48 ±0.32 0.81 ±0.32 0.38 ±0.48 0.46 ±0.50 0.79 ±0.41
PRP 0.33 ±0.00 0.35 ±0.06 0.53 ±0.23 0.33 ±0.00 1.00 ±0.00 1.00 ±0.00

Doors,
Keys &
Gems

(3 Goals)

SIPS 0.35 ±0.07 0.51 ±0.32 0.54 ±0.37 0.75 ±0.44 0.75 ±0.44 0.70 ±0.47
BIRL-U 0.33 ±0.00 0.33 ±0.00 0.33 ±0.00 0.33 ±0.00 0.33 ±0.00 0.33 ±0.00
BIRL-O 0.34 ±0.02 0.36 ±0.04 0.43 ±0.07 0.4 ±0.49 0.55 ±0.50 0.75 ±0.43
PRP 0.35 ±0.17 0.38 ±0.32 0.64 ±0.40 0.90 ±0.31 0.70 ±0.47 0.83 ±0.38

Block
Words

(5 Goals)

SIPS 0.52 ±0.33 0.89 ±0.28 0.96 ±0.18 0.80 ±0.41 0.90 ±0.31 0.97 ±0.18
BIRL-U 0.19 ±0.03 0.19 ±0.03 0.19 ±0.04 0.37 ±0.48 0.47 ±0.50 0.53 ±0.50
BIRL-O 0.19 ±0.03 0.29 ±0.06 0.45 ±0.09 0.73 ±0.44 0.77 ±0.42 0.93 ±0.25
PRP 0.36 ±0.18 0.77 ±0.24 0.91 ±0.17 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Intrusion
Detection
(20 Goals)

SIPS 0.52 ±0.43 0.80 ±0.41 0.80 ±0.41 0.58 ±0.50 0.80 ±0.41 0.80 ±0.41
BIRL-U 0.05 ±0.00 0.05 ±0.00 0.05 ±0.00 0.05 ±0.00 0.05 ±0.00 0.05 ±0.00
BIRL-O 0.09 ±0.01 0.23 ±0.04 0.52 ±0.07 0.92 ±0.22 1.00 ±0.00 1.00 ±0.00
PRP 0.42 ±0.01 0.99 ±0.003 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Table S2: Inference accuracy on the dataset of suboptimal trajectories.
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In terms of accuracy alone, it can be seen that the PRP baseline generally achieves the highest metrics,
with SIPS and BIRL-O performing comparably, and with BIRL-U completely incapable of making
accurate inferences except in the Taxi domain. As demonstrated by the qualitative comparisons
however, these metrics alone maybe misleading, failing to show how inferences of each method
really evolve over time. In particular, while the PRP baseline is routinely able to achieve the highest
Top-1 accuracy, this may not correspond to a suitably calibrated posterior over goals, nor might it
capture the sharp human-like changes over time that SIPS appears to display. It should also be noted
that most of the domains considered do not allow for irreversible failures. As such, the distinctive
capability of SIPS to infer goals despite failed plans is not captured by the results in Table S2.

Runtime

Domain Method C0 (s) MC (s) AC (s) N

Taxi
(3 Goals)

SIPS 14.7 ±6.73 2.19 ±0.95 3.08 ±1.24 1220 ±405
BIRL-U 2.22 ±0.06 0.002 ±0.0007 0.17 ±0.03 10000 ±0
BIRL-O 0.56 ±0.02 0.002 ±0.0006 0.04 ±0.01 2500 ±0
PRP 13.2 ±2.19 6.21 ±1.52 6.73 ±1.50 6830 ±2090

Doors,
Keys &
Gems

(3 Goals)

SIPS 3.17 ±1.10 0.72 ±0.21 0.84 ±0.25 2100 ±1140
BIRL-U 3280 ±173 0.13 ±0.14 181 ±184 250000 ±0
BIRL-O 142 ±13.0 0.13 ±0.14 8.00 ±8.24 10000 ±0
PRP 5.32 ±2.21 3.12 ±1.58 3.24 ±1.67 5970 ±3350

Block
Words

(5 Goals)

SIPS 21.1 ±4.84 1.67 ±0.61 3.62 ±0.85 2380 ±1110
BIRL-U 687 ±273 0.15 ±0.05 69.5 ±31.2 250000 ±0
BIRL-O 19.5 ±0.59 0.12 ±0.03 2.11 ±0.51 10000 ±0
PRP 25.6 ±11.3 26.5 ±7.90 26.3 ±7.50 3980 ±1410

Intrusion
Detection
(20 Goals)

SIPS 325 ±24.9 12.0 ±1.40 30.0 ±3.00 14100 ±343
BIRL-U 18000 ±2050 0.01 ±0.07 1130 ±230 250000 ±0
BIRL-O 100 ±11.7 0.02 ±0.00 5.80 ±0.86 10000 ±0
PRP 246 ±5.12 381 ±108 374 ±102 75700 ±20800

Table S3: Inference runtime on the dataset of optimal trajectories.

Runtime

Domain Method C0 (s) MC (s) AC (s) N

Taxi
(3 Goals)

SIPS 12.2 ±7.75 1.61 ±0.74 2.29 ±1.05 1530 ±1110
BIRL-U 2.22 ±0.06 0.003 ±0.0004 0.16 ±0.04 10000 ±0.00
BIRL-O 2.17 ±0.05 0.002 ±0.0003 0.15 ±0.04 2500 ±0.00
PRP 13.3 ±3.26 7.33 ±2.61 7.74 ±2.56 8840 ±5800

Doors,
Keys &
Gems

(3 Goals)

SIPS 3.40 ±1.18 0.69 ±0.24 0.87 ±0.31 2100 ±1140
BIRL-U 3360 ±66.0 0.11 ±0.06 133 ±68.7 250000 ±0.00
BIRL-O 155 ±3.31 0.11 ±0.06 6.27 ±3.31 10000 ±0.00
PRP 4.65 ±1.58 3.04 ±1.56 3.11 ±1.56 6150 ±3680

Block
Words

(5 Goals)

SIPS 20.6 ±5.79 2.86 ±1.12 4.41 ±1.77 2570 ±810
BIRL-U 687 ±273 0.33 ±0.13 60.6 ±34.0 250000 ±0.00
BIRL-O 23.5 ±1.76 0.01 ±0.001 2.12 ±0.86 10000 ±0.00
PRP 40.5 ±22.7 38.9 ±16.1 38.9 ±15.7 5660 ±4860

Intrusion
Detection
(20 Goals)

SIPS 400 ±29.7 3.90 ±1.04 26.6 ±2.06 12900 ±3020
BIRL-U 18000 ±2050 1.12 ±3.83 1040 ±163 250000 ±0.00
BIRL-O 96.9 ±10.4 0.02 ±0.002 5.60 ±0.77 10000 ±0.00
PRP 281 ±2.48 332 ±25.8 330 ±24.7 51900 ±960

Table S4: Inference runtime on the dataset of suboptimal trajectories.

Once runtime is taken into account, it becomes clear that SIPS achieves the best balance between
speed and accuracy due to its use of incremental computation. In contrast, BIRL-U requires orders of
magnitude more initial computation while still failing to produce meaningful inferences, while PRP
requires up to 30 times more computation per timestep. This is especially apparent on the Intrusion
Detection domain, which has a large number of goals, requiring PRP to compute a large number of
optimal plans at each timestep. Even the BIRL-O baseline, which assumes oracular access to the
dataset of observed trajectories during value iteration, is slower than SIPS on the Doors, Keys &
Gems domain in terms of average runtime. Overall, these results imply that SIPS is the only method
suitable for online usage on the full range of domains we consider.
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B.3 Robustness to Parameter Mismatch

Tables S5 and S6 present additional results for the robustness experiments described in the main
text, showing how different settings of model parameters fare against each other. Each column
corresponds to a parameter value assumed by SIPS, and each row corresponds to the true parameter
for the boundedly rational agent model used to generate the data. Within each sub-table, unspecified
parameters default to γ = 0.1, r = 2, q = 0.95, h =Manhattan (for Doors, Keys, Gems) and
h = hadd (for Block Words).

It can be seen that SIPS fares reasonably well against mismatched parameters, with degradation
partly driven by mismatch itself, but also partly by increased randomness when the data-generating
parameters lead to less optimal agent behavior. The effect of noisy behavior is especially apparent in
Table S6(d): data generated by agents using the highly uninformative goal count heuristic (which
simply the counts the number of goal predicates yet to be satisfied as a distance metric) is highly
random. This results in very poor inferences (Top-1 at Q3 = 0.37), even when SIPS correctly assumes
the same heuristic. Nonetheless, mismatched heuristics do lead to poorer performance, raising the
open question of whether observers need good models of others’ planning heuristics in order to
accurately infer their goals.

Assumed
r 1 2 4

Tr
ue

1 0.80 0.60 0.70
2 0.73 0.73 0.77
4 0.77 0.73 0.87

(a) Persistence (r)

Assumed
q 0.80 0.90 0.95

Tr
ue

0.80 0.73 0.67 0.53
0.90 0.77 0.63 0.60
0.95 0.77 0.60 0.73

(b) Persistence (q)

Assumed
γ 0.02 0.10 0.50

Tr
ue

0.02 0.90 0.77 0.83
0.10 0.77 0.73 0.73
0.50 0.73 0.67 0.77

(c) Search noise (γ)

Assumed
h Mh. Mz.

Tr
ue

Mh. 0.83 0.77

Mz. 0.80 0.90

(d) Heuristic (h)

Table S5: Robustness to parameter mismatch for the Doors, Keys, Gems domain. The metric shown
is the top-1 accuracy of SIPS at the third time quartile (Q3). h=Mh. refers to Manhattan distance,
while h=Mz. refers to maze distance.

Assumed
r 1 2 4

Tr
ue

1 0.80 0.90 0.77
2 0.83 0.80 0.90
4 0.87 0.90 0.93

(a) Persistence (r)

Assumed
q 0.80 0.90 0.95

Tr
ue

0.80 0.80 0.83 0.70
0.90 0.70 0.80 0.83
0.95 0.83 0.80 0.87

(b) Persistence (q)

Assumed
γ 0.02 0.10 0.50

Tr
ue

0.02 0.80 0.87 0.87
0.10 0.83 0.87 0.83
0.50 0.90 0.83 0.87

(c) Search noise (γ)

Assumed
h GC hadd

Tr
ue

GC. 0.37 0.43

hadd 0.33 0.77

(d) Heuristic (h)

Table S6: Robustness to parameter mismatch for the Blocks World domain. The metric shown is the
top-1 accuracy of SIPS at the third time quartile (Q3). h=GC. refers to the goal count heuristic, while
h = hadd refers to the additive delete-relaxation heuristic.

C Human Studies

As described in the main text, we conducted two sets of pilot studies with human subjects, the
first to measure human goal inferences for comparison, and the second to collect human-generated
plans for robustness experiments. These studies were approved under MIT’s IRB (COUHES no.:
0812003014).

C.1 Human Inferences

Data was collected from N=5 pilot subjects in the MIT population. Each subject was given access
to a web interface that would present trajectories of an agent in the Doors, Keys & Gems domain,
and that would ask for goal inference judgements at every 6th timestep, as well as the first and last
timestep. Subjects could select which gem they believed to be the most likely goal of the agent, and
then were allowed to adjust sliders indicating how likely the other goals were in comparison. These
relative probability ratings were normalized, and recorded. Excerpts from this interface are shown in
Figure S5. Subjects were shown a series of 10 trajectories, out of which 4 were optimal trajectories,
and 6 exhibited notable suboptimality or failure.
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Figure S5: Web interface for collecting human goal inferences. Each panel shows one step in a
sequence of judgement points presented to a participant.

C.2 Human Plans

Data was collected from N=5 pilot subjects in the MIT population. Each subject received a exper-
imental script to run, which collected data for both the Doors-Keys-Gems domain and the Blocks
World domain. For the Blocks World domain, data was collected for all combinations of 3 problems
with 5 possible goals, and for the Doors-Keys-Gems domain, data was collected for all combinations
of 5 problems with 3 possible goals.

For each pair consisting of a problem and a goal, the subjects were presented with a visualization
of the initial state and a textual description of their goal. The subjects were then presented with
a list of keys corresponding to the actions available from the current state, and prompted to press
the key corresponding to their selected action. Once the subjects entered their action of choice, the
visualization would update to show the state after the action had occurred. The subjects would then
be prompted again for an action. This process repeated until the given goal was achieved, or the
subject terminated that task (e.g. if the goal was no longer achievable). Once the goal was achieved
for a given problem and goal pair, the sequence of actions was recorded.

References
[1] Miguel Ramírez and Hector Geffner. Probabilistic plan recognition using off-the-shelf classical

planners. In Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[2] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence. 2001 Jun;
129 (1-2): 5-33., 2001.

[3] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso,
Daniel Weld, and David Wilkins. PDDL - the Planning Domain Definition Language, 1998.

[4] Tom Silver and Rohan Chitnis. PDDLGym: Gym environments from PDDL problems, 2020.

9


	Experimental Details
	Sequential Inverse Plan Search
	Bayesian Inverse Reinforcement Learning
	Plan Recognition as Planning

	Additional Results
	Qualitative Comparisons for Sub-Optimal & Failed Plans
	Sub-Optimal Plans
	Failed Plans

	Accuracy & Speed
	Robustness to Parameter Mismatch

	Human Studies
	Human Inferences
	Human Plans


