
A Appendices

Figure 2: Organization of appendices.

Figure 2 contains an overview of the appendices to help the reader navigate through the technical
results leading to the proof of the main results, summarized in Thm. 2.1.

Sections A.1–A.3 collect proofs of miscellaneous technical claims: Section A.1 contains sufficient
conditions to ensure boundedness of {✓n}. Section A.2 is focused on the linearization of Zap SA
algorithm (14), and based on this a formula for the asymptotic covariance of Zap SA is obtained.
The proof that the maximal eigenvalue for GQ-learning with tabular basis satisfies Real(�(A⇤)) �
�(1� �)2 is contained in Section A.3.

Analysis of the Zap ODE (7) is contained in Section A.4, including existence of solutions, and the
consistency result limt!1 f(wt) = 0. Section A.5 finishes the proof of Thm. 2.1 by establishing
solidarity between the ODE and the stochastic recursion. It is simplest to begin in the special case in
which ⇣ has non-negative entries, which is the focus of Sections A.5.2 and A.5.3. The arguments are
extended in Section A.5.4, where the non-negativity is relaxed.

A.1 Establishing boundedness of the parameter estimates

Suppose that the following limits exist:

Q✓

1
(x, u) = lim

m!1
m�1Qm✓(x, u) , x 2 X , u 2 U

⇣1(✓, z) = lim
m!1

⇣(m✓, z) , z 2 Z

where the limiting functions are twice continuously differentiable. The global Lipschitz conditions in
(A2) imply that the gradients also converge, and the convergence is uniform on compact sets. We
then obtain a vector field for the “ODE at infinity” introduced in [10]:

f1(✓) := lim
m!1

m�1f(m✓) = E
⇥�
�Q✓

1
(Xn+1)�Q✓

1
(Xn, Un)

�
⇣1(✓,�n)

⇤

and a similar definition for f1(✓, z). The associated regularized Newton-Raphson flow “at infinity”
is similar to (7):

d

dt
wt = �["I +A1(wt)

|A1(wt)]
�1A1(wt)

|f1(wt) , A1(wt) = @✓f1 (wt) (32)

With A1(✓) defined as in (26) with respect to f1, assume the following:

(A21) The functions Q1 and ⇣1 are Lipschitz continuous and twice continuously differentiable
in ✓ in any open set not containing the origin; f1(✓, z) is Lipschitz continuous for each z 2 Z;
A|f1(✓) 6= 0 for all ✓ 6= 0 and A 2 A1(✓).

Assumptions (A2) and (A21) are identical when the function approximation Q✓ is linear, and
⇣ = rQ✓.

The function kf1k is coercive under (A21) since f1 is radially linear: f1(m✓) = mf1(✓) for
any ✓ and any m � 0. Prop. A.6 can be adapted to show that (32) is globally asymptotically stable.
[9, Sections 6.3, Theorem 9] explains how stability of the ODE implies stability of the SA algorithm.
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A.2 Asymptotic covariance of regularized Zap SA

We first introduce a standard result in linear system theory [24, Theorem 2.6-1].
Lemma A.1. If A 2 Rd⇥d is Hurwitz and ⌃� 2 Rd⇥d is positive semi-definite, then there exists a
unique solution ⌃ � 0 that solves the Lyapunov equation,

A⌃+ ⌃A| + ⌃� = 0 ,

whose solution can be expressed

⌃ =

Z
1

0
exp(A⌧)⌃� exp(A|⌧) d⌧

Let {EG

n
} be the sequence obtained by the stochastic linear recursion (10) with matrix gain G 2 Rd⇥d:

E
G

n+1 = E
G

n
+ ↵n+1G[A⇤E

G

n
+�n+1] , E

G

0 = ✓0 � ✓⇤ (33)

Denote the asymptotic covariance of {EG

n
} by ⌃G

✓
:= limn!1 nE[EG

n
(EG

n
)|]. According to the

eigenvalue test (12), ⌃G

✓
is finite if 1

2I + GA⇤ is Hurwitz. It is well known that the matrix gain
G⇤ = �A�1

⇤
achieves the minimal asymptotic covariance:

⌃⇤

✓
= A�1

⇤
⌃�(A

�1
⇤

)| (34)

The following result is standard in stochastic approximation [5, Part I, Section 3.2.3, Proposition 4],
and quantifies optimality of ⌃⇤

✓
.

Lemma A.2. Suppose that A⇤ and 1
2I +GA⇤ are Hurwitz. Then,

(i) The asymptotic covariance ⌃G

✓
� 0 uniquely solves the Lyapunov equation:

( 12I +GA⇤)⌃
G

✓
+ ⌃G

✓
( 12I +GA⇤)

| +G⌃�G
| = 0

(ii) The sub-optimality gap e⌃G

✓
= ⌃G

✓
� ⌃⇤

✓
� 0 uniquely solves the Lyapunov equation:

( 12I +GA⇤)e⌃G

✓
+ e⌃G

✓
( 12I +GA⇤)

| + (G+A�1
⇤

)⌃�(G+A�1
⇤

)| = 0 (35)

For any symmetric matrix S 2 Rd⇥d, denote by �(S) the set of its eigenvalues.
Proposition A.3. Suppose A⇤ 2 Rd⇥d is Hurwitz, and denote G" = �["I + A|

⇤A⇤]�1A|
⇤ . If

0 < " < �min(A
|
⇤A⇤), then 1

2I+G"A⇤ is Hurwitz, so that the matrix gain G" in the linear recursion
(33) results in a finite asymptotic covariance ⌃"

✓
. Moreover, the follow approximation holds:

⌃"

✓
= ⌃⇤

✓
+ "2⌃(2)

✓
+O("3) , with ⌃(2)

✓
= (A⇤A

|
⇤
A⇤)

�1⌃�(A
|
⇤
A⇤A

|
⇤
)�1. (36)

Proof. The set of eigenvalues of 1
2I +G"A⇤ admits the following representations:

�( 12I +G"A⇤) =
�1
2
� � : � 2 �(["I +A|

⇤
A⇤]

�1A|
⇤
A)
 

=
�1
2
�

1

�
: � 2 �("(A|

⇤
A⇤)

�1 + I)
 

=
�1
2
�

1

"�+ 1
: � 2 �((A|

⇤
A⇤)

�1)
 

=
�1
2
�

1

"/�+ 1
: � 2 �(A|

⇤
A⇤)

 

Given 0 < " < �min(A
|
⇤A⇤), the eigenvalues of 1

2I + G"A⇤ are real and strictly negative. In
particular, this matrix is Hurwitz, as claimed.

We next establish the approximation (36). By Lemma A.2 (iii), e⌃"

✓
= ⌃"

✓
� ⌃⇤

✓
solves the Lyapunov

equation (35) with G replaced by G". Denoting eG" = G" +A�1
⇤

, we obtain by Lemma A.1,

e⌃"

✓
=

Z
1

0
exp([ 12I +G"A⇤]⌧) eG"⌃�

eG|
"
exp([ 12I +G"A⇤]|⌧) d⌧ (37)
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A Taylor series representation of matrix inverse results in the following:

G"A⇤ = �["I +A|
⇤
A⇤]

�1A|
⇤
A⇤ = �[I + "(A|

⇤
A⇤)

�1]�1 = �[I � "A�1
⇤

(A|
⇤
)�1] +O("2)

eG" = G" +A�1
⇤

= [G"A⇤ + I]A�1
⇤

= "A�1
⇤

(A|
⇤
)�1A�1

⇤
+O("2)

With ⌃(2)
✓

= (A⇤A
|
⇤A⇤)�1⌃�(A

|
⇤A⇤A

|
⇤)�1, the integral in (37) becomes

e⌃"

✓
="2

Z
1

0
exp(�[ 12I�"A

�1
⇤

(A|
⇤)�1]⌧)⌃(2)

✓
exp(�[ 12I�"A

�1
⇤

(A|
⇤)�1]|⌧)d⌧ +O("3) (38)

Another Taylor series expansion for matrix exponential gives

exp(�[ 12I � "A�1
⇤

(A|
⇤)�1]⌧) = exp(� ⌧

2 I) + "⌧A�1
⇤

(A|
⇤)�1 exp(� ⌧

2 I) +O("2)

Consequently, the integral in (38) can be rewritten as

e⌃"

✓
="2

Z
1

0
exp(� ⌧

2 I)⌃
(2)
✓

exp(� ⌧

2 I)d⌧ +O("3)

="2⌃(2)
✓

+O("3)

ut

A.3 Eigenvalue test for GQ-learning

Consider the linear function approximation architecture: Q✓(x, u) =  (x, u)|✓, where  : X ⇥

U ! Rd is the basis function. With eligibility vector ⇣n :=  (Xn, Un), let f be defined by (18).
GQ-learning [31] aims to solve the root finding problem (18), transformed into the non-convex
optimization problem (3).

The GQ-learning [31] algorithm is the two-time scale SA algorithm,

✓n+1 = ✓n + ↵n+1[D(✓n,�n+1)⇣n � �'|
n+1⇣n (Xn+1,�

✓n(Xn+1))] (39a)
'n+1 = 'n + �n+1⇣n[D(✓n,�n+1)�  (Xn, Un)

|'n] (39b)

where {�n} and {↵n} are non-negative step-size sequences satisfying ↵n/�n ! 0 as n ! 1. The
fast time scale recursion (39b) for {'n} is designed so that 'n ⇡ Mf(✓n) for large n. It follows
that the ODE approximation of (39a) is (4).
Proposition A.4. The linearization matrix for GQ-learning at ✓⇤ is given by AGQ = �A|

⇤MA⇤,
whenever ✓⇤ is a solution to A(✓)|Mf(✓) = 0. With the tabular basis:  k(x, u) = I{x = xk, u =
uk

} , 1  k  `x · `u, there is an eigenvalue �GQ of AGQ satisfying

�GQ � �(1� �)2

We first introduce some notation for tabular Q-learning. For any deterministic stationary policy
� : X ! U, let S� denote the substitution operator, defined for any function Q : X ⇥ U ! R by
S�Q(x) = Q(x,�(x)). With P viewed as a matrix with `x · `u rows and `x columns, PS� can be
interpreted as the transition matrix for the joint process (X,U) when U is defined using policy
� [15]. Then f(✓) can be written in matrix form

f(✓) = ⇧r +⇧[�PS�✓ � I]✓ (40)

where ⇧ is a diagonal matrix with entries: ⇧(k, k) := $(xk, uk) and r is a vector with entries:
r(k) := r(xk, uk). The derivative A(✓) of f(✓) is given by

A(✓) = ⇧[�PS�✓ � I]

Proof. The matrix AGQ is the derivative of �A(wt)|Mf(wt) at ✓⇤. For the tabular case, by (40),

AGQ = �[�PS�⇤ � I]|⇧[�PS�⇤ � I] = �H|H ,

with H := ⇧1/2[I � �PS�⇤ ]. It suffices to show that H|H has a positive eigenvalue less than
(1� �)2.
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Since H�1 is a positive and irreducible matrix, we can apply the same arguments as in [15, Theorem
3.3] to bound the Perron-Frobenius eigenvalue as follows:

�PF �
1

1� �
min
x,u

1p
$(x, u)

Therefore, H has positive eigenvalue �H = ��1
PF such that

�H  (1� �)max
x,u

p
$(x, u)

Applying [21, Theorem 5.6.9] we obtain the complementary bound

�H � �min(H) =
p
�min(H|H)

and combining the two implies:

�min(H
|H)  �2

H
 (1� �)2

�
max
x,u

p
$(x, u)

�2
 (1� �)2

ut

A.4 ODE Analysis

To obtain the existence of a solution to (7), we first consider an ideal smooth setting:

Proposition A.5. Consider the following conditions for the function f :

(a) f is globally Lipschitz continuous and continuously differentiable. Hence A(·) is a bounded
matrix-valued function.

(b) kfk is coercive. That is, {✓ : kf(✓)k  n} is compact for each n.

(c) The function f has a unique zero ✓⇤, and A|(✓)f(✓) 6= 0 for ✓ 6= ✓⇤. Moreover, the matrix
A⇤ = A(✓⇤) is non-singular.

The following hold for solutions to the ODE (7) under increasingly stronger assumptions:

(i) If (a) holds then for each t, and each initial condition
d

dt
f(wt) = �A(wt)["I +A(wt)

|A(wt)]
�1A(wt)

|f(wt) (41)

(ii) If in addition (b) holds, then the solutions to the ODE are bounded, and

lim
t!1

A(wt)
|f(wt) = 0 (42)

(iii) If (a)–(c) hold, then (7) is globally asymptotically stable. ut

Proof. The result (i) follows from the chain rule and the definitions.

The proof of (ii) is based on the Lyapunov function V (w) = 1
2kf(w)k

2 combined with (a):

d

dt
V (wt) = �f(wt)

|A(wt)["I +A(wt)
|A(wt)]

�1A(wt)
|f(wt)

The right hand side is non-positive when wt 6= ✓⇤. Integrating each side gives for any T > 0,

V (wT ) = V (w0)�

Z
T

0
f(wt)

|A(wt)["I +A(wt)
|A(wt)]

�1A(wt)
|f(wt) dt (43)

so that V (wT )  V (w0) for all T . Under the coercive assumption, it follows that solutions to (7) are
bounded. Also, letting T ! 1, we obtain from (43) the bound

Z
1

0
f(wt)

|A(wt)["I +A(wt)
|A(wt)]

�1A(wt)
|f(wt) dt  V (w0)
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This combined with boundedness of wt implies that limt!1 A(wt)|f(wt) = 0.

We next prove (iii). Global asymptotic stability of (7) requires that solutions converge to ✓⇤ from each
initial condition, and also that ✓⇤ is stable in the sense of Lyapunov [26]. Assumption (c) combined
with (ii) gives the former, that limt!1 wt = ✓⇤. A convenient sufficient condition for the latter is
obtained by considering A1 = @✓[G(✓)f(✓)] |✓=✓⇤ . Stability in the sense of Lypaunov holds if this
matrix is Hurwitz (all eigenvalues are in the strict left half plane in C) [26, Thm. 4.7]. Apply the
definitions, we obtain A1 = �["I +M ]�1M with M = A(✓⇤)|A(✓⇤) > 0 (recall that A(✓⇤) is
assumed to be non-singular). The matrix A1 is negative definite, and hence Hurwitz.

ut

Prop. A.5 cannot be applied to the ODE (7) that motivated Zap Q-learning because f is only piecewise
smooth. To obtain an extension we consider the ODE in its integral form:

wt = w0 �

Z
t

0
["I +A|(w⌧ )A(w⌧ )]

�1A|(w⌧ )f(w⌧ ) d⌧, t � 0 (44)

where f(✓), A(✓) are defined in (18, 20).
Proposition A.6. Under Assumptions A1-A2, there exists a solution to (44) from each initial condition.
The following hold for any solution:

(i) f(wt) = f(w0)�

Z
t

0
A(w⌧ )["I +A(w⌧ )

|A(w⌧ )]
�1A(w⌧ )

|f(w⌧ ) d⌧, t � 0

(ii) kf(wt)k is non-increasing, and lim
t!1

f(wt) = 0.

(iii) If in addition A3 holds, then the ODE (44) is globally asymptotically stable.

The proof of existence is obtained by considering smooth approximations of (7).
Lemma A.7. Under Assumptions A1-A2, there exists a solution to (44) from each initial condition.

Proof. Define a C1 probability density ⌘ on Rd via

⌘(x) :=

⇢
k exp(�(1� kxk2)�1) kxk < 1,
0 kxk � 1,

(45)

where k > 0 is a normalization constant:
R
⌘(x) dx = 1. For each � > 0, a C1 vector field is

defined via the convolution:

f
�
(x) =

1

�d

Z
f(x� y)⌘(y/�) dy , x 2 Rd (46)

The family of functions {f
�
: 0 < �  1} is globally uniformly Lipschitz continuous, with the same

Lipschitz constant bL as of f . It is also evident that lim�#0 f�
= f pointwise. The uniform Lipschitz

continuity implies that the convergence is uniform on compact sets.

Denote A�(✓) = @✓f�
(✓), and consider the ODE (44) with f and A replaced by their smooth

approximations:

w�

t
= w�

0 �

Z
t

0
["I +A|

�
(w�

⌧
)A�(w

�

t
)]�1A|

�
(w�

t
)f

�
(w�

t
) d⌧, w�

0 = w0 (47)

The solution exists and is unique for each � 2 (0, 1]. To obtain bounds on the solution we require
bounds on the matrices involved, and opt for the spectral norm:

k["I +A|
�
(w�

t
)A�(w

�

t
)]�1

k =
1

�min("I +A|
�
(w�

t
)A�(w�

t
))


1

"

kA�(w
�

⌧
)k  bL

17



where bL is the Lipschitz constant for f
�
. Therefore,

kw�

t
k  kw�

0k+

Z
t

0
k["I +A|

�
(w�

⌧
)A�(w

�

⌧
)]�1

k · kA�(w
�

⌧
)k · kf

�
(w�

⌧
)k d⌧

 kw�

0k+
bL
"

Z
t

0
kf

�
(w�

⌧
)k d⌧

 kw�

0k+
bL
"

Z
t

0
kf

�
(w�

0)k+ kf
�
(w�

⌧
)� f

�
(w�

0)k d⌧

 kw�

0k+
bL
"

�
Tkf

�
(w�

0)k+ bL

Z
t

0
kw�

⌧
� w�

0k d⌧
 

 kw�

0k+
bL
"

�
T (kf

�
(w�

0)k+ bLkw
�

0k) + bL

Z
t

0
kw�

⌧
k d⌧

 

The set {kf
�
(w�

0)k : 0 < �  1} is bounded by maxy2B(w0,1) kf(y)k, where B(w0, 1) denotes the
closed unit ball in Rd centered at w0. By Gronwall’s inequality, there exist constants C1 and C2 such
that

kw�

t
k  C1 + C2e

b
2
LT/", t 2 [0, T ] , � 2 (0, 1]

This combined with (47) implies that {w� : 0 < �  1} is uniformly bounded and equicontinuous. By
the Arzelà-Ascoli theorem, there exists a sequence �n # 0 and a continuous function w0 : [0, T ] ! Rd

such that
lim
n!1

sup
t2[0,T ]

kw�n
t

� w0
t
k = 0

So the functional equation (47) holds for w0 with � = 0, and w0 is thus a solution of (44). ut

The following result has been derived in [15, Lemma A.10]. We present it here for completeness.
Lemma A.8. Let G(✓) := max1i`u Gi(✓) where each Gi : Rd

! R is twice continuously
differentiable and Lipschitz continuous. Let w : [0, T ] ! Rd be a Lipschitz continuous function, and
denote gt :=G(wt). Then,

(i) g : [0, T ] ! R is Lipschitz continuous.

(ii) At any time t0 2 (0, T ) such that the derivatives of gt and wt exist,

d

dt
gt
���
t=t0

= @✓Gk(wt0) ·
d

dt
wt

���
t=t0

for each k 2 argmax
i

Gi(wt0). (48)

Proof. Denote gi
t
= Gi(wt), so that gt = max1i`u gi

t
. Let bL denote a Lipschitz constant for each

of these functions:

|gi
t1
� gi

t0
|  bL|t1 � t0|, t0, t1 2 [0, T ], 1  i  `u

For any t0, t1 2 [0, T ],

gt1 � gt0  gk
t1
� gk

t0
, for each k 2 argmax

i

gi
t0

 bL|t1 � t0|

The same inequality holds for gt0 � gt1 with k 2 argmaxi git1 . This proves (i).

The proof of (ii) is also straightforward: The difference gt � gk
t

has a global minimum at t0 if
k 2 argmaxi git0 , and consequently

0 = d

dt
[gt � gk

t
]
��
t=t0

ut
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Given a parameter vector ✓ 2 Rd, denote by &✓ : X⇥ U ! R the reward function that satisfies the
Bellman equation (16), with Q⇤ replaced by Q✓: For each x 2 X and u 2 U,

&✓(x, u) :=��
X

x02X

Pu(x, x
0)Q✓(x0) +Q✓(x, u) (49)

Lemma A.9. Suppose Assumptions A1-A2 hold and the function w : [0, T ] ! Rd is Lipschitz
continuous. Then, &wt(x, u) is Lipschitz continuous in t for each x, u. Moreover, at any point t0 of
differentiability,

d

dt
&wt(x, u)

���
t=t0

=
h
� �

X

x02X

Pu(x, x
0)@✓Q

wt0 (x0,�wt0 (x0)) + @✓Q
wt0 (x, u)

i
d

dt
wt

���
t=t0

(50)

where �wt0 is defined in (17).

Proof. From the definition (49), it is sufficient to establish the derivative formula
d

dt
Qwt(x0)

��
t=t0

= @✓Q
wt0 (x0,�(k)(x0)) · d

dt
wt

��
t=t0

where �(k) is any policy that is Qwt0 -greedy. This is immediate from Lemma A.8. ut

Stability of is obtained from the following standard Lyapunov condition:
Lemma A.10. Suppose that {wt : t 2 R} is a Lipschitz continuous function taking values in Rd,
V : Rd

! R+ is continuous and coercive, and U : Rd
! R+. Assume moreover the following

properties:

(i) inf{U(✓) : V (✓) � �} > 0 for each � > 0.

(ii) V (wt)  V (w0)�

Z
t

0
U(w⌧ ) d⌧ , t � 0.

Then, there exists a function B : R+ ! R+ such that V (wt)  ⌘ for all t � V (w0)B(⌘). In
particular, V (wt) ! 0 as t ! 1.

Proof. For any scalar ⌘ satisfying 0 < ⌘ < V (w0), let H⌘ := {✓ : ⌘  ✓  V (w0)} and

"⌘ = inf
✓2H⌘

U(✓)

Under assumption (i) of the lemma we have "⌘ > 0. Let T ⌘ = inf{t : V (wt)  ⌘}, so that wt 2 H⌘

for 0  t  T ⌘ . By assumption (ii) we have

0  V (wt)  V (w0)� "⌘t , 0 < t  T ⌘.

Therefore, T ⌘ < V (w0)/"⌘. Because V (wt) is non-increasing in t, we have V (wt)  ⌘ for all
t � V (w0)B("), with B(") = "�1

⌘
.

Since ⌘ is arbitrary, it follows that limt!1 V (wt) = 0. ut

Proof of Prop. A.6. Suppose w : [0, T ] ! Rd is a solution of (44). At point t of differentiability, the
derivative of f(wt) is given by

d

dt
f(wt) =

d

dt
E
h
⇣n&

wt(Xn, Un)
i

=E[⇣n
d

dt
&wt(Xn, Un)] + E[D(wt,�n+1)

d

dt
⇣n]

(51)

For each x 2 X and u 2 U, &wt(x, u) is a Lipschitz continuous function of t, whose derivative is
given in Lemma A.9. Assertion (i) follows:

d

dt
f(wt) = E

h
⇣n[�@✓Q

wt(Xn+1,�
wt(Xn+1))� @✓Q

wt(Xn, Un)] +D(wt,�n+1)@✓⇣n
i

d

dt
wt

= �A(wt)["I +A(wt)
|A(wt)]

�1A(wt)
|f(wt)
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A candidate Lyapunov function is defined as V (wt) :=
1
2kf(wt)k2. At a point t where f(wt) is

differentiable,
d

dt
V (wt) = �f(wt)

|A(wt)["I +A(wt)
|A(wt)]

�1A(wt)
|f(wt) (52)

�["I +A(✓)|A(✓)]�1
 �bV I

The integral representation of (52) then gives, for any t 2 [0, T ],

V (wt) = V (w0)�

Z
t

0
f(w⌧ )

|A(w⌧ )["I +A(w⌧ )
|A(w⌧ )]

�1A(w⌧ )
|f(w⌧ ) d⌧

 V (w0)� bV

Z
t

0
kA(w⌧ )

|f(w⌧ )k
2 d⌧

(53)

Under (A2) the assumptions of Lemma A.10 hold with U(✓) = bV kA(✓)|f(✓)k2, so that
limt!1 V (wt) = limt!1 f(wt) = 0.

If in addition (A3) holds, we conclude that limt!1 wt = ✓⇤. ut

A.5 Proof of Thm. 2.1

The remainder of the Appendix is dedicated to the proof of Thm. 2.1. We use n0 = 0 in the definition
of the step-size sequences (22); this shortens many of the expressions that follow, and the extension
to general n0 � 1 is obvious. Given the typical choice of ⇣n in (2), it is assumed throughout that
⇣n := ⇣(✓n, Xn, Un) for some function ⇣ : Rd

⇥ X ⇥ U ! Rd. We proceed under the additional
assumption that the vector-valued function ⇣ has non-negative entries:

[⇣(✓, x, u)]i � 0 for each i, ✓, x, u. (54)

The proofs are extended to the general case in Section A.5.4.

A.5.1 Generalities

This subsection contains the building blocks of the proof, summarized in two propositions, and
the proof of Thm. 2.1 based on these key results. The proofs of the propositions are postponed to
subsequent subsections.

The slow time scale used for an ODE approximation of {✓n} is defined by

tn =
nX

i=1

↵i =
nX

i=1

1

i
, n � 1 , t0 = 0 (55)

and its approximate inverse
[t] := max{j : tj  t} (56)

Define the continuous time process {w̄t : t � 0} with w̄tn = ✓n, and extended to R+ via linear
interpolation. Define the associated continuous time process {c̄t := f(w̄t) : t � 0}. We also define
the piecewise constant processes {Āt, Ḡt : t � 0} with Āt = bAn+1, Ḡt = Gn+1 for t 2 [tn, tn+1).
Both b✓ := sup

n
k✓nk = sup

t
kw̄tk and bc := sup

t
kc̄tk are finite a.s. by assumption.

Denote by O(1) = e(T0, t) a function of two variables, satisfying for each T > 0,

lim
T0!1

sup
0tT

ke(T0, t)k = 0

Proposition A.11. Under Assumptions (A1)-(A2) and (54), {w̄t} and {c̄t} are Lipschitz continuous
with respect to t, and the following approximations hold:

(i) lim
T0!1

Z
T0+T

T0

kĀt
d

dt
w̄t �

d

dt
c̄tk1 dt = 0.

(ii) c̄T0+t = c̄T0 +

Z
T0+t

T0

Ā⌧ Ḡ⌧ c̄⌧ d⌧ + O(1) , T0 ! 1
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(iii) kc̄T0+tk
2 = kc̄T0k

2 + 2

Z
T0+t

T0

c̄|
⌧
Ā⌧ Ḡ⌧ c̄⌧ d⌧ + O(1) , T0 ! 1. ut

For a fixed but arbitrary time-horizon T > 0, define a family of functions {�
T0

: T0 � 0}, where
�
T0

: [0, T ] ! Rm for each T0 � 0 and an integer m. It consists of four components: for t 2 [0, T ],

�
T0

1 (t) = w̄T0+t , �
T0

2 (t) = c̄T0+t , �
T0

3 (t) = ĀT0+t , �
T0

4 (t) = �ĀT0+tḠT0+t

{�
T0

1 : T0 � 0} and {�
T0

2 : T0 � 0} are uniformly Lipschitz continuous and bounded. More
specifically, each of �

T0

1 and �
T0

2 is a function of two variables: �
T0

1 (!, t),�
T0

2 (!, t) with ! 2 ⌦ and
t 2 R+. The property that �

T0

1 and �
T0

2 are Lipschitz continuous and bounded holds with probability
one. Denote their sub-sequential limits by

�1(t) = wt , �2(t) = ct

where the convergence is uniform over [0, T ].

Limits of the remaining components of � are defined with respect to the weak topology in
L2([0, T ];Rd⇥d). Because {�

T0

3 : T0 � 0} and {�
T0

4 : T0 � 0} are uniformly bounded, they
are weakly relatively sequentially compact in L2([0, T ];Rd⇥d) [17, Theorem 1.1.2]. Their weak
sub-sequential limits �3 and �4 are denoted by {At,Ht : 0  t  T}. That is, there exists Tk ! 1

such that

�
Tk

3 ! A weakly in L2([0, T ];Rd⇥d) , �
Tk

4 ! H weakly in L2([0, T ];Rd⇥d) , k ! 1

Based on Prop. A.11, and a separate analysis of the fast time scale recursion for { bAn} we obtain the
following properties for any sub-sequential limit � of {�

T0
: T0 � 0}:

Proposition A.12. Under Assumptions (A1)-(A2) and (54), for each t 2 [0, T ],

(i) ct := �2(t) = f(wt).

(ii) At := �3(t) 2 A(wt).

(iii) Ht := �4(t) 2 Rd⇥d is positive semi-definite.

(iv) There exists a constant bV > 0 such that, for a.e. t 2 [0, T ],

d

dt
ct = �Htct (57a)

d

dt
V (wt)  �U(wt) (57b)

with V (wt) =
1
2kf(wt)k2 and U(wt) = bV kA

|
t
ctk2. ut

An alert reader will notice that we have not obtained the desired ODE limit, since (57a) may differ
from the ODE solution given in Lemma A.6 (i). In particular, we do not know if At coincides with
A(wt) (where A(✓) is defined in (20) using a particular Q✓-greedy policy), and we do not know if
Ht coincides with

A(wt)["I +A(wt)
|A(wt)]

�1A(wt)
|

We preserve the essential drift condition (57b), which leads to a simple proof of the main result:

Proof of Thm. 2.1. Prop. A.12 (i) and (ii) justify the assertion that U(wt) := bV kA
|
t
ctk2 is in fact

a function of wt. Under (A2) we see that Assumption (i) of Lemma A.10 holds, and (57b) implies
Assumption (ii) of the lemma.

For given ⌘ > 0, we may choose T � V (w0)B(⌘), so that V (wT )  ⌘ for any sub-sequential limit.
It then follows that lim sup

n!1 V (✓n)  ⌘. Since ⌘ > 0 is arbitrary, it follows that V (wT ) ⌘ 0;
that is, limt!1 f(✓n) = 0 as claimed. ut
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A.5.2 Analysis of { bAn} over the fast time scale

The goal in this subsection is to show that bAn is close to the set A(✓n) with n sufficiently large. An
explicit representation of A(✓) is given in the following: denote, for any ✓ 2 Rd and any (possibly
randomized) policy �, the random d⇥ d matrix:

An+1(✓,�) =
⇥
�@✓Q

✓(Xn+1,�(Xn+1))� @✓Q
✓(Xn, Un)

⇤
⇣(✓, Xn, Un)

If � is Q✓-greedy, meaning

Q✓(x,�(x)) = Q✓(x) , x 2 X ,

then a generalized subgradient of the function f in (19b) is given by

An+1(✓,�) +D(✓,�n+1)@✓⇣(✓, Xn, Un)

Lemma A.13. If (A1)-(A2) hold, and if ⇣ is non-negative, then the set A(✓) defined in (26) admits
the representation,

A(✓) =
�
E$[An+1(✓, �̃

✓

n+1) +D(✓,�n+1)@✓⇣(✓, Xn, Un)] : �̃✓
n+1 is Q✓-greedy

 

where �̃✓
n+1 ranges over all Q✓-greedy randomized policies. ut

A key implication of the non-negativity assumption (54) is the following:
Lemma A.14. Under Assumptions (A1)-(A2) and (54), there exists bT < 1 such that, for all n � 1
and all vectors v 2 Rd, kvk  1,

f(✓n + v,�n+1) � f(✓n,�n+1) +An+1v � bT kvk
21 (58)

where the inequality is component-wise, An+1 is defined in (21a), and 1 denotes the vector of all
ones. In particular, when Q✓ =  |✓, we have bT = 0:

f(✓n + v,�n+1) � f(✓n,�n+1) +An+1v (59)

Proof. The proof is based on the Taylor series expansion. With z := (x0, x, u0, u), define g :
Rd

⇥ Z⇥ U ! R by

g(✓, z, u�) := r(x, u) + �Q✓(x0, u�)�Q✓(x, u) (60)

By (A2), g admits the Taylor series expansion at each k✓k  b✓:

g(✓ + v, z, u�) = g(✓, z, u�) + @✓g(✓, z, u
�)v +O(kvk2)

Recall that D(✓, z) := g(✓, z,�✓(x0)) = maxu� g(✓, z, u�) and the state-input space is finite,

D(✓n + v,�n+1) = max
u�

g(✓n + v,�n+1, u
�)

= max
u�

g(✓n,�n+1, u
�) + @✓g(✓n,�n+1, u

�)v +O(kvk2)

� D(✓n,�n+1) + @✓g(✓n,�n+1,�
✓n(Xn+1))v +O(kvk2)

(61)

Denote ⇣n(✓) := ⇣(✓, Xn, Un). Another Taylor series expansion of ⇣ at ✓n gives

⇣n(✓n + v) = ⇣n(✓n) + @✓⇣n(✓n)v +O(kvk2) (62)

We next recall that f(✓n,�n+1) = ⇣n(✓n)D(✓n,�n+1),

f(✓n + v,�n+1)� f(✓n,�n+1) =⇣n(✓n)
�
D(✓n + v,�n+1)�D(✓n,�n+1)

 

+
�
⇣n(✓n + v)� ⇣n(✓n)

 
D(✓n,�n+1)

+
�
⇣n(✓n + v)� ⇣n(✓n)

 �
D(✓n + v,�n+1)�D(✓n,�n+1)

 

By (61) and the non-negativity assumption (54),

⇣n(✓n)
�
D(✓n + v,�n+1)�D(✓n,�n+1)

 
� ⇣n(✓n)@✓g(✓n,�n+1,�

✓n(Xn+1))v +O(kvk2)
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Similarly, from (62),
�
⇣n(✓n + v)� ⇣n(✓n)

 
D(✓n,�n+1) =

�
@✓⇣n(✓n)v +O(kvk2)

 
D(✓n,�n+1)

�D(✓n,�n+1)@✓⇣n(✓n)v +O(kvk2)

By (A2) once more, both ⇣ and D are Lipschitz continuous in ✓,
��⇣n(✓n + v)� ⇣n(✓n)

����D(✓n + v,�n+1)�D(✓n,�n+1)
�� = O(kvk2)

Consequently,

f(✓n + v,�n+1)�f(✓n,�n+1)

�
�
⇣n(✓n)@✓g(✓n,�n+1,�

✓n(Xn+1)) +D(✓n,�n+1)@✓⇣n(✓n)
 
v +O(kvk2)

The proof is completed by realizing that An+1 defined in (21a) can be expressed

An+1 = ⇣n(✓n)@✓g(✓n,�n+1,�
✓n(Xn+1)) +D(✓n,�n+1)@✓⇣n(✓n)

ut

Define the fast time scale, over which the matrix gain sequence { bAn} is updated,

tn =
nX

i=1

�i =
nX

i=1

1

i⇢
, n � 1 , t0 = 0 , ⇢ 2 (0.5, 1) (63)

Define the time process {Āt : t � 0} with Ātn = bAn for those values tn, with the definition
extended to R+ via linear interpolation. Note that this definition of {Āt : t � 0} is used only in this
subsection to analyze { bAn}. For each n � 1, define the associated time block: [tm(n), tn) where
m(n) = min{j : tj + ln(n) � tn}. Some properties of this fast time scale setting are collected in
the following:
Lemma A.15. The follow hold:

(i) ln(n)� 1 < tn � tm(n)  ln(n).

(ii) There exists Ns � 1 such that for n � Ns, m(n) + 1 � ⇢1/(1�⇢)(n+ 1).

(iii) limn!1 maxm(n)kn k✓k � ✓nk = 0.

Proof. (i) follows directly from the definition.

By (63),

tn � tm(n) =
nX

i=m(n)+1

1

i⇢
�

Z
n+1

m(n)+1

1

⌧⇢
d⌧

= (1� ⇢)�1[(n+ 1)1�⇢
� (m(n) + 1)1�⇢]

(64)

Since ln(n) � tn � tm(n), we have

(1� ⇢) ln(n) � (n+ 1)1�⇢
� (m(n) + 1)1�⇢

There exits Ns � 1 such that (n+ 1)1�⇢
� ln(n) for n � Ns. Hence,

(1� ⇢)(n+ 1)1�⇢
� (n+ 1)1�⇢

� (m(n) + 1)1�⇢ , n � Ns

which proves (ii).

By (64),

(1� ⇢)�1[(n+ 1)1�⇢
� (k + 1)1�⇢]  (1� ⇢)�1[(n+ 1)1�⇢

� (m(n) + 1)1�⇢]

 ln(n)

Multiplying each side of above inequality by (1� ⇢)(k + 1)⇢�1 gives
⇣n+ 1

k + 1

⌘1�⇢

� 1  (1� ⇢)(k + 1)⇢�1 ln(n)  (1� ⇢)(m(n) + 1)⇢�1 ln(n)
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By the inequality ln(1 + x)  x for x > �1,

(1� ⇢) ln
⇣n+ 1

k + 1

⌘
 ln

�
1 + (1� ⇢)(m(n) + 1)⇢�1 ln(n)

�
 (1� ⇢)(m(n) + 1)⇢�1 ln(n)

Given m(n) + 1 � ⇢1/(1�⇢)(n+ 1) in (ii),

ln
⇣n+ 1

k + 1

⌘
 ⇢�1 ln(n)(n+ 1)⇢�1 (65)

The parameter vector ✓n updated by (21d) can be expressed

✓n = ✓k +
nX

i=k+1

↵iGif(✓i�1,�i) , m(n)  k < n

We can find a constant bf < 1 such that sup
n
kGn+1f(✓n,�n+1)k  bf for almost every ! 2 ⌦.

With ↵i ⌘ 1/i,

k✓n � ✓kk  bf

nX

i=k+1

↵i  bf

Z
n

k

1

⌧
d⌧  bf ln

⇣n
k

⌘

By (65), for n � Ns.

k✓n � ✓kk  bf
��ln

⇣n
k

⌘
� ln

⇣n+ 1

k + 1

⌘��+ bf⇢
�1 ln(n)(n+ 1)⇢�1

 bf
��ln(1� 1

n+ 1
) + ln(1 +

1

k
)
��+ bf⇢

�1 ln(n)(n+ 1)⇢�1

 bf
1

k
+ bf⇢

�1 ln(n)(n+ 1)⇢�1

 bf
1

⇢1/(1�⇢)(n+ 1)� 1
+ bf⇢

�1 ln(n)(n+ 1)⇢�1

(66)

where the last inequality holds given k � m(n) � ⇢1/(1�⇢)(n + 1) � 1. Therefore,
maxm(n)kn k✓k � ✓nk ! 0 as n ! 1. ut

Proposition A.16. Under Assumptions (A1)-(A2) and (54), the following hold for all v 2 Rd, kvk 

1, and all k 2 Z between m(n) and n:

(i)
nX

i=k+1

�i[f(✓i�1 + v,�i)� f(✓i�1,�i) + bT kvk
21] � bAnv � bAkv +

nX

i=k+1

�i bAi�1v (67)

(ii) For any t 2 [tm(n), tn),

Ātnv�Ātv+

Z
tn

t

Ā⌧v d⌧  (tn�t)[f(✓n+v)�f(✓n)+bT kvk
21]+o(1) , n ! 1 (68)

where o(1) ! 0 as n ! 1, uniformly in v.

Proof. By (58), for each n � 1,

f(✓n + v,�n+1) � f(✓n,�n+1) +An+1v � bT kvk
21 , v 2 Rd

Consequently,
nX

i=k+1

�i[f(✓i�1 + v,�i)� f(✓i�1,�i) + bT kvk
21] �

nX

i=k+1

�iAiv , m(n)  k  n

The gain matrix bAn updated by (21b) can be expressed

bAn = bAk +
nX

i=k+1

�iAi �

nX

i=k+1

�i bAi�1 , m(n)  k  n
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Therefore,
P

n

i=k+1 �iAiv = bAnv � bAkv +
P

n

i=k+1 �i
bAi�1v. This proves (i).

Now consider the sum
P

n

i=k+1 �if(✓i�1 + v,�i) with m(n)  k  n. We first rewrite it in the
suggestive form

nX

i=k+1

�if(✓i�1 + v,�i) =
nX

i=k+1

�i[f(✓i�1 + v,�i)� f(✓n + v,�i)] +
nX

i=k+1

�if(✓n + v,�i)

By the Lipschitz continuity of f in ✓ and Lemma A.15 (iii), the first sum on the right hand side goes
to 0 uniformly in k as n ! 1. The second sum can be expressed

nX

i=k+1

�if(✓n + v,�i) = (tn � tk)f(✓n + v) +
nX

i=k+1

�i[f(✓n + v,�i)� f(✓n + v)]

Each term in the sum on the right side has zero-mean under the stationary pmf of (X,U). It goes to
zero a.s. for m(n)  k  n as n ! 1 [5, Part II, Section 1.4.6, Proposition 7]. We then obtain

max
m(n)kn

��(tn � tk)f(✓n + v)�
nX

i=k+1

�if(✓i�1 + v,�i)
�� = o(1) , n ! 1 (69)

Since the process {Āt : t � 0} is linearly interpolated between discrete values,
Z

tn

tk

Ā⌧v d⌧ = 1
2

nX

i=k+1

�i[ bAi + bAi�1]v =
nX

i=k+1

�i bAi�1v +
1
2

nX

i=k+1

�i[ bAi �
bAi�1]v

where the second sum on the right hand side can be rewritten as

nX

i=k+1

�i[ bAi �
bAi�1]v = ��k+1

bAkv + �n bAn+1v +
n�1X

i=k+1

[�i � �i+1] bAiv

which goes to zero as n ! 1 given sup
n
k bAnk < 1 and �i � �i+1 ⇡ ⇢i�1�i. Therefore,

max
m(n)kn

��
nX

i=k+1

�i bAi�1v �

Z
tn

tk

Ā⌧v d⌧
�� = o(1) , n ! 1 (70)

Combining (i) with (69) and (70) gives, for t 2 {tk : m(n)  k  n},

Ātnv � Ātv +

Z
tn

t

Ā⌧v d⌧  (tn � t)[f(✓n + v)� f(✓n) + bT kvk
21] + o(1) (71)

For any t 2 [tm(n), tn), denote k = max{j : tj  t}. Letting � = (t� tk)/(tk+1 � tk), we have

Ātv = (1� �)Ātkv + �Ātk+1v

Then,

(1� �)
�
Ātnv � Ātkv +

Z
tn

tk

Ā⌧v d⌧
 
 (1� �)(tn � tk)[f(✓n + v)� f(✓n) + bT kvk

21] + o(1)

�
�
Ātnv � Ātk+1v +

Z
tn

tk+1

Ā⌧v d⌧
 
 �(tn � tk+1)[f(✓n + v)� f(✓n) + bT kvk

21] + o(1)

Combining above two inequalities gives

Ātnv � Ātv +

Z
tn

t

Ā⌧v d⌧  (tn � t)[f(✓n + v)� f(✓n) + bT kvk
21] + o(1)

ut
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Recall the constant bT > 0 introduced in Lemma A.14. For fixed matrix bA 2 Rd⇥d and vector
✓ 2 Rd, define the function distN : Rd⇥d

⇥ Rd
! R by

distN ( bA, ✓) = sup
kvk1

n
max

i

⇥ bAv � (f(✓ + v)� f(✓))
⇤
i
� bT kvk

2
o

(72)

This measures how well bAv approximates the directional derivative f 0(✓; v) for v in the unit ball. It is
non-negative since v = 0 is feasible in the supremum in (72). It is also continuous in both arguments:
Proposition A.17. Under Assumptions (A1)-(A2) and (54), the function distN defined in (72) satis-
fies:

(i) For fixed bA and ✓, the supremum in (72) is achieved.

(ii) distN ( bA, ✓) is non-negative and Lipschitz continuous in both bA and ✓.

(iii) If distN ( bA, ✓) = 0, then the following hold: bA 2 A(✓), and

If f
0

(✓; v) = �f
0

(✓;�v) for some kvk  1, then bAv = f
0

(✓; v).

Proof. With fixed bA and ✓, maxi[ bAv � (f(✓ + v)� f(✓))]i is Lipschitz continuous with respect to
v by Lemma A.8 (i). Since the set {v : kvk  1} is compact, the supremum is achieved.

For (ii), consider bA 6= bA0, while ✓ is fixed. Let v⇤, i⇤ maximize [ bAv� (f(✓+ v)� f(✓))]i � bT kvk2.
We have

distN ( bA, ✓)� distN ( bA0, ✓)  [ bAv⇤ � (f(✓ + v⇤)� f(✓))]i⇤ � [ bA0v⇤ � (f(✓ + v⇤)� f(✓))]i⇤

 k bA� bA0
k1kv

⇤
k1

Therefore, distN ( bA, ✓) is Lipschitz continuous in bA. The same argument implies the Lipschitz
continuity of distN ( bA, ✓) in ✓.

For (iii), the first claim follows from the definition of A(✓) in (26). By the definition of directional
derivative,

f
0

(✓; v) = f(✓ + v)� f(✓) + o(kvk) (73)

where o(s)/s ! 0 as s # 0. Given distN ( bA, ✓) = 0, we have for each v 2 Rd,

bAv  f(✓ + v)� f(✓) + bT kvk
21 = f

0

(✓; v) + o(kvk)

� bAv  f(✓ � v)� f(✓) + bT kvk
21 = f(✓;�v) + o(kvk)

Using f
0

(✓;�v) = �f
0

(✓; v) gives

f
0

(✓; v)� o(kvk)  bAv  f
0

(✓; v) + o(kvk)

With f
0

(✓; sv)/s = f
0

(✓; v) for s > 0, replace v by sv in the above inequality and divide:

f
0

(✓; v)�
o(skvk)

s
 bAv  f

0

(✓; v) +
o(skvk)

s

Letting s # 0 gives bAv = f(✓; v). ut

Proposition A.18. Under Assumptions (A1)-(A2) and (54),

(i) The component-wise inequality holds:

bAnv  f(✓n + v)� f(✓n) + bT kvk
21+ o(1) , n ! 1 (74)

where o(1) ! 0 as n ! 1 uniformly in kvk  1.

(ii) lim
n!1

distN ( bAn, ✓n) = 0 a.s..
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(iii) Let {✓nk} be a subsequence of {✓n} that converges to some ✓� 2 Rd a.s.. Then,

lim
k!1

dist( bAnk ,A(✓�)) = 0 , a.s. (75)

where dist( bAnk ,A(✓�)) denotes the Euclidean distance between bAnk and the set A(✓�).

Proof. For fixed n and v 2 Rd, let U : [tm(n), tn] ! Rd denote the solution of the following linear
integral equation

Ut = Utm(n)
�

Z
t

tm(n)

U⌧ d⌧+(t�tm(n))[f(✓n+v)�f(✓n)+bT kvk
2] , Utm(n)

= Ātm(n)
v (76)

With n fixed, �n , maxi
��[o(1)]i

�� in (68) can be viewed as a positive constant. We claim that Ātnv 

Utn +1�n. Suppose the claim is not true. Then [Ātnv]i > [Utn ]i+�n for some index i between 1 and
d. Because Ātv and Ut are both continuous functions over [tm(n), tn] and Ātm(n)

v = Utm(n)
, there

exists t 2 [tm(n), tn) such that [Āt v]i = [Ut]i and [Ā⌧v]i > [U⌧ ]i for ⌧ 2 (t, tn). Consequently,
combing (68) and (76) gives

�n < [Ātnv � Utn ]i  [Āt v � Ut]i �

Z
tn

t

[Ā⌧v � U⌧ ]i d⌧ + �n < �n

which is a contradiction. Therefore, Ātnv  Utn + 1�n.

The integral equation (76) has the solution,
Ut = exp(tm(n)�t)Utm(n)

+(1�exp(tm(n)�t))[f(✓n+v)�f(✓n)+bT kvk
2] , t 2 [tm(n), tn]

Consequently,
bAnv f(✓n + v)� f(✓n) + bT kvk

21+ �n1

+ exp(tm(n) � tn)
⇥
Utm(n)

� (f(✓n + v)� f(✓n) + bT kvk
2)
⇤

By Lemma A.15 (i), we have tm(n)�tn < � ln(n)+1 and hence exp(tm(n)�tn) < e/n. Therefore,
��exp(tm(n) � tn)

⇥
Utm(n)

� [f(✓n + v)� f(✓n) + bT kvk
21]

�� 
e

n
[bA + bL + bT ]kvk


e

n
[bA + bL + bT ]

which goes to zero as n ! 1. This proves (i), and (ii) follows by the definition of distN .

We prove (iii) by contradiction: Suppose (75) does not hold. Then there exists a constant � > 0
and a subsequence { bAnk} such that dist( bAnk ,A(✓�)) � � for each k. Without loss of generality,
the subsequence is convergent, with limit bA� satisfying dist( bA�,A(✓�)) � �. However, combining
statement (i) and Prop. A.17 (iii) gives

dist( bA�,A(✓�)) = 0

which is a contradiction. ut

A.5.3 Proofs of Prop. A.11 and Prop. A.12

In this subsection, the time processes involved all refer to those defined in Section A.5.1 with respect
to the slow time scale (55).

Proof of Prop. A.11. The Lipschitz continuity of {w̄t} and {c̄t} follows directly from boundedness
of {✓n}.

At a point of differentiability, let vt = d

dt
w̄t = Gtf(✓[t],�[t]+1) and recall that sup

t
kvtk  bf .

Whenever exists, the derivative of c̄t may be represented as the directional derivative of f(w̄t) along
direction vt:

d

dt
c̄t = lim

s!0

f(w̄t+s)� f(w̄t)

s
= lim

s#0

f(w̄t+s)� f(w̄t)

s
= f

0

(w̄t; vt)

= lim
s"0

f(w̄t+s)� f(w̄t)

s
= �f

0

(w̄t;�vt)

(77)
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Prop. A.17 (ii) combined with Prop. A.18 (ii) gives

lim
t!1

distN (Āt, w̄t)  0 , a.s. (78)

Let ⌘t := max(1/t, distN (Āt, w̄t)), satisfying ⌘t > 0 and ⌘t ! 0 as t ! 1. There exists T• < 1

a.s. such for t � T•,

Ātvt � f
0

(w̄; vt) =
1

p
⌘t

⇥
Āt

p
⌘tvt � f

0

(w̄t;
p
⌘tvt)

⇤

=
1

p
⌘t

⇥
Āt

p
⌘tvt � [f(w̄t +

p
⌘tvt)� f(w̄t)]

⇤
+ o(kvtk)

 (1 + bT bf )
p
⌘t1+ o(kvtk)

(79)

where the second equality follows from (77) and the last inequality holds given distN (Āt, w̄t)  ⌘t
and kvtk is uniformly bounded by bf .

At points of differentiability, we apply f
0

(w̄t; vt) = �f
0

(w̄t;�vt) from (77):

�Ātvt + f
0

(w̄; vt)  (1 + bT bf )
p
⌘t1+ o(kvtk)

Consequently,
kĀt

d

dt
w̄t �

d

dt
c̄tk1  (1 + bT bf )

p
⌘t + o(kvtk)

where k · k1 denotes the infinity norm. The right hand side of above inequality is bounded and
converges to zero as t ! 1. Since the derivatives of w̄t and c̄t exist a.e., we have for each T > 0,

Z
T0+T

T0

kĀt
d

dt
w̄t �

d

dt
c̄tk1 dt 

Z
T0+T

T0

(1 + bT bf )
p
⌘t + o(kvtk) dt

The desired result follows from Dominated Convergence Theorem.

Part (ii) is obtained from (i):

c̄T0+t = c̄T0 +

Z
T0+t

T0

d

d⌧
c̄⌧ d⌧

= c̄T0 +

Z
T0+t

T0

Ā⌧ Ḡ⌧f(✓[⌧ ],�[⌧ ]+1) d⌧ + O(1) , T0 ! 1

= c̄T0 +

Z
T0+t

T0

Ā⌧ Ḡ⌧f(w̄⌧ ) d⌧ + O(1) , T0 ! 1

where the last equality follows from standard ODE arguments for stochastic approximation [5].

For (iii), kc̄tk2 is Lipschitz continuous in t given boundedness of {✓n}. Hence by the same argument
in (ii),

kc̄T0+tk
2 = kc̄T0k

2 + 2

Z
T0+t

T0

c̄|
⌧

d

d⌧
c̄⌧ d⌧

= kc̄T0k
2 + 2

Z
T0+t

T0

c̄|
⌧
Ā⌧ Ḡ⌧ c̄⌧ d⌧ + O(1) , T0 ! 1

ut

Proof of Prop. A.12. (i) follows from the Lipschitz continuity of f .

Let {Tk} be a sequence such that �
Tk

! � for each of the four components: �
Tk

i
, 1  i  4.

Since �
Tk

3 ! A weakly in L2([0, T ];Rd⇥d) as k ! 1, by the Banach-Saks theorem, there exists a
subsequence {Tnk} such that

1

N

NX

k=1

�
Tnk
3 (t) ! At , a.e. t 2 [0, T ] , N ! 1
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Without loss of generality, we can modifying At on a Lebesgue-null set such that the convergence
above is pointwise. We also have �

Tnk
1 (t) ! wt as k ! 1 for each t 2 [0, T ]. By Prop. A.18 (ii),

lim
k!1

dist(�
Tnk
3 (t),A(wt)) = 0 , t 2 [0, T ]

It follows from definition (26) that the set A(✓) is convex for each ✓. Then,

lim
N!1

dist(
1

N

NX

k=1

�
Tnk
3 (t),A(wt)) = 0 , t 2 [0, T ]

Therefore, At 2 A(wt) for each t 2 [0, T ]. This proves (ii).

Given that �
T0

4 is positive semi-definite pointwise and uniformly bounded, the same arguments
establish (iii).

Since �Tk
2 ! c uniformly over [0, T ] and �Tk

4 ! H weakly, �
Tk

4 �
Tk

2 converges to Hc : [0, T ] ! Rd

weakly. The ODE (57a) follows from Prop. A.11 (ii). For (57b), since b� := sup
n
�max( bA|

n
bAn) is

finite,
�["I + bA|

n
bAn]

�1
 �

1

"+ b�
I , n � 1

Combining this inequality with Prop. A.11 (iii) implies

kc̄T0+tk
2
 kc̄T0k

2
�

2

"+ b�

Z
T0+t

T0

kĀ
|
⌧
c̄⌧k

2 d⌧ + O(1) , T0 ! 0 (80)

We can show that {(�
Tk

3 )|�
Tk

2 } converges weakly to A
|c in L2([0, T ];Rd) by the sames arguments

that we used to establish �
Tk

4 �
Tk

2 ! Hc weakly. Applying [17, Theorem 2.2.1], we obtain for each
t 2 [0, T ], Z

t

0
kA

|
⌧
c⌧k

2d⌧  lim inf
k!1

Z
t

0
k[�

Tk

3 (⌧)]|�
Tk

2 (⌧)k2 d⌧

Consequently,

kctk
2
 kc0k

2
�

2

"+ b�

Z
t

0
kA

|
⌧
c⌧k

2d⌧

ut

A.5.4 General eligibility vector ⇣

We finally come to the general model in which (54) is relaxed. For the sake of analysis, the
two functions D, ⇣ in (19b) are assumed to be parameterized by separate parameters ✓, ⇠ 2 Rd:
D(✓, z), ⇣(⇠, x, u). This is only for clarifying calculations – in the end we do impose ✓ = ⇠.
Decompose the function ⇣ : Rd

⇥X⇥U ! Rd into its positive and negative components: ⇣ = ⇣+�⇣�,
with ⇣+ = max(⇣, 0) and ⇣� = max(�⇣, 0). Define functions f+, f� : Rd

⇥ Rd
⇥ Z ! Rd by

f+(⇠, ✓, z) = ⇣+(⇠, x, u)D(✓, z) , f�(⇠, ✓, z) = ⇣�(⇠, x, u)D(✓, z)

Next define functions f
+
, f

�

: Rd
⇥ Rd

! Rd by

f
+
(⇠, ✓) = E$[f+(⇠, ✓,�n+1)] , f

�

(⇠, ✓) = E$[f�(⇠, ✓,�n+1)]

Let A+(✓),A�(✓) denote the sets of generalized subgradients of f
+
, f

�

with respect to ✓ based on
(26). Explicit representations of A+(✓) and A

�(✓) can be obtained as in Lemma A.13. With general
eligibility vector ⇣, let A(✓) denote the set

A(✓) := {A+
�A� + E$[D(✓,�n+1)@⇠⇣n(✓)] : A

+
2 A

+(✓) , A�
2 A

�(✓)} (81)

At each ✓ 2 Rd, denote

f
+
(✓; v) := lim

s#0

f
+
(✓, ✓ + sv)� f

+
(✓, ✓)

s
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with f
�

(✓; v) is defined similarly. Then the directional derivative f
0

(✓; v) can be expressed

f
0

(✓; v) = lim
s#0

f(✓ + sv)� f(✓)

s
= f

+
(✓; v)� f

�

(✓; v) + E$[D(✓,�n+1)@⇠⇣n]v , ✓, v 2 Rd

(82)
Decompose An+1 in (21a) as An+1 = A+

n+1 �A�

n+1 +A⇣

n+1:

A+
n+1 = ⇣+

n
[�@✓Q

✓(Xn+1,�
✓n(Xn+1))� @✓Q

✓(Xn, Un)]

A�

n+1 = ⇣�
n
[�@✓Q

✓(Xn+1,�
✓n(Xn+1))� @✓Q

✓(Xn, Un)]

A⇣

n+1 = D(✓n,�n+1)@⇠⇣n

Accordingly, the matrix gain is decomposed: bAn+1 = bA+
n+1 �

bA�

n+1 + bA⇣

n+1, and each component
can be expressed in the recursive form:

bA+
n+1 = bA+

n
+ �n+1[A

+
n+1 �

bA+
n
]

bA�

n+1 = bA�

n
+ �n+1[A

�

n+1 �
bA�

n
]

bA⇣

n+1 = bA⇣

n
+ �n+1[A

⇣

n+1 �
bA⇣

n
]

Analysis of { bA+
n
, bA�

n
, bA⇣

n
} over the fast time scale: Consider the fast time scale defined by (63).

The conclusions in Section A.5.2 hold for each of { bA+
n
} and { bA�

n
}. While { bA⇣

n
} can be treated using

standard SA arguments since A⇣

n+1 is Lipschitz continuous with respect to ✓n under (A2). We obtain
an extension of Prop. A.18:
Proposition A.19. The following hold:

(i) As n ! 1,

bA+
n
v  f

+
(✓n, ✓n + v)� f

+
(✓n, ✓n) + bT kvk

21+ o(1)

bA�

n
v  f

�

(✓n, ✓n + v)� f
�

(✓n, ✓n) + bT kvk
21+ o(1)

where o(1) ! 0 as n ! 1, uniformly in kvk  1.

(ii) Let {✓nk} be a subsequence of {✓n} that converges to some ✓� 2 Rd a.s.. Then,

lim
k!1

dist( bA+
nk
,A+(✓�)) = 0 , lim

k!1

dist( bA�

nk
,A�(✓�)) = 0 , a.s.

(iii) bA⇣

n
= E$[D(✓n,�n+1)@⇠⇣n] + O(1).

Analysis of {✓n} over the slow time scale: Going back to the slow time scale defined by (55),
define the continuous time processes {w̄t, c̄t : t � 0} as before. Define similarly the piecewise
constant time processes {Āt, Ḡt : t � 0} as well as the three components {Ā+

t
, Ā�

t
, Ā⇣

t
: t � 0}.

Proposition A.20. The conclusions of Prop. A.11 and Prop. A.12 hold for general eligibility vectors,
subject to the modified definition of A(✓) in (81).

Proof. For the three claims of Prop. A.11, it suffices to prove that Prop. A.11 (i) holds with the new
definition (81) of A(✓). The rest of the claims then follow from (i).

At a point t where both w̄t and c̄t are differentiable, denote vt =
d

dt
w̄t. Consider

lim
s!0

f
+
(w̄t, w̄t+s)� f

+
(w̄t, w̄t)

s
= lim

s!0

X

x,u

$(x, u)⇣+(w̄t, x, u)
&w̄t+s(x, u)� &w̄t(x, u)

s

By Lemma A.8, &w̄t(x, u) is differentiable for each state-action pair and a.e. t, and hence

f
+
(w̄t; vt) = �f

+
(w̄t;�vt) , for a.e. t 2 R+
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The same arguments imply f
�

(w̄t; vt) = �f
�

(w̄t;�vt) for a.e. t 2 R+. Then, with Prop. A.19 (i),
the same arguments used to establish Prop. A.11 (i) yield those conclusions: For each T > 0,

lim
T0!1

Z
T0+T

T0

kĀ
+
t
vt � f

+
(w̄t; vt)k1 dt = 0

lim
T0!1

Z
T0+T

T0

kĀ
�

t
vt � f

�

(w̄t; vt)k1 dt = 0

It follows from (82) that
d

dt
c̄t = f

+
(w̄t; vt)� f

�

(w̄t; vt) + E$[D(w̄t,�n+1)@⇠⇣n]vt

Therefore,
Z

T0+T

T0

kĀtvt �
d

dt
c̄tk1 dt 

Z
T0+T

T0

kĀ
+
t
vt � f

+
(w̄t; vt)k1 + kĀ

�

t
vt � f

�

(w̄t; vt)k1 dt

+

Z
T0+T

T0

kĀ
⇣

t
vt � E$[D(w̄t,�n+1)@⇠⇣n]vtk1 dt

where the right hand side of the above inequality goes to 0 as T0 ! 1.

For the conclusions of Prop. A.12, we only need to prove (ii) with the new A(✓). Let A+
t
,A�

t
,A⇣

t

denote the weak sub-sequential limits of {Ā+
T0+t

, Ā�

T0+t
, Ā⇣

T0+t
: T0 � 0 , 0  t  T} respectively.

By Prop. A.19 (ii), the same arguments used for Prop. A.12 (ii) apply to each of A+
t

and A
�

t
,

A
+
t
2 A

+(wt) , A
�

t
2 A

�(wt) , t 2 [0, T ]

We also have A⇣

t
= E$[D(wt,�n+1)@⇠⇣n] from Prop. A.19 (iii). Therefore, At = A

+
t
�A

�

t
+A

⇣

t
,

and At 2 A(wt) for each t 2 [0, T ]. ut

Following the same arguments as in Section A.5.1, the ODE approximations and ODE limits
established in Prop. A.20 imply the following extension of Thm. 2.1:
Theorem A.21. The conclusions of Thm. 2.1 hold, subject to the modified definition of A(✓) in (81).

A.6 Numerical Results: Implementation details

Complexity of Zap Q-learning For the Zap Q-learning algorithm (21), per-iteration complexity
comes from various sources:

(i) Computation of f(✓n,�n+1) involves a maximum to obtain Q✓n in (19a).

(ii) The derivatives An+1 = @✓f(✓n,�n+1) are easily computed for linear parameterization of
Q✓, but require back-propagation in a neural network function approximation architecture.

(iii) Computation of Gn+1f(✓n,�n+1) in (21c) and (21d) requires (i) multiplication of two d⇥ d
matrices, and (ii) multiplying a matrix inverse and a vector. Each of these two steps has worst
case computational complexity O(d3).

As discussed in Section 3, the complexity in (iii) can be reduced by updating the gain only periodically,
while continuously updating estimates of A(✓n).

The complexity bound O(Nd3/Nd +Nd2) given in Section 3 is based on gain updates performed
only at integer multiples of Nd. This bound is based on the accounting (i)—(iii) above: O(d2)
complexity per iteration in (21b), and O(d3) complexity for the matrix inverse (as well as the product
bA|
n+1

bAn+1 appearing in (21c)).

Meta-parameters in experiments We used " = 10�6 in (21c) for Mountain car and Acrobot,
" = 10�4 for Cartpole.

For the decreasing step-size rule, we used ⇢ = 0.85 and n0 = 100 in (22). For constant step-size
experiments, we used

↵n ⌘ ↵ , �n ⌘ � = 100↵
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The choice of ↵ itself was problem specific: ↵ = 0.002 for the network of size 6⇥ 3 in the Mountain
car example; ↵ = 0.005 for other experiments using constant step-size. The average reward R(�✓n)
defined in (31) was estimated by running 100 independent simulations following the policy �✓n . The
deterministic upper bound ⌧̄ was 200 for Mountain car and Acrobot, and ⌧̄ = 1000 for Cartpole.

Q-network The input space U in each of the examples is a finite set of scalars. Recall that the
size of neural networks indicated in Figure 1 refers to the size of hidden layers, with the input to
the network (x, u) and the output Q✓(x, u); hence, in the Cartpole example with (x, u) 2 R5, the
network size 30⇥ 24⇥ 16 corresponds to ✓ 2 Rd, with d = 1341:

d = (5 + 1) ⇤ 30 + (30 + 1) ⇤ 24 + (24 + 1) ⇤ 16 + (16 + 1) = 1341

where each + 1 accounts for a bias parameter.

Policy The theory developed in this paper assumes a randomized stationary policy for exploration.
In our experiments, we apply the parameter-dependent ✏-greedy exploration: At iteration n,

Un =

⇢
�✓n(Xn), with probability 1� ✏
rand, with probability ✏

We set ✏ = 0.4 for the Mountain Car and Acrobot, and ✏ = 0.2 for Cartpole.
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