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1 Hyperparameters climbing down the tree, the proofs

In this section, we prove the propositions appearing in the paper.

1.1 The lemmas

Lemma 1.1. For all natural numbers m,n, p, q such that p, q ≥ 1:

• If m ≥ 1 : Gm−1,np−1,q−1 ⊂ Gm,np,q

• If n ≥ 1 : Gm,n−1p−1,q−1 ⊂ Gm,np,q

Proof. This lemma is a trivial consequence of the definition of Meijer G-functions. Let us give a
proof the first proposition. For all f ∈ Gm−1,np−1,q−1, there exist reals a1, . . . , ap−1, b1, . . . , bq−1 such
that ∀x ∈ (0, 1):

f(x) = Gm−1,np−1,q−1

(
a1, . . . , ap−1 x
b1, . . . , bq−1

)
=

1

2πi

∫
L
ds xs

∏m−1
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q−1

j=m+1 Γ(1− bj + s)
∏p−1
j=n+1 Γ(aj − s)

We shall show that this G-function can be represented in terms of another G-function f̃ ∈ Gm,np,q . Let
c ∈ R \ {a1, . . . , ap−1, b1, . . . bq−1}, consider the following choice for f̃ :

f̃(x) = Gm,np,q

(
a1, . . . , ap−1, c x
c, b1, . . . , bq−1

)
=

1

2πi

∫
L̃
ds xs

����Γ(c− s)×
∏m−1
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q−1

j=m+1 Γ(1− bj + s)
∏p−1
j=n+1 Γ(aj − s)×����Γ(c− s)

= Gm−1,np−1,q−1

(
a1, . . . , ap−1 x
b1, . . . , bq−1

)
= f(x).

The only nontrivial step in the above reasoning is going from the second to the third line. Indeed,
we have to show that the paths L and L̃ are compatible with each other. In both cases, the contour
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appearing in the definition of the Meijer G-function should separate the sequence of poles1 going to
−∞ from those going to +∞ [3]. We note that, because of our choice for c, the poles associated
to Γ(c− s) in the integral defining f̃ are not poles of the integral defining f . Therefore, it follows
from the residue theorem [1] that we can reshape L into L̃ without affecting the result of the integral
defining f . This proves that f = f̃ ∈ Gm,np,q for any choice of the above parameter c. The proof of the
second proposition follows by interchanging the roles of the a’s and the b’s.

Lemma 1.2. For all (m,n, p, q) ∈ N4 and t ∈ R, the set Gm,np,q has the following closure property:
If f ∈ Gm,np,q then the function x 7→ f(x).xt ∈ Gm,np,q .

Proof. For all f ∈ Gm,np,q , there exist reals a1, . . . , ap, b1, . . . , bq such that ∀x ∈ (0, 1):

f(x) = Gm,np,q

(
a1, . . . , ap x
b1, . . . , bq

)
=

1

2πi

∫
L
ds xs

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

.

We note that, for all t ∈ R, we have

f(x).xt =
1

2πi

∫
L
ds xs+t

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

.

Let us introduce the new integration variable s̃ = s+ t. Trivially, we have that ds = ds̃ so that the
integral can be rewritten

f(x).xt =
1

2πi

∫
L̃
ds̃ xs̃

∏m
j=1 Γ(bj + t− s̃)

∏n
j=1 Γ(1− aj − t+ s̃)∏q

j=m+1 Γ(1− bj − t+ s̃)
∏p
j=n+1 Γ(aj + t− s̃)

,

where L̃ is the image of L under the translation z 7→ z + t in the complex plane. It follows form this,
and the definition of Meijer-G functions that

f(x).xt = Gm,np,q

(
a1 + t, . . . , ap + t

x
b1 + t, . . . , bq + t

)
.

We conclude that the function x 7→ f(x).xt is an element of Gm,np,q , which achieves the proof.

1.2 The proposition

Proposition 1.1. Consider the set of Meijer G-functions of the form

f̂(z) = Gm,np,q

(
a1, . . . , ap s.zr
b1, . . . , bq

)
, (1)

where a1, . . . , ap, b1, . . . , bq ∈ R ; r, s ∈ R and the hyperparameters belong to the configuration set
(m,n, p, q) ∈ H = {(1, 0, 0, 2), (0, 1, 3, 1), (2, 1, 2, 3), (2, 2, 3, 3), (2, 0, 1, 3)}. This set of function
includes all the functions with the form

f(z) = Φ(w.zl).zt, (2)

with w, l, t ∈ R ; Φ ∈
{

id, sin, cos, sinh, cosh, exp, log(1 + ·), arcsin, arctan, Jν , Yν , Iν ,
1

1+· ,Γ
}

where Jν , Yν , Iν are the Bessel functions and Γ is Euler’s Gamma function.

Proof. Let us use the notation

G̃m,np,q =
{
z 7→ g (s.zr) | g ∈ Gm,np,q ; s, r ∈ R

}
. (3)

We have to show that the function f appearing in (2) is indeed an element of G̃H. We note that
Lemmas 1.1 and 1.2 can trivially be extended to the sets G̃. We now use some tables [2] to check that
all the functions appearing in the proposition are included in G̃H.

1The poles are associated to the Gamma functions appearing in the numerator of the integrand. Details can
be found in [3].
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• id ∈ G̃0,13,1 ⊂ G̃H

• sin, cos, sinh, cosh ∈ G̃1,00,2 ⊂ G̃H

• exp ∈ G̃1,00,1 ⊂ G̃
2,0
1,2 ⊂ G̃

2,1
2,3 ⊂ G̃H

• log(1 + ·), arcsin, arctan, 1/(1+·) ∈ G̃1,22,2 ⊂ G̃
2,2
3,3 ⊂ G̃H

• Jν , Iν ∈ G̃1,00,2 ⊂ G̃
2,0
1,3 ⊂ G̃H

• Yν ∈ G̃2,01,3 ⊂ G̃H

• Γ ∈ G̃2,01,2 ⊂ G̃
2,1
2,3 ⊂ G̃H

We have just showed that any function of the form f(z) = Φ(w.zl) is an element of G̃H. Therefore,
the proposition follows from Lemma 1.2.

To speed up the process, the experiments are done by using a restriction of GH excluding the
inverse trigonometric functions as well as some Bessel functions. This corresponds to H′ =
{(1, 0, 0, 2), (0, 1, 3, 1), (2, 1, 2, 3)}.

2 Faithful models go local

In this section, we build a black-box MLP model for the UCI wine quality dataset [4]. We then build
a symbolic model for this black-box and we compare our model to a LIME explainer [6]. As in the
main paper, we split the dataset into a training and a test set. We use the mixup technique [7] on the
training set to produce the training data for the symbolic model. Let us start by asking a LIME an
explanation for an element of the test set. The result is reported on Figure 1.

Figure 1: Feature importance according to a LIME predictor for a test prediction. The underlying
black-box is a MLP and dataset is the UCI wine quality dataset [4].

We change the notation to uppercase letter to match with the notation of LIME predictor in Figure 1.
It seems like X10 is the most important feature for this prediction. A linear expansion of our symbolic
model around this test point should give a similar result. Let us produce a first order Taylor expansion
of our symbolic model around this point. We obtain the linear local model:

f̂1(X0, . . . , X10) = 0.0592X0 − 0.1217X1 + 0.3125X10 + 0.1015X2 − 0.05642X3 − 0.1051X4

+ 0.0717X5 − 0.0951X6 + 0.0473X7 + 0.1855X8 + 0.2044X9 + 0.8399.
(4)

We observe that, indeed, X10 has the highest weight in this local linear model. Also note that,
as suggested by LIME, X8, X9 also have an important weight in this polynomial. However, the
agreement is not perfect since X5, X6 have a relatively small weight in our local model. One big
advantage of our Symbolic Pursuit scheme is that we can actually choose the order of the local model
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obtained by performing a Taylor expansion in a post-hoc analysis. For instance, we can get an idea of
nonlinear effects, such as interactions, by going one order above:

f̂2(X0, . . . , X10) = f̂1(X0, . . . , X10)

+ 0.0623(−0.0663X0 +X1 − 0.7199X10 − 0.2145X2 + 0.2920X3 + 0.3981X4

− 0.2742X5 + 0.6176X6 + 0.6870X7 + 0.1283X8 − 0.5097X9 − 0.7128)2

− 0.0002(0.1332X0 + 0.3422X1 + 0.4388X10 + 0.1563X2 + 0.0363X3 − 0.0364X4

+ 0.0231X5 + 0.1504X6 + 0.6342X7 + 0.6567X8 + 0.2593X9 − 1)2.

(5)

We note that by introducing the new variables

z1 =− 0.0663X0 +X1 − 0.7199X10 − 0.2145X2 + 0.2920X3 + 0.3981X4

− 0.2742X5 + 0.6176X6 + 0.6870X7 + 0.1283X8 − 0.5097X9 − 0.7128

z2 =0.1332X0 + 0.3422X1 + 0.4388X10 + 0.1563X2 + 0.0363X3 − 0.0364X4

+ 0.0231X5 + 0.1504X6 + 0.6342X7 + 0.6567X8 + 0.2593X9 − 1,

(6)

and the coefficients c0 = 1, 001, c1,1 = −0.2339, c1,2 = 0.3280, c2,1 = 0.0623, c2,2 = −0.0002,
the second order Taylor expansions can be rewritten very easily in the compact form:

f̂1(z1, z2) = c0 + c1,1 · z1 + c1,2 · z2
f̂2(z1, z2) = f̂1(z1, z2) + c2,1 · (z1)2 + c2,2 · (z2)2

(7)

In this way, the user can easily identify the new variables among the z’s that contribute the most by
simply inspecting the coefficients b’s. For each new variable z, the user can identify the features that
contribute with the highest weight in the affine combination encoded in each z. Therefore, the local
models produced by our symbolic pursuit model allow the users to easily spot the most important
features and the most important interactions. How is that so? This is in fact a simple consequence of
the fact that we use a projection pursuit algorithm. Recall that our symbolic model was of the form:

f̂(x) =

K∑
k=1

wk · gk

([
v>k x

‖vk‖
√
d

]+)
. (8)

Let x0 ∈ X be a feature point such that ∀k ∈ K : v>k x0 6= 0. We can write a Taylor expansion of
order N for this model for x around this point very easily:

f̂n(x) = f̂(x0) +

K∑
k=1

N∑
n=1

1

n!
wk · g(n)k

([
v>k x0

‖vk‖
√
d

]+)
·

([
v>k (x− x0)

‖vk‖
√
d

]+)n
, (9)

where g(n) denotes the n-th derivative of g. By introducing new variables

zk =
v>k (x− x0)

‖vk‖
√
d

, ∀k ∈ {1, . . . ,K}, (10)

we can, as above, rewrite the Taylor expansion in a very compact form:

f̂n(z1, . . . , zK) = f̂(x0) +

K∑
k=1

N∑
n=1

1

n!
wk · g(n)k

([
v>k x0

‖vk‖
√
d

]+)
·
(

[zk]
+
)n

. (11)
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This is Taylor expansion has precisely the same form as (7) for K = 2, N = 2. We finish on a last
remark on the benefits offered by our projection pursuit approach. We see that both the symbolic
model and its local approximation take a very concise form when we consider the new variables
zk, k = 1, . . . ,K. This is another advantage of our approach: we discover new variables, which are
affine combination of the features, whom with the discussion simplifies.

3 Irregularity of the loss surface

In this Section, we show that the loss surfaces admit singular regions as a consequence of Meijer
G-functions properties. For simplicity, we restrict to the case of a single feature x ∈ X = [0, 1] so
that we approximate the Black-box model f with a single Meijer G-function. It goes without saying
that this discussion extends naturally to the case of multiple features. We also assume that neither f
nor the estimator is singular at x = 0 to guarantee that the singularity emerges from the properties
of Meijer G-functions. The following result indicates some general conditions under which the loss
surface is singular:
Proposition 3.1. Let f : [0, 1] → R be a continuous function such that f(x) ∼ xu for x → 0+,
where u ∈ R+. We approximate this function by a Meijer G-function in the set Gm,np,q so that the MSE
loss is given by

L (a, b) =

∫ 1

0

dx

(
f(x)−Gm,np,q

(
a

x
b

))
, (12)

where a ∈ Rp and b ∈ Rq . Suppose that this loss is minimized with a Meijer G-function

f̂(x) = Gm,np,q

(
a∗

x
b∗

)
∼ xv for x→ 0+, (13)

where v ∈ R+. Define the half-line through the optimum

D =

{
(a∗ + λ1p , b

∗ + λ1q)

∣∣∣∣ λ < max

(
−1 + 2v

2
,−(1 + u+ v)

)}
⊂ Rp+q. (14)

Then the MSE loss (12) diverges on D.

Proof. The proof is a simple application of the following property of Meijer G-functions:

Gm,np,q

(
a+ λ1p x
b+ λ1q

)
= xλ Gm,np,q

(
a

x
b

)
λ ∈ R. (15)

We use this to rewrite the loss around the optimum as

L (a∗ + λ1p, b
∗ + λ1q) =

∫ 1

0

dx

[
f(x)−Gm,np,q

(
a∗ + λ1p x
b∗ + λ1q

)]2
=

∫ 1

0

dx

[
f(x)− xλ Gm,np,q

(
a∗

x
b∗

)]2
.

(16)

We note that the integrand behaves as[
f(x)− xλ Gm,np,q

(
a∗

x
b∗

)]2
∼ x2u + x2v+2λ − 2.xu+v+λ for x→ 0+. (17)

It follows trivially that the integral in (16) diverges whenever 2v + 2λ < −1 or u + v + λ < −1,
which proves the proposition.

This proposition indicates a region of the parameter space where the loss is ill-defined. The first
thing that should be noted is that the loss might be ill-defined on a larger region than D under more
restrictive assumptions.
To make this proposition more explicit, we give a simple example where this proposition applies.
Assume that f(x) = exp(−x). It follows immediately that u = 0. As a matter of fact, this function
can be perfectly approximated with the following Meijer G-function:

f̂(x) := G1,0
0,1

(
—

x
0

)
= exp(−x). (18)
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Figure 2: True loss compared to the numerical approximation computed with the library mpmath.

As above, it follows that v = 0. Any Meijer G-functions in G1,00,1 is parametrized by a single real
parameter b ∈ R and can be written

fb(x) = G1,0
0,1

(
—

x
b

)
. (19)

If we apply Proposition 3.1, we find that the loss diverges whenever b < −1/2. In this case though,
we can evaluate the loss explicitly:

L(b) =

∫ 1

0

dx

(
exp (−x)− G1,0

0,1

(
—

x
b

))2

=

∫ 1

0

dx exp (−2x)
(
1− xb

)2
.

(20)

From (20), we see that when b < 0, the integrand behaves as x−b when x→ 0+ so that the integral
diverges whenever b < −1/2. Everything is consistent with Proposition 3.1.

It is instructive to compare the analytic result (20) to a numerical evaluation of the loss using
the meijerg class from the Python library mpmath [5]. We note on Figure 2 that the numerical
approximation computed with mpmath cannot be trusted as we are getting closer to the singularities
b < −1/2. This figure confirms that the numerical loss surface is accurate above the optimum b = 0.
Therefore, we have to approach the optimum by above (b > 0 here) to avoid the singularities.

By giving a closer look at Figure 2, we can make another remark about the loss landscape of Meijer
G-function approximations. We note that the loss surface is flat near the optimum b = 0. In this setup,
this simply tells us that many Meijer G-function can approximate the Black-box function f with a
very good accuracy. In practice, there is no guarantee that all these Meijer G-functions in the vicinity
of the optimum reduce to the same functional form as the optimum. For instance, a bad case scenario
would be the one depicted in Figure 3: most of the Meijer G-function around the optimum in the
parameter space don’t reduce to a function whose expression looks like the optimum. To relate this to
our above example, this would translate into Meijer G-function that are not exponential when b is not
close enough to zero. However, in practice, if we have a symbolic model that is accurate and whose
expression can realistically be digested by a human brain, our symbolic model already provides a
sensible way to probe the black-box.
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Figure 3: A possible bad case scenario in the parameter space of a single Meijer G-function.

4 Cancelling poles with a lasso penalty

As we have seen in Section 1, it is possible to cancel some poles in the integral defining the Meijer
G-function. Let us take a simple example to see how it works. We start with a function included in
G1,12,2 and show that it reduces to a function included in G0,11,1 :

G1,1
2,2

(
1, π

x
π, 2

)
=

1

2πi

∫
L
ds xs�

���Γ(π − s)Γ(1− 1 + s)

Γ(1− 2 + s)����Γ(π − s)

=
1

2πi

∫
L
ds xs

Γ(1− 1 + s)

Γ(1− 2 + s)

= G0,1
1,1

(
1

x
2

)
∈ G0,11,1 .

(21)

More generally, we will now change slightly the notation for Meijer G-function to make the parts that
can cancel with each other more explicit. Let us denote the Meijer G-function in the following way:

Gm,np,q

(
α,γ

x
β, δ

)
, (22)

where α = (a1, . . . , an) ; γ = (an+1, . . . , ap) ; β = (b1, . . . , bm) ; δ = (bm+1, . . . , bq). By
comparing with the above example, we see that the elements of α can cancel the elements of δ while
the elements of β can cancel the elements of γ. How can we enforce this poles to simplify in order to
end up with a simpler Meijer G-function? This can be done by adding a Lasso term to the MSE loss
that we define in Section 4 of the paper. Remember that our Symbolic Pursuit algorithm solves the
following itteration problem at each iteration:

(gk, vk, wk) = arg min
GH×Rd×R

∫
X
dx

[
rk(x)− w.g

([
vT · x
||v||
√
d

]+)]2
. (23)

In each subset Gm,np,q of GH, this corresponds to the following loss with respect to the residual r:

L(α,β,γ, δ, v, w) =

∫
X
dx

[
r(x)− w.Gm,np,q

(
α,γ [

vT ·x
||v||
√
d

]+
β, δ

)]2
. (24)

We could add to this loss a penalty that pushes poles to cancel with zeroes very simply:

L̃(α,β,γ, δ, v, w) = L(α,β,γ, δ, v, w) +
λ

min(p, q −m)

min(p,q−m)∑
i=1

|αi − δi|

+
λ

min(q, p− n)

min(q,p−n)∑
i=1

|βi − γi|,

(25)
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with the convention that 1/0
∑0
i=1(...) = 0 and λ ∈ R being the Lasso coefficient. Note that we have

normalized each sum by its number of terms so that the Meijer G-function that contain more zero-pole
pairs are not penalized. This new optimization problem is naturally endowed with a threshold : if one
of the term inside the 4 sums in (25) is bellow the coefficient λ, this term is set to zero so that the
cancellation mechanism occurs. Finally, we stress that this new optimization problem should come in
complement to the optimization that is solely based on the MSE. Because we loose accuracy with the
lasso, it should be used in the case where the model obtained with the MSE only is not interpretable.
In the worst case scenario where neither the MSE nor the lasso optimization produce an interpretable
result, we could try a search algorithm around the optimum to look for an interpretable approximation.
We leave this track open for future works.

5 Pseudo code of Symbolic Pursuit

The pseudocode that we use in our implementation of the Symbolic Pursuit algorithm is the follow-
ing.2

Algorithm 1: Symbolic Pursuit
Input : Black-box Model f ; Training Set T = {x1, . . . , xN} ⊂ X
Output : Symbolic model f̂ for f
Draw N weights λ1, . . . , λN ∼ Beta (0.2, 0.2) ;
Draw N couples (x̃A1 , x̃

B
1 ), . . . , (x̃AN , x̃

B
N ) ∼ U

(
T2
)

;
Initialize the symbolic training set x̃i = λix̃

A
i + (1− λi)x̃Bi , ∀i = 1, . . . , N ;

Initialize the residual vectors r0 ← [f(x̃i)]i=1,...,N and r1 ← 0 ;
while ‖rk+1‖/‖rk‖ < tolerance do

(gk, vk, wk)← arg minGH×Rd×R
∑N
i=1

[
rk(x̃i)− wg

([
v>x̃i

‖v‖
√
d

]+)]2
;

rk+1 ← rk −
[
wk.gk

([
v>k x̃i

‖vk‖
√
d

]+)]
i=1,...,N

;

for l = 1, . . . , k − 1 do
(m,n, , p, q)← hyperparameters(gl);

(gl, vl, wl)← arg minGm,n
p,q ×Rd×R

∑N
i=1

[
rk,l(x̃i)− wg

([
v>x̃i

‖v‖
√
d

]+)]2
;

rk+1 ← rk −
[
wl.gl

([
v>l x̃i

‖vl‖
√
d

]+)]
i=1,...,N

;

end
k ← k + 1 ;

end

f̂(x)←
∑
k wkgk

([
v>k ·x
‖vk‖

√
d

]+)
;

Note that, to alleviate the back-fitting procedure, we have restricted the optimization correcting each
term to the subset Gm,np,q of GH. Keep in mind that the black box model we are trying to interpret
has been trained on some particular dataset, and that different training data would probably yield
a different black box model. On the one hand, we do not want to train our interpreter on the same
training data as the black box model because that would tend to produce another predictive model
rather than an interpretation of the black box model. On the other hand, we do not want to train our
interpreter on some data that is unconnected to the data that was used to train the black box model.
We therefore use a mixup strategy [7]: we create new samples whose features x are random convex
combinations of the features of samples in the actual training data and query the black box model for
the value f(x).

2In this section and in Section 6, the index i in xi is used to label different samples from a set of data points.
This is different from the notations in the main paper and from Section 2 where this index is used to label the
components of a given data point. We did this slight change so that the notations remain concise and familiar.
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6 Experiments

In the our experiments with the real-world datasets, we use the usual definitions for the MSE and the
determination coefficient R2. However, there is a slight subtlety due to the fact that we are comparing
several quantities. To make this clear, let us assume that we have a black-box f : X → Y and the
associated symbolic model f̂ : X → Y . Let {(xi, yi) ∈ X × Y | i = 1, . . . , N} be a test set used to
evaluate the performance of our models. Let us now give a precise definition of the metrics appearing
in the main paper in all the possible scenarios. When we are evaluating the performances of the
black-box, we use the following metrics:

MSE =
1

N

N∑
i=1

(yi − f(xi))
2 (26)

R2 = 1−
∑N
i=1 (yi − f(xi))

2∑N
i=1 (yi − ȳ)

2
, (27)

where ȳ = N−1
∑N
i=1 yi denotes the average of the test labels. These two metrics correspond to

the column Black-Box in Table 2 from the main paper. We can easily adapt the definition of these
metrics to asses the performances of the symbolic model:

MSE =
1

N

N∑
i=1

(
yi − f̂(xi)

)2
(28)

R2 = 1−

∑N
i=1

(
yi − f̂(xi)

)2
∑N
i=1 (yi − ȳ)

2
, (29)

These two metrics correspond to the column Symbolic in Table 2 from the main paper. Finally, we
can adapt the definition of these metrics to asses the quality of f̂ as an approximation of f :

MSE =
1

N

N∑
i=1

(
f(xi)− f̂(xi)

)2
(30)

R2 = 1−

∑N
i=1

(
f(xi)− f̂(xi)

)2
∑N
i=1

(
f(xi)− f̄

)2 , (31)

where f̄ = N−1
∑N
i=1 f(xi) denotes the average of the black-box labels. These two metrics

correspond to the column Symbolic vs Black-Box in Table 2 from the main paper.
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