A Supplementary material

A.1 Convexity of the soft-margin

The soft margin ,, (equation (5)) is concave in v; this follows directly from the linear appearance of
v in the exponent of the exponential function with Hoelder’s inequality. Hoelder’s inequality states
for two non-negative sequences g, hi > 0 and for a + 8 = 1 that
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We here follow a modified version of the argument in [Goldenfield, 1992]. It therefore follows for
a+ =1 that
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A.2 Linearized connectivity

The effective connectivity W is obtained from linearizing around the network’s time evolution as

(70 + 1) (yi(t) + dui(?) ZWw yi (1) + 8y; (1)) + aly; (1) + 0y, (1)%) + wsan(t)

= (70 + 1)dy:(t) Z Wij (1 + 2ay;(t)) oy, (t) + O(5y?)

and approximating the non-linear system by an equivalent linear one with connectivity W” =
VVz (14 2ay;(t)). The evolution of the system becomes unstable when the real part of an eigenvalue

Ao of the effective matrix 1 exceeds 1. The time evolution of max,, (Re(\, )) displayed in Figure 3(a)
for the full system and the O(«) approximation assures the stability of the solution and the quality of
the approximation.

A.3 Constrained optimization with Lagrange multipliers

We need to optimize equation (8)
L(u,v) = fin(u,v) + Ay (Jull* = 1) + Ao ([Jv]]* = 1),

where «,, takes the form of equation (6). Although the mathematical structure of equation (6) is
simple, the optimization of the expression may present a few pitfalls. In this section, we describe in
detail how to find the projection vectors given the first four moments of the stimuli.

The linear system can be understood as a special case of the non-linear system, where some contribu-
tions to the soft margin and its gradients vanish. Therefore, we will distinguish the types of reservoir
kernels only where they are relevant.

A.4 Prerequisites

The numerical results of the optimization slightly depend on the value of the control parameter 7 of
the soft margin that has to be fixed. In our examples, with n = 10 the soft margin showed already
very similar extrema as the margin. Smaller values correspond to softer margins. In practice, a good
choice of 1 can be obtained by comparing for different 7 the optimized readout vector and accuracies
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for responses of some reservoir to an arbitrary stimulation. This procedure is fast and reliable since
finding the readout vector for some 7 is only a quadratic problem. Furthermore, an analysis of the
time evolution of the soft margin for random input projections can be used as in figure 2(b) to achieve
a good estimate of a suitable 7. It can be chosen such that the soft margin for random stimuli just
entered a saturating phase, so that there is not much improvement expected. Extended phases of
saturation, however, are a sign of forgetting of early parts of the stimuli in the network and should be
avoided.

The main procedure then consists of an alternating optimization of the input and readout projections.
Thereby, we denote L£(u|v) as the objective function for input optimization, given v, and L(v|u)
analogously.

A.5 Optimization of the input projection

The determination of the input projection for fixed readout vector is best conducted, depending on
the situation, by one of three methods for non-linear kernels and one of two methods for linear ones.
The quantities
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where G is the O(«) correction of the Green’s function G(!) for linear kernels and 1 = (¢, 2%),
Y = {(z¥zl ) — ((x )(CV v )and x = (¢, a¥z? ) constitute the cumulants in the notation (equa-
tion (7)) used in the main text. This notation is introduced here and in section A.6 for legibility,
although a memory- efﬁcient implementation will compute only products of Green’s functions with

stimuli 2" (for example, quy > nm Ggqnm x} @y, ), which then compose the above abbreviations
by performing the averages over v. With these abbreviations, the dependence of the soft margin on

the input projection reads

E Upm()p E upuqmlpq E ’LLp’LLqO'()pq E upuquralpqr— E upuqurusagpqrs.

p.q p.q p,q,T p,q,7T,8
Preparations for optimization in non-linear systems

In the non-linear case, it is advisable to take a few precautions to reduce computation time and
enhance performance. The determination of the optimal input projection u given a fixed readout
projection v should in the first few, but at least one, iterations neglect terms of O(«) and higher in
the covariance ¥". In these steps, the soft margin is not strictly optimized, but the result still yields a
good initial guess for the full problem. The advantage of this procedure is that the computation is
much faster and more likely to achieve a solution near the optimum rather than some local extremum.
In the first steps, the direction of the projection vector w typically changes rapidly and the quadratic
part alone often has a maximum near the optimum of the full soft margin, as the neglected terms are
at least O(«). In the readout optimization, the problem is in general quadratic in case of both linear
and non-linear dynamics, so there is no need to make further simplifications.

Furthermore, the soft margin is not necessarily convex in u in the non-linear case and sometimes
exhibits plateaus over iteration steps. We therefore recommend to use a small number of initial
projection vectors, optimize them over a few steps as described below, and then proceed with the best
one after these steps.
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Case A.

The simplest case arises if ||u|| = 0, since then myg, o1 and o2 vanish, if one neglects the O(«)
contributions in the non-linear case as discussed above. For normalized input projections, equation (6)
is then maximized by the eigenvector corresponding to the smallest eigenvalue of o9 — m;.

Case B.

In the general case where ||u|| # 0, it is, as mentioned before, sometimes helpful to ignore the part
related to o1 and o5 of the soft margin in the non-linear case to obtain a good guess of the input
projection that maximizes equation (8). Since m1, o1 and o5 vanish when o = 0, the same procedure
applies in the linear case. The objective then reads

T

L(ulv) = uTmg +uTmiu — uToou + Ay (uTu — 1),

so u and A, are found using

0L =0=2(cg —my — A J)u = my, (15)
M L=0=u"u—-1=0. (16)

These equations have many solutions, but for a maximum we further require negative definiteness
of 92L]y,. From this condition follows that A\, < min{c | o is eigenvalue of 59 — m1}. Then,
09 —m1 — A, is symmetric and invertible and, from solving the first condition for v and inserting
in the second, we get

1
Z(mg(cro —my — M) og —my — M) Timg) = 1. (17

The term on the left hand side is positive, has poles around the eigenvalues of oy — m; and deviates
only slightly from 0 for A,, < min{c | o is eigenvalue of oy — m1}. A bisection is therefore best
suited to determine A, and thereby u using equation (15). However, the poles have only a very
small width and the determination of eigenvalues and inverse matrices is accompanied by numerical
uncertainties. Therefore, the upper bound on A, is found best as the smallest value within a window
of a small width € around the smallest eigenvalue, where the term on the left hand side exceeds one.
Although this corresponds to a fine-tuning of the Lagrange parameter \,, with a sensitive dependence
of the left hand term in equation (17) on the exact used eigenvalues, the soft margins corresponding to
the obtained solutions remained robust against neglecting near-vanishing, and therefore numerically
uncertain, eigenvalues in the summation. Components of the input projection in these directions are
neutralized by their eigenvalues in equation (8).

Case C.

If the system is non-linear and a good initial guess for the input projection is available, predefined
solvers, such as the fsolve function implemented in numpy [Oliphant, 2006], typically find good
solutions for the Lagrange conditions, which are in this case

2(00pq — Mipg — Aulpg)tg + (T1pgr + O1grp + T1rpg)Ugur
+(U2pqrs + O2qrsp + O2rspq + UZqur)uqurus = Mop,

uTu = 1.

The first guess should be the solution from the previous iteration step. Only if the soft margin reduces
by the found solution, a new guess should be computed neglecting o1 and 5. For this comparison, it
is important to make sure the projection vectors are properly normalized. Although this is ensured by
the Lagrange condition, the actual lengths of the returned vectors slightly deviate from one because of
the fine-tuning of the Lagrange parameters. If the soft margin found near that solution still decreases,
we decided to use the new solution anyway as a restart-point. The readout vector optimization then
improves the soft margin again.
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A.6 Optimization of the readout projection

The optimization of the readout projection is structurally the same as for the input projection, only
the objective function is in general bi-linear in v. The abbreviations used here are

My; = Z Gl tp(Ch)
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The objective function to maximize is then
1
L(v|u) — vT(My + M) — 577’UT(20 +2)v + A (v v —1).

Only if the system is linear and the mean stimulus difference p is vanishing, this becomes an
eigenvalue problem and the optimal readout vector v is the eigenvector corresponding to the smallest
eigenvalue of 3 (compare case A). Otherwise, the Lagrange parameter follows from a bisection
using the conditions

8v£:0:> (77(204‘21) —QAUH)UZMO'FMM (18)
M L=0=vTv—-1=0. (19)

From negative definiteness, A, < 3 min{c | o is eigenvalue of n(Zo + X1)} follows as upper bound
on \, (compare case B).

A.7 Additional material

A folder with example figures for different network realizations as in figure 3 can be found in the
supplementary material folder (data/responses_soft_margins). The folder data/ECG contains some
of the softmargins and accuracies of the reservoirs used to generate table 1. The relation between
linear and non-linear optimal softmargins and accuracies can be evaluated with this data, as well as
an analysis presented in figure figure 4 for different realizations of the connectivity. Data for the same
networks, but optimized with = 30, can be found in the folder data/ECG/additional. As can be
verified with this data, the equivalent of table 1 for this case, averaged over 10 network realizations,
reads

Ky, linear Ky, non-linear  accuracy, linear  accuracy, non-linear

randomu  0.109+0.010 0.109+0.010 (94.6+0.7)% (94.7+0.7)%
optimizeduw  0.196 +0.006 0.196 +0.006 (98.1+0.1)%  (98.1 +0.1)%

Furthermore, the README.md contains instructions on how to set up the environment to reproduce,
modify and utilize the optimizations performed in this work.
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