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Abstract

Machine Learning has proved its ability to produce accurate models – but the
deployment of these models outside the machine learning community has been
hindered by the difficulties of interpreting these models. This paper proposes an
algorithm that produces a continuous global interpretation of any given continuous
black-box function. Our algorithm employs a variation of projection pursuit in
which the ridge functions are chosen to be Meijer G-functions, rather than the
usual polynomial splines. Because Meijer G-functions are differentiable in their
parameters, we can “tune” the parameters of the representation by gradient descent;
as a consequence, our algorithm is efficient. Using five familiar data sets from the
UCI repository and two familiar machine learning algorithms, we demonstrate that
our algorithm produces global interpretations that are both highly accurate and
parsimonious (involve a small number of terms). Our interpretations permit easy
understanding of the relative importance of features and feature interactions. Our
interpretation algorithm represents a leap forward from the previous state of the
art.

1 Introduction

What do we need to trust the predictions of the black-box models crafted by our Machine Learn-
ing (ML) algorithms? Although the ML community has succeeded in generating accurate models in
a very wide variety of settings, it has not yet succeeded in convincing most practitioners to adopt
these models. One possible reason is that many practitioners will use familiar models over more
accurate models that they do not understand. For a striking example, we cite the area of medical
risk prediction, in which clinical models have remained the standard despite the fact that ML models
are demonstrably more accurate. The explicitly stated reason for this is that an acceptable model
must be both accurate and transparent [24]; state-of-the-art clinical models are transparent while
state-of-the-art ML models are not. In responding to this challenge, one possibility would be to focus
on the design of ML models that are themselves transparent; an alternative possibility is to make a
given ML model more transparent by providing an interpretation of that model.

As detailed in Section 5, a substantial literature in the ML community follows the latter ap-
proach, but not entirely successfully. To understand the challenge that we are addressing here,
it is instructive to make a simple thought experiment. Let us assume that the data follows a
Cox proportional hazards model [10]. For such a model, the hazard rate at time t is given by
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H(t | x1, . . . , xd) = h0(t) exp
(∑d

i=1 bixi
)
, where h0(t) is a baseline hazard, which potentially

depends on time, x1, . . . , xd are the features and the coefficients b1, . . . , bd ∈ R represent the im-
portance of each feature. Suppose that we are interested in identifying the part of this model which
only depends on the features. This part is trivially given by f(x) = exp

(∑d
i=1 bixi

)
. We shall here

consider this as the “black-box” that we would like to identify by using our interpretability method.
If our interpretability method produces linear models, as it is the case for LIME [37], we could obtain
an estimator f̂(x) = 1 +

∑d
i=1 bixi for f . On the other hand, a polynomial estimator [2] for f would

be of the form f̂(x) = 1 +
∑d

i=1 bixi/1! + (
∑d

i=1 bixi)
2
/2! + finite number of terms. It goes without

saying that neither of those interpretable models captures an exponential relationship globally, hence
precluding a global interpretation of the black-box model. Would it be possible to overcome these
limitations of the state-of-the-art algorithms for interpretability? More precisely, is there a way to
build a regressor allowing to capture a large class of interpretable functions globally? Needless to
say that a positive answer to these questions would have a tremendous impact on the interpretability
landscape in Machine Learning. To tackle this problem, we build a new approach on top of the two
following corner stones.

Projection Pursuit. The projection pursuit algorithm is widely known in the statistics literature [13,
20, 22, 39]. Projection pursuit builds an approximation to a given function by proceeding in stages. In
each stage, the algorithm finds a direction in the feature space and a ridge function of that direction
that best approximate the residual between the given function and the approximation constructed in the
previous state. The process continues until the desired degree of accuracy is achieved. In projection
pursuit, the ridge functions are typically polynomial splines [18]. This reliance on polynomial splines
means that prediction pursuit suffers from the very shortcoming noted above: it permits only local
interpretations and hence does not suggest any global structure. For this reason, we should work with
another family of functions.

Meijer G-functions. Instead of polynomial splines, we use functions from the class of Meijer G-
functions. This class of functions includes all of the familiar functions used in modeling (polynomial,
exponential, logarithmic, trigonometric and hypergeometric functions). A Meijer G-function is
defined by four non-negative integer hyperparameters and an array of real parameters. An interesting
property of these functions is that we can efficiently compute a numerical gradient of the Meijer
G-functions with respect to these parameters. This allows to use gradient-based optimization [1].

Contribution. In this paper, we introduce a new algorithm called Symbolic Pursuit that produces an
interpretable model for a given black-box. As in a projection pursuit, our algorithm gradually adds
more terms in the model until the desired precision is achieved. In our analysis, we address a major dif-
ficulty introduced by using G-functions as ridge functions : the hyperparameters. As aforementioned,
each G-function has four hyperparameters to tune. Fortunately, we show that there exist a set of five
hyperparameter configurations that covers most familiar functions (polynomial, rational, exponential,
trigonometric and hypergeometric functions). By restricting to these configurations, each G-function
is optimized efficiently over a sufficiently large class of functions. Consequently, we demonstrate
that our Symbolic Pursuit algorithm allows to produce highly accurate global models (that we call
symbolic models) for black-boxes with a small number of G-functions. With our algorithm, one to
five G-functions are enough to approximate a black-box model fitting a real world dataset. This is a
leap forward from the previous state-of-the-art.

To make the paper self-contained, we start with a short presentation of the projection pursuit algorithm
and Meijer G-functions in Section 2. We address the hyperparameter optimization problem of Meijer
G-functions in Section 3. After these theoretical considerations, we assemble all the pieces to
construct the Symbolic Pursuit algorithm in Section 4. We compare this algorithm to the state-of-
the-art interpretability methods in Section 5. Finally, we demonstrate that our algorithm produces
globally symbolic models with outstanding approximation power and parsimonious expressions on
five real-world datasets in Section 6.

2 Mathematical preliminaries

We begin by recalling the projection pursuit algorithm, which we shall reshape for our purpose in
Section 4. Then we review the definition of Meijer G-functions that we use as the building blocks of
the Symbolic Pursuit algorithm.
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2.1 Projection Pursuit

Let X = [0, 1]d be a normalized feature space, Y ⊆ R be a label space and f : X → Y be a
black-box model (e.g. a neural network). Because we view f as a black-box, we do not know the true
form of f , but we assume we can evaluate f(x) for every x ∈ X ; i.e. we can query the black-box.
The projection pursuit algorithm [13] constructs an explicit model f̂ for f of the form

f̂(x) =

K∑
k=1

gk
(
v>k x

)
, (1)

where vk ∈ Rd is a vector (onto which we project the feature vector x ∈ X ) and each gk is a function
belonging to a specified class F of univariate functions. Because the functions x 7→ gk

(
v>k x

)
are

constant on the hyperplanes normal to vk, they are usually called ridge functions.

The approximation is built following an iterative process. At stage j ∈ N∗, we suppose that
the approximation f̂j of the above form, but having only j − 1 terms, has been constructed; i.e.,
f̂j(x) =

∑j−1
k=1 gk

(
v>k x

)
1. We define the residual rj = f − f̂j and find a vector vj and a function

gj ∈ F to minimize the L2 norm of the updated residual:

(gj , vj) = arg min
F×Rd

∫
X

[
rj(x)− g

(
v>x

)]2
dF (x) (2)

where F is the cumulative distribution function on the feature space. This process is continued until
the L2 norm of the residual is smaller than a predetermined threshold. This algorithm is typically
complemented with a back-fitting strategy in practice [17].

In principle, projection pursuit would seem an excellent approach to interpretability because each
stage provides one term in the approximation and the process can be terminated at any stage.
Hence projection pursuit allows a trade-off between the accuracy of the representation f̂ and the
complexity of f̂ . In practice, however, the class F is usually taken to be the class of polynomial
splines – often of low degree (e.g. cubic) [20]. This has the advantage of making each stage of the
algorithm computationally tractable, but the disadvantage of often leading to representations that
involve many terms. Moreover, often even the individual terms in these representations do not have
natural interpretations. These considerations suggest looking for a different class of functions that
retain computational tractability while leading to representations that are more parsimonious and
interpretable.

2.2 Meijer G-functions

Is there a set of functions F that includes most interpretable functions and that would allow solving
the optimization problem (2) with standard techniques? The answer to this question is yes. The set of
Meijer G-function, that we denote G, fulfils these two requirements, as discussed in [1]. We shall
thus henceforth restrict our investigations to F = G. Here, we briefly recall the definition of a Meijer
G-function [5].
Definition 2.1 (Meijer G-function [5]). A Meijer G-function is defined by an integral along a path L
in the complex plane,

Gm,np,q

(
a1, . . . , ap z
b1, . . . , bq

)
=

1

2πi

∫
L
zs

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

ds, (3)

where ai, bj ∈ R ; ∀i = 1, . . . , p ; j = 1, . . . , q ; m,n, p, q ∈ N with m ≤ q , n ≤ p and Γ is
Euler’s Gamma function. The path of integration L is chosen so that the poles associated to the
two families of Gamma functions (one family for the a’s and one family for the b’s) lie on different
sides of L.2 The definition yields a complex-analytic function in the entire complex plane C with the
possible exception of the origin z = 0 and the unit circle {z ∈ C : |z| = 1}. We will only consider
its behavior for real z in the open unit interval (0, 1) ⊂ R. We write G for the class of all Meijer
G-functions.

1If j = 1 then f̂1 ≡ 0.
2We omit some technical details and restrictions; see [5] for details.
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This set of function is interesting because it includes most familiar functions such as exponential,
trigonometric and hypergeometric functions as particular cases [31]. For example, the negative
exponential function is

exp(−x) = G1,0
0,1

(
—

x
0

)
.

Furthermore, we can compute a numerical gradient of these function with respect to the real parame-
ters ai, bj , hence allowing the use of gradient-based optimization. In the following, it will be useful
to denote Gm,np,q the set of Meijer G-functions of hyperparameters m,n, p, q. The full set of Meijer
G-function can thus be decomposed as

G =
⋃
p,q∈N

p⋃
n=0

q⋃
m=0

Gm,np,q . (4)

It should already be obvious at this stage that we won’t be able to search in all of these subsets
of G so that m,n, p, q will have to be fixed as hyperparameters. How much are we restricting the
possibilities by doing so? Is there a clever restriction that would include most familiar functions? We
will elaborate on these questions in Section 3.

3 Hyperparameters climbing down the trees

In this section, we address a major theoretical challenge related to the use of Meijer G-functions:
the number of hyperparameters. More precisely, we have 4 hyperparameters (m,n, p, q) ∈ N4

to tune for each Meijer G-function appearing in the expansion (1). It should be obvious that we
cannot search across every subclass Gm,np.q . Fortunately, this is not necessary; we can choose a set
H of 4-tuples of hyperparameters that is large enough that the subclasses Gm,np.q ; (m,n, p, q) ∈ H
encompass sufficiently many functions but small enough that searching within and across these
subclasses is computationally tractable. Our choice of H relies on two following results.

First, we note that the subsets Gm,np,q of G associated with different values of the hyperparameters are
not disjointed. Indeed, we show that the following result holds:

Lemma 3.1. For all (m,n, p, q) ∈ N4 such that p, q ≥ 1:

• If m ≥ 1 : Gm−1,np−1,q−1 ⊂ Gm,np,q

• If n ≥ 1 : Gm,n−1p−1,q−1 ⊂ Gm,np,q

Proof. A detailed proof can be found in Section 1 of the supplementary material.

Figure 1: The tree of inclusions starting
from G1,12,2 .

This important lemma tells that, during the optimization,
we can explore different values of (m,n, p, q) than the
one initially fixed. To illustrate, consider the 4-tuple
(m,n, p, q) = (1, 1, 2, 2). Lemma 3.1 implies that G1,12,2

contains both G0,11,1 and G1,01,1 , and that each of these in
turn contains G0,00,0 , as in Figure 1. Therefore, starting
with (m,n, p, q) = (1, 1, 2, 2) also allows to explore
(m,n, p, q) = (0, 1, 1, 1), (1, 0, 1, 1), (0, 0, 0, 0) at the
same time. This concept can be generalized so that the
subsets of G can be represented in terms of trees of inclu-
sion, such as the one from Figure 1. Building on this idea
of trees of inclusion, we propose to choose a clever finite set of configurations for the hyperparameters
which allows to recover most closed form expressions.

Proposition 3.1. Consider the set of Meijer G-functions of the form

f̂(z) = Gm,np,q

(
a1, . . . , ap s ·

zrb1, . . . , bq

)
, (5)
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where a1, . . . , ap, b1, . . . , bq ∈ R ; r, s ∈ R and the hyperparameters belong to the configuration set
(m,n, p, q) ∈ H = {(1, 0, 0, 2), (0, 1, 3, 1), (2, 1, 2, 3), (2, 2, 3, 3), (2, 0, 1, 3)}. This set of function
includes all the functions with the form

f(z) = Φ(w · zq) · zt, (6)

with w, q, t ∈ R ; Φ ∈
{

id, sin, cos, sinh, cosh, exp, log(1 + ·), arcsin, arctan, Jν , Yν , Iν ,
1

1+· ,Γ
}

where Jν , Yν , Iν are the Bessel functions and Γ is Euler’s Gamma function.

Remark. The above set of Meijer G-function includes much more function than the one depicted
in (6). The purpose of the above proposition is only to suggest the generality of the symbolic model
that we can assemble by using these Meijer G-functions as building blocks. Here, we note that our
choice allows to cover many exponential, trigonometric, rational and Bessel functions.

Proof. A detailed proof can be found in Section 1 of the supplementary material.

This theorem gives a very satisfying prescription for the hyperparameters. Building on this, we now
have a realistic restriction of G that we can use for the set F appearing in (2). We shall henceforth
use the following notation for this restriction:

GH =
⋃

(m,n,p,q)∈H

Gm,np,q . (7)

Therefore, our Symbolic Pursuit algorithm will search over the set of functions F = GH. All the
ingredients are now ready to build the algorithm, this is the subject of next section.

4 Symbolic Pursuit

In this section, we build our Symbolic Pursuit algorithm. With all the ingredients we have prepared
in the previous sections, this will be straightforward. The starting point is naturally to consider the
functions g1, . . . , gK appearing in (1) to be elements of GH. However, we have to be careful because
Meijer G-functions might not be defined when z = 0, 1. By looking at (1), we note that the arguments
of each function gk takes the form v>k x for k = 1, . . . ,K. We shall now scale this linear combination
so that it stays in the domain (0, 1) of the Meijer-G function gk.

The Cauchy-Schwartz inequality for the l2 inner product guarantees that |v>k x| ≤ ‖vk‖.‖x‖. Our
normalization for x ∈ X = [0, 1]d guarantees that ‖x‖ ≤

√
d. By mixing these two ingredients, we

get
|v>k x|
‖vk‖
√
d
≤ 1. (8)

Therefore, we can simply take the ReLU of v>k x

‖vk‖
√
d

as an admissible argument for the G-function gk3.
In conclusion, we make the following replacement in (1):

v>k x −→
(

v>k x

‖vk‖
√
d

)+

≡ max

(
0,

v>k x

‖vk‖
√
d

)
. (9)

Note that, in this way, the argument remains a linear combination of the features in the region where
this linear combination is positive4.

Because our optimization problem is non-convex, it is helpful to allow our pursuit algorithm to
correct the output of previous iterations at each iteration via a back-fitting strategy. A conventional
way to implement this is to add a weight wk in front of each term in the expansion (1) and optimize
this weight during the back-fitting procedure [15]. This will guarantee that terms that are constructed

3This is not formally true since the inequality in (8) is not strict. However, this is not important in practice
since we can perfectly normalize the features to a closed interval included in (0,1).

4Which would not be the case if we had used a sigmoid to restrict the range of the argument.
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at some iteration of the algorithm and found to be largely irrelevant at some later iteration will be
assigned a small weight. We can now rewrite the symbolic model (1) as

f̂(x) =

K∑
k=1

wk · gk

([
v>k x

‖vk‖
√
d

]+)
. (10)

Similarly, we can reformulate the optimization problem (2) as

(gk, vk, wk) = arg min
GH×Rd×R

∫
X

[
rk(x)− w · g

([
v>x

‖v‖
√
d

]+)]2
dF (x). (11)

Note that the optimization over gk takes into account the five hyperparameters configuration. The
objective function in (11) is solved by trying each configuration and keeping the one associated to the
smallest loss. At each step of the projection pursuit algorithm, we shall use a back-fitting strategy to
correct all the terms that already appear in the expansion. Keeping this in mind, the back-fitting for
the term l ∈ {1, . . . , k − 1} will consist in minimizing the residue which excludes the contribution
of term l at iteration k

rk,l(x) ≡ f(x)−
k∑
j 6=l

wj · gj

[ v>j x

‖vj‖
√
d

]+ . (12)

The pseudo code of Symbolic Pursuit is provided in Section 5 of the supplementary material, in which
we write our algorithm that solves this optimization problem step by step. It should be stressed that,
on a mathematical ground, using Meijer G-functions in optimization problems is far from anodyne.
We elaborate on some theoretical impact of this choice on the behavior of the loss function in Section
3 of the supplementary material.

5 Related work

Table 1: Symbolic Pursuit and the state-of-the-art interpretability methods.

Algorithm Feature Importance Feature Interaction Model Independent Global Parsimonious

GA2M [30]

LIME [37]

SHAP [32]

DeepLIFT [40]

L2X [7]

NIT [42]

INVASE [45]

Symb. Metamodel [1]

Symbolic Pursuit

In this section, we compare our algorithm to some of the most popular state-of-the-art interpretability
methods, this discussion is summarized in Table 1. Like most methods, our Symbolic Pursuit
algorithm allows to learn about feature importance and feature interaction for each prediction. We
shall give more details about these two points in Section 6. Unlike methods such as DeepLIFT [40] or
NIT [42], our method is model independent (i.e. not specialized for a particular class of black-box),
as we shall demonstrate in Section 6. However, unlike the other methods, which provide only local
information, Symbolic Pursuit also provides global information. This comes from the fact that
Meijer-G functions allow to capture a large class of closed form expressions globally, as we detailed
in Section 1 and 3. The only other interpretive method that provides global information is the method
of Symbolic Metamodeling [1], which also makes use of Meijer G-functions. However, this last
method fails to produce parsimonious expressions since it produces an additive model

f̂(x1, . . . , xd) =

d∑
i=1

gi(xi) +

d∑
i=1

∑
j<i

gij(xi · xj), (13)
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where the g’s are Meijer G-function. This model is made of d+ d(d−1)/2 = d(d+1)/2 terms. For ten
features d = 10, this corresponds to 55 terms. The size of the Symbolic metamodel enormously
increases the burden of constructing interpretations, which makes it hard to use in most practical
situations. Moreover, only one hyperparameter configuration is explored for all of these terms since
all the terms are optimized simultaneously. In the language that we have introduced in Section 3,
this means that only one hyperparameter tree can be explored for all the G-functions g’s. Indeed,
exploring all the hyperparameter configurations that we have identified in Section 3 would require to
solve |H|d(d+1)/2 = 5d(d+1)/2 optimization problems corresponding to each choice of hyperparameter
configuration for each g. This is unrealistic when d is large. Therefore, it is not possible to identify all
the familiar functions simultaneously, since these are associated to different hyperparameter trees5.

To solve these issues, we introduced the Symbolic Pursuit algorithm which benefits from the ability to
produce parsimonious expressions. More precisely, this method encapsulates perfectly the trade-off
between accuracy and interpretability as larger (and therefore less interpretable) expressions will
typically be more accurate. Therefore, parsimony naturally translates into stopping the optimization
when a reasonable accuracy has been achieved. We will show in Section 6 that, even for real world
datasets, this does not require a large number of terms.

6 Experiments

6.1 Synthetic data

In this section, we evaluate the performance of Symbolic Pursuit on several synthetic datasets 6. In
order to compare the performance of our method against popular interpretability methods, we shall
restrict to explanations in the form of feature importance. More precisely, we focus on a pseudo
black-box f for which the feature importance is known unambiguously. Here, we consider a three
dimensional linear model

f (x1, x2, x3) = β1 · x1 + β2 · x2 + β3 · x3 = β>x,

where β = (β1, β2, β3) ∈ R3 and x = (x1, x2, x3) ∈ [0, 1]3. Since this pseudo black-
box is merely a linear model, we expect the interpretability methods to output an importance
vector of β for each test point. Because only relative importance matters in practice, we as-
sume that all the importance vectors are normalized so that β ∈ S2 where S2 is the 2-sphere.

Method ‖β − β̂‖2
LIME 0.66± 0.07
SHAP 0.66± 0.07

Symbolic 0.02± 0.05

Table 2: Symbolic Pursuit on synthetic data.

In our experiment, we start by drawing a true
importance vector β ∼ U([1, 10]3) that we nor-
malize subsequently. Then, we build a Symbolic
model, a LIME explainer [37] and a SHAP ex-
plainer [32] for f . Finally, we draw 30 test
points xtest ∼ U([0, 1]3) that we input to the
three interpretability methods to build an estima-
tor β̂ for β. We reproduce this experiment 100
times and report the MSE between β̂ and β for
each interpretability method in Table 2. We note
similar performances of SHAP and LIME and a significant improvement with Symbolic Models.

6.2 Real world data

In this section, we evaluate the performance of Symbolic Pursuit on two popular black-box models – a
Multilayer Perceptron (MLP) and Support Vector Machine (SVM) – applied to five UCI datasets [12]
including Wine Quality Red (Wine) and Yacht Hydrodynamics (Yacht), Boston Housing (Boston),
Energy Efficiency (Energy) and Concrete Strength (Concrete). Both models are implemented using
the scikit-learn library [6] with the default hyperparameters. For each experiment, we split
the dataset into a training set (80%) and a test set (20%). The training set is used to produce the
Black-Box model and the Symbolic Model (via a mixup strategy for the later, as detailed in Section

5For instance x 7→ exp(−x) ∈ G1,00,1 and x 7→ ln(1 + x) ∈ G1,22,2 and these two sets cannot be put in a same
tree of inclusion via Lemma 3.1.

6The code for Symbolic Pursuit is available at https://bitbucket.org/mvdschaar/mlforhealthlabpub and
https://github.com/JonathanCrabbe/Symbolic-Pursuit.
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5 of the supplementary material); the test set is used to test the model performance. We repeat
the experiment five times with different random splits and report averages and standard deviations.
Table 3 shows the mean squared error (MSE) and R2 of the black-box models against the true labels,
the approximation MSE and R2 of the symbolic models against the corresponding black-box models,
the MSE and R2 of the symbolic model against the true labels, and the number of terms in the
symbolic models constructed for each of the five random splits.7 The precise definition of the metrics
we use here can be found in Section 6 of the supplementary material. As can be seen in Table 3
(Symbolic vs Black-box), all the symbolic models achieve low MSE and high R2 with respect to
the black-box model. Indeed, in nine of ten cases the R2 is above 0.95, and in the tenth it is above
0.90. Moreover, in 15/50 instances, the symbolic model has only a single term, in 36/50 instances the
symbolic model has at most two terms and in 48/50 instances the symbolic model has at most three
terms. This provides strong evidence that Symbolic Pursuit produces interpretations that are both
accurate and parsimonious, as previously asserted.

Table 3: Symbolic Pursuit results on the five UCI datasets [12].

Models Datasets Black-box Symbolic vs Black-box Symbolic # Terms
MSE R2 MSE R2 MSE R2

MLP

Wine 0.016 ± .002 0.179 ± .061 0.001 ± .001 0.964 ± .018 0.016 ±.002 0.179 ± .054 1, 1, 1, 2, 1
Yacht 1.433 ± .681 0.426 ± .233 0.008 ± .014 0.978 ±.023 1.458 ± .653 0.413 ± .225 2, 2, 2, 1, 2

Boston 0.050 ± .015 0.681 ± .063 0.004 ± .001 0.952 ± .021 0.053 ± .016 0.660 ± .066 1, 3, 3, 3, 2
Energy 0.015 ± .001 0.926 ± .012 0.002 ± .001 0.988 ± .004 0.016 ± .003 0.918 ± .013 2, 2, 2, 1, 2

Concrete 0.100 ± .006 0.538 ± .061 0.001 ± .000 0.988 ± .003 0.100 ± .005 0.533 ± .056 1, 2, 3, 2, 3

SVM

Wine 0.014 ± .001 0.331 ± .026 0.001 ± .001 0.904 ± .038 0.014 ± .001 0.301 ± .039 1, 2, 1, 1, 1
Yacht 0.723 ± .179 0.555 ± .036 0.010 ± .015 0.973 ± .043 0.737 ± .197 0.547 ± .050 3, 1, 2, 2, 2

Boston 0.040 ± .005 0.740 ± .053 0.001 ± .001 0.984 ± .017 0.043 ± .006 0.724 ± .046 3, 3, 2, 1, 2
Energy 0.015 ± .002 0.928 ± .007 0.002 ± .003 0.985 ± .016 0.018 ± .002 0.913 ±.006 2, 3, 2, 3, 2

Concrete 0.069 ± .005 0.676 ± .039 0.003 ± .002 0.971 ± .015 0.082 ± .011 0.623 ± .043 3, 5, 3, 1, 5

In this setup, it is possible to do algebraic manipulations on a symbolic model to extract transparent
information of the black-box model. For instance, we could simply inspect the components of each
vector vk to get an idea of the feature importance. We could also differentiate the G-function gk
with respect to the features to obtain the gradients in closed form expression. Most importantly, it
is realistic to do these operations by hand at this stage since the expressions are short, the Meijer
G-functions can be differentiated with respect to their argument easily [31] and their arguments
are linear combinations of features. To illustrate, we use one of the interpretations of MLP on the
Wine dataset; in order not to make the task too easy, we use the split that produces two terms in the
interpretation, rather than any of the splits that produce a single term. With our notations, f denotes
the MLP black-box and f̂ denotes its symbolic model. Because f̂ has two terms, it can be written as

f̂(x) = w1g1

(
v>1 x

‖v2‖
√
d

)
+ w2g2

(
v>2 x

‖v2‖
√
d

)
. (14)

By construction, g1, g2 ∈ GH but in this instance g1, g2 do not appear to have expressions in terms of
familiar functions. Despite this, we can easily extract useful information from (14) by building local

polynomial models via a Taylor expansion of g1 and g2, respectively. Let zj =
v>j x

‖vj‖
√
d

for j = 1, 2.
Using the Taylor expansion of g1 and g2, we produce the first order Taylor expansion of the symbolic
model f̂(x) around an instance x from the test set:

f̂1(x) = ṽ>x+ c̃ = c0 + c1,1z1 + c1,2z2. (15)

In this particular instance x, we find that c̃ = 0.8399, c0 = 1.001, c1,1 = −0.2339, c1,2 = 0.3280;
the values of ṽ, v1, v2 are displayed in Figure 2 (b-d).

Let us now compare this linear model offered by f̂1(x) with a local linear surrogate model computed
with LIME [37]. LIME explainer suggests that the most important features for the MLP model at
x are x10 (alcohol), x9 (sulphates) and x8 (pH) (See Figure 1 of the supplementary material). The
first order interpreter f̂1(x) in (15) agrees with this, since x8, x9 and x10 have the highest weight

7If the symbolic model is a good approximation of the black-box model, it will necessarily have a similar
MSE and R2 against the true labels, as shown in the Black-box and Symbolic column of Table 3.
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Figure 2: Coefficients and feature weights in our symbolic model.

in ṽ, as shown in Figure 2 (b). However, the agreement is not perfect since LIME also suggests
that x5 (free sulfur dioxide) and x6 (total sulfur dioxide) are important and our interpreter does
not. Unlike LIME, our interpreter can easily provide a second-order Talor expansion of g1 and
g2 to suggest important interactions between features. The second-order Taylor expansion of f̂(x)

has the form f̂2(x) = f̂1(x) + c2,1z
2
1 + c2,2z

2
2 ≈ f̂1(x) + c2,1(v>1 x)2. In this case we find that

c̃ = 0.8399 c2,1 = 0.0623 and c2,2 = −0.0002 so that the interactions appearing in z21 are important
compared to the interactions in z22 . Hence we can see from Figure 2 (c) that x1 (fixed acidity) has
important interactions with features x7 (density), x9 and x10 but not x8, despite the fact that x8 itself
is an important feature. This short discussion allows to see that the major advantage of our method
compared to LIME is that we can go beyond a linear model to capture nonlinear properties of the
black-box, such as feature interactions.

7 Conclusion

This paper has proposed an algorithm that produces a global interpretation of any given continuous
black-box function. Our algorithm employs a variation of projection pursuit in which the ridge
functions are chosen to be Meijer G-functions, rather than the usual polynomial splines. A series of
experiments demonstrates that the interpretations produced by our algorithm are both accurate and
parsimonious, and that the interpretation yields more information than is available from other methods.
Because our method produces continuous models, it may not be appropriate for the interpretation of
discontinuous black-box models such as tree-based models, at least without some adaptation and/or
qualification. Perhaps more importantly, although our interpretive models are parsimonious, they
frequently involve unfamiliar functions. We have argued above that this is not necessarily a barrier to
understanding, because the explicit expressions can be easily used to produce local interpretations in
terms of linear functions or low-order polynomials that reveal which features and which interactions
between features are most important. In the medical domain, for example, this information is often
very valuable, but not easily obtained.
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Broader Impact

As mentioned at the very beginning of this paper, the lack of easy interpretation of ML models
has proved a serious obstacle to their adoption – despite their demonstrated accuracy. Because ML
models are more accurate than previous models, anything that makes ML models more widely used
is likely to have enormous positive affects in practice – simply by providing better predictions. Even
interpretations that provide only first-order information will surely prove to be important – not least
by allowing for easier correction of measurement/recording errors. Two examples may illustrate.
(1) It is well-documented that “No-Fly” lists often flag the wrong people who happen to have the
same names as the right people, and that getting removed from such lists can be a difficult task. (2)
It is similarly well-documented that measurement/recording errors are common in the calculation
of credit scores – but because those calculations are often quite opaque, such errors are often left
uncorrected, so some who should be approved for loans are declined, and others who should be
declined are approved .

This paper has offered a method for producing accurate and parsimonious interpretations of black-box
models. In no sense do we view this as providing the final or best method for interpretation; indeed we
view this work as taking, along with [1], only the first few steps in a new and very promising direction.
We have already noted that, because the interpretations our algorithm produces are continuous,
our method may not be suitable for interpretation of black-box models such as Decision Trees or
Random Forests, and may not be suitable for classification problems unless they are transformed into
regression problems by assigning probabilities instead of decisions. In itself, this transformation is
simple and unobjectionable, but clients who expect “Buy” or “Sell” advice from their financial advisor
may not be happy with a recommendation to “Buy with probability 0.7 and Sell with probability 0.3.”

Despite the fact that our symbolic models contain few terms, which is a significant improvement
compared to [1], we still have to deal with some Meijer G-functions or hypergeometric functions
that don’t reduce to familiar expressions. If this family of functions is explicitly used in some
scientific communities, such as in physics [14], they are not likely to be deemed interpretable by some
practitioners. A possible way to deal with this issue would be to enforce the cancellation between
some zeroes and poles of the Meijer G-functions. This can be done by adding a lasso penalty to the
loss, this approach is detailed in Section 4 of the supplementary material. We are convinced that
the Symbolic Pursuit algorithm opens up several interesting research paths in the ML intepretability
landscape. We hope that this paper will convince the ML community to walk along them to explore
this emerging paradigm of interpretability.
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