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Abstract

We study RL in the tabular MDP setting where the agent receives additional obser-
vations per step in the form of transitions samples. Such additional observations
can be provided in many tasks by auxiliary sensors or by leveraging prior knowl-
edge about the environment (e.g., when certain actions yield similar outcome).
We formalize this setting using a feedback graph over state-action pairs and show
that model-based algorithms can incorporate additional observations for more
sample-efficient learning. We give a regret bound that predominantly depends on
the size of the maximum acyclic subgraph of the feedback graph, in contrast with
a polynomial dependency on the number of states and actions in the absence of
side observations. Finally, we highlight fundamental challenges for leveraging a
small dominating set of the feedback graph, as compared to the well-studied bandit
setting, and propose a new algorithm that can use such a dominating set to learn a
near-optimal policy faster.

1 Introduction

For many real-world applications, the sample complexity of RL is still prohibitively high, making
it vital to simplify the learning task by incorporating domain knowledge. An effective approach to
do so is through imitation learning [1] but there are many applications where even an expert may
not know how to provide demonstrations of near-optimal policies (e.g. in drug discovery or tutoring
systems). In such applications, an expert may still be able to provide insights into the structure of the
task, for example, that certain actions yield similar behavior in certain states. These insights could, in
principle, be baked into a model or value-function class, but RL with complex function classes is still
very challenging, both in theory and practice [2, 3, 4, 5].

A more convenient approach to incorporate structure from domain knowledge is to directly provide
additional observations to the RL algorithm. In that case, an online RL algorithm not only gets to see
the outcome (reward and next state) of executing the current action in the current state, but also an
outcome of executing other actions, possibly even in other states. While there is often a trivial way to
include such observations of hypothetical transitions in existing methods, little is theoretically known
about the benefits of doing so. This raises the question:

How do additional observations of hypothetical transitions affect the sample-
efficiency of online RL algorithms, and how to best incorporate such observations?

To study this question in full generality, we assume that the additional observations come from some
(black-box) oracle that provides the algorithm with a set of transition samples, in addition to the
current reward and next state (rh, sh+1) from the environment (Figure 1 left). To study how helpful
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Figure 1: Left: RL loop with additional observations from the (black-box) oracle; Right: grid world
example; Through additional sensors, the robot in state D also sees nearby states (yellow) and when
taking the action up, the oracle provides the actual transition (solid arrow) as well as hypothetical
transitions (dashed arrow) from nearby states. This is formalized by a feedback graph G over state-
action pairs shown on the right (snippet). Since (D,up) has an edge to (C, up) and (H,up) in the
feedback graph, the agent receives a (hypothetical) transition for both.

the oracle is, we formalize which observations it provides by a feedback graph [6] over state-action
pairs: an edge in the feedback graph from state-action pair (s, a) to state-action pair (s̄, ā) indicates
that, when the agent takes action a at state s, the oracle additionally provides a reward and next-state
sample (r̄0, s̄0) that the agent would have seen, had it taken action ā in state s̄. Thus, at each time
step, the agents gets to see the outcome of executing the current (s, a) as well as an outcome for each
state-action pair that has an edge from (s, a) in the feedback graph.

To illustrate this setting, consider a robot moving in a grid world (Figure 1, right). Through auxiliary
sensors, it can sense positions in its line of sight. When the robot takes an action to move in a certain
direction, it can also predict what would have happened for the same action in other positions in
the line of sight. The oracle formalizes this prediction ability and provides the RL algorithm with
observations of (hypothetical) movements for that action in the nearby states. Here, the feedback
graph connects state-action pairs with matching actions and states in the line of sight.

Our definition of feedback graphs also captures the common practice of image augmentation, that has
been empirically demonstrated to improve performance [7, 8, 9]. In this case, the states are images
and for any state-action pair (s, a), the feedback graph contains an edge to all (s̄, a) such that s̄ is
a random transformation of s. Another real-world motivating example is recommender systems,
where, the goal – to maximize the long-term satisfaction of each user, by choosing which items to
recommend given the user history – is a natural setting for RL. Here, RL with feedback graphs can
improve the generalization across users, which is still a major challenge for RL [10]. There exist other
techniques, such as collaborative filtering, that can predict that certain users would react similarly to
certain recommendations, but they have other drawbacks. Incorporating these techniques into the
oracle can leverage the complementary strengths of these methods and RL.

We present an extensive study of RL in the tabular MDP setting with feedback graphs defining the
availability of additional observations. Our main contributions, summarized in Table 1, are:

• We prove that, by incorporating the additional observations into the model estimation step, existing
model-based RL algorithms [11, 12] can achieve regret and sample-complexity bounds that scale
with the mas-number µ of the feedback graph – as opposed to potentially much larger number of
states and actions SA (Section 3). This result cannot be readily derived by application of standard
bandit analyses and required a series of novel results on real-valued self-normalizing sequences
over graph vertices (Appendix E).

• We give a lower bound on the regret (Appendix B) that scales with the independence number ↵ of
the feedback graph. For undirected feedback graphs, the equality µ = ↵ holds. This suggests that
the regret guarantee of our algorithm cannot be improved further for such feedback graphs.

• We also prove a lower sample complexity bound, which shows that (1) an improvement to
scale with the domination number � may be possible and (2) we cannot completely remove the
dependence on the independence number ↵ in the lower order terms. The latter is in stark contrast
to the bandit setting [e.g. 6, 13, 14, 15, 16], where the sample complexity can scale with � only.
Thus, leveraging a small domination set of the feedback graph is fundamentally harder in the MDP
setting, since the agent first has to learn how to reach the state-action pairs in the dominating set.
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Worst-Case Regret Sample Complexity
without
feedback

graph

ORLC [17] eO(
p
SAH2T + SAŜH2) eO

⇣
SAH

2

✏2
+ SAŜH

2

✏

⌘

Lower bounds [18, 19] e⌦(
p
SAH2T ) e⌦

⇣
SAH

2

✏2

⌘

with
feedback

graph

ORLC [Thm. 1, Cor. 1] eO(
p
µH2T + µŜH2) eO

⇣
µH

2

✏2
+ µŜH

2

✏

⌘

Algorithm 3 [Thm. 3] at least O(�1/3T 2/3) eO
⇣

�H
3

p0✏
2 + �ŜH

2

p0✏
+ µŜH

2

p0

⌘

Lower bounds [Thm. 4, 5] e⌦(
p
↵H2T ) e⌦

⇣
�H

2

p0✏
2 + ↵

p0
^ ↵H

2

✏2

⌘

Table 1: Comparison of our main results. The symbols µ, ↵ and � denote the mas-, independence
and domination number of the feedback graph respectively, with �  ↵  µ  SA. The symbol T
denotes the total number of episodes, ✏ denotes the optimality gap of the returned policy, H denotes
the episode length and p0 is a parameter for how easy the dominating set can be reached.

• We present an algorithm that overcomes the above challenges for the MDP setting and achieves a
sample complexity bound that scales with the more favorable domination number � in the leading
1
✏2

term (Section 5). A key insight for obtaining this result is a new formulation of multi-task RL
as an extended MDP (Section 4).

2 Problem setup
2.1 Episodic RL in tabular MDP

The agent interacts with an MDP in episodes indexed by k. Each episode is a sequence (s1, a1, r1, . . . ,
sH , aH , rH) of H states sh 2 S, actions ah 2 A and scalar rewards rh 2 [0, 1]. The initial state s1
can be chosen arbitrarily, possibly adversarially. Actions are taken as prescribed by the agent’s policy
⇡k which are deterministic and time-dependent mappings from states to actions, i.e., ah = ⇡k(sh, h)
for all time steps h 2 [H] := {1, 2, . . . H}. The successor states and rewards are sampled from
the MDP as sh+1 ⇠ P (sh, ah) and rh ⇠ PR(sh, ah). We denote by X = S ⇥ A the space of all
state-action pairs (s, a) that the agent can encounter, i.e., visit s and take a. For a pair x 2 X , we
denote by s(x) and a(x) its state and action respectively. We restrict ourselves to tabular MDPs with
finite X . The agent knows the horizon H and the set X , but does not have access to P and PR.

The Q-value of a policy is defined as the reward to go, given the current state and action when
the agent follows ⇡ afterwards Q⇡

h
(s, a) := E[

P
H

t=h
rt | ah = a, sh = s, ah+1:H ⇠ ⇡], and the

state-values of ⇡ are V ⇡

h
(s) := Q⇡

h
(s,⇡h(s)). The expected return of a policy in episode k is simply

the value V ⇡

1 (sk,1) of the initial state sk,1. Any policy that achieves optimal reward to go, i.e.,
⇡(s, h) 2 argmax

a
Q⇡

h
(s, a) is called optimal. We use the superscript ? to denote any optimal

policy and its related quantities. The sample-efficiency of an algorithm can either be measured by its
sample-complexity or its regret. The regret R(T ) =

P
T

k=1(V
?

1 (sk,1)� V ⇡k
1 (sk,1)) is the cumulative

difference of achieved and optimal return after T episodes. Sample complexity N(✏) is the number of
episodes after which the algorithm can identify an ✏-optimal policy ⇡ (with V ⇡

1 (s1) � V ?

1 (s1)� ✏).

2.2 Feedback graphs

In a typical RL setting, when the agent (learner) takes an action ah at state sh at time h, it receives a
sample of the reward rh and the next-state sh+1 observed after taking a step in the MDP. However, in
our setting, besides the transition ((sh, ah), rh, sh+1), an oracle provides the agent with additional
observations, about transitions at other states and actions. We denote the set of observations provided
to the agent at time step h by Oh (see Figure 1, left). While being an interesting research direction,
the goal of our work in this paper is not to study the design or implementation of these oracles (that
provide Oh) but rather how RL algorithms can benefit from the additional observations. To that
end, we formalize the additional observations available to the agent by a directed graph G = (X , E)
over state-action pairs called a feedback graph, where the vertex set X comprises of all feasible
state-action pairs in the MDP. An edge x G! x̄ in G (short for (x, x̄) 2 E), from a state-action pair
x to another state-action pair x̄, indicates that when the agent takes action a(x) at state s(x), along
with a transition for that step, it also observes a sample of the reward and the next-state (r0, s0) it
would have observed if the agent had been at state s(x̄) and had executed action a(x̄). Thus, the set
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(a) SA = 8,
µ = ↵ = � = 2

(b) SA = µ = 4,
↵ = � = 1

(c) SA = µ = 6,
↵ = 5,
� = 1

(d) SA = 6,
µ = 5,

↵ = 3, � = 2

Figure 2: Examples of feedback graphs with different vertex number SA, mas-number µ, indepen-
dence number ↵ and domination number �.

of observations Oh received by the agent at time step h is

Oh(G) := {(xh, rh, sh+1)} [ {(x̄, r0, s0) | xh
G! x̄} ,

where xh := (sh, ah), and the observations (x̄, r̄, s̄) are sampled independently with s0 ⇠ P (x) and
r0 ⇠ PR(x), given all previous observations. 1

We emphasize that even though the agent receives additional observations Oh(G) at each time step,
the next state is still sh+1, as determined by the original transition. Further, for the ease of analysis,
throughout the paper, we will assume that self-loops (edges of the form x G! x in G) are implicit and
will therefore not include them in edge set E .

Important graph properties. The analysis of regret and sample-complexity in this setting uses the
following graph-theoretic properties [13], each capturing a notion of connectivity of the graph:

• Mas-number (µ): A set of vertices V ✓ X forms an acyclic subgraph of G if the subgraph
eG(V, {(v, w) ✓ V ⇥ V : v G! w}), induced by restricting G to V , does not contain a cycle. The
size of the maximum acyclic subgraph denotes the mas-number µ of G.

• Independence number (↵): A set of vertices V ✓ X is an independent set if there is no edge
between any two nodes of V , i.e. for all v, w 2 V, v 6G! w. The size of the largest independent set
is called the independence number ↵ of G.

• Domination number (�): A set of vertices V ⇢ X forms a dominating set if there is an edge
from a vertex in V to any vertex in G, i.e. for all x 2 X , there exists a v 2 V such that v G! x.
The size of the smallest dominating set is called the domination number �.

In the context of feedback graphs, mas- and independence number can be interpreted as a worst-case
notion of connectivity measuring how many different vertices any algorithm can visit before observing
any vertex twice. In contrast, the domination number is a best-case notion answering the question of
how many vertices an algorithm that takes the graph structure into account has to visit in order to
receive an observation from every vertex. For any graph, we have �  ↵  µ  |X |, where each
inequality can be ⇥(|X |) apart. Independence- and mas-number coincide, ↵ = µ, for undirected
graphs where for every edge there is an edge pointing backward. See Figure 2 for examples of
feedback graphs and their graph properties and Appendix A.2 for a more extensive discussion. Here,
we only give three relevant examples where feedback graph properties can be much smaller than SA:

a) State aggregation ([20]) can be considered a special case where the feedback graph consists of
disjoint cliques, each consisting of the state-action pairs whose state belongs to a an aggregated
state. Here µ = ↵ = � = AB where B is the number of aggregated states and A = |A|.

b) Reinforcement learning with multiple tasks is discussed in Section 4.
c) Four-rooms environment. For a concrete example of how small graph properties can be in practice,

we consider a version of the classic four-room environment [21] where the agent receives side
observations for (s, a)-pairs with s in its field of view and a matching the current action. Here,
|X | = SA = 376, µ  146, ↵ = 44 and � = 16 (more details in Appendix A.2).

1Note that simultaneous observations can be dependent. This allows the oracle to generate side observations
from the current, possibly noisy, transition without the need for a new sample with independent noise.
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Algorithm 1: Optimistic model-based RL
1 D1  Initialize model statistics // br, br2, bP, n

2 for episode k = 1, 2, 3, . . . do
3 ⇡k, eVk,1,⇠Vk,1  OptimistPlan(Dk)

4 Observe initial state sk,1
5 Dk+1  SampleEpisode(⇡k, sk,1, Dk)

Algorithm 2: SampleEpisode(⇡, s1, D)

1 for h = 1, . . . , H do
2 Take action ah = ⇡(sh, h) and

transition to sh+1 with reward rh;
3 Receive observations Oh(G);
4 for transition (x, r, s0) 2 Oh(G) do
5 D  UpdateModel(D,x, r, s0);

return :D

3 Mas-number based regret bounds

As a first contribution, we show the benefits of a feedback graph in achieving more favorable learning
guarantees for optimistic model-based algorithms. Algorithms in this family, such as UCBVI [22],
ORLC [12] or (STRONG-)EULER [11, 23], maintain an estimate D of the MDP model and alternate
between (1) computing a policy ⇡k by optimistic planning with D and (2) updating D using the
observations from executing ⇡k for one episode (see Algorithm 1). Model-based algorithms can
naturally incorporate side observations by updating the model estimate D with all observations
Oh(G) provided by the oracle as stipulated by the feedback graph. As highlighted in lines 3–4 of
Algorithm 2, the SampleEpisode subroutine calls UpdateModel at each time step for all transition
observations in Oh(G) as opposed to only the performed transition ((sh, ah), rh, sh+1).

Different model-based algorithms deviate in their implementation of UpdateModel and
OptimistPlan. For concreteness, we will analyze a version of the EULER or ORLC algorithm
[12, 11] with UpdateModel and OptimistPlan provided in Algorithms 4 and 5 in Appendix C.1.
We expect our results to directly extend to other model-based RL algorithms, such as UCBVI [22].
Here, the model estimate D consists of first and second moments of the immediate reward i.e. br(x)
and br2(x) respectively, transition frequencies bP (x) and the number of observations n(x) for each
state-action pair x 2 X . OptimistPlan is a version of value iteration with reward bonuses. It returns
an upper-confidence bound eVk,1 on the optimal value function V ?

1 as well as a lower-confidence
bound ⇠Vk,1 on the value function of the returned policy V ⇡k

1 , and can be can be viewed as an extension
of the UCB policy from the bandit to the MDP setting. We prove the following regret bound:
Theorem 1 (Regret bound). For any tabular episodic MDP with episode length H , state-action
space X ✓ S ⇥ A and directed feedback graph G, the regret of Algorithm 1 with subroutines in
Alg. 2, 5 and 4 and 5 is with probability at least 1� � for all number of episodes T

R(T ) = eO
�p

µH2T + µbSH2
�
, (1)

where µ is the size of the maximum acyclic subgraph of G and algorithm parameter bS  S is a
bound on the number of possible successor states of each x 2 X .
Remark 2 (IPOC and sample-complexity bound). Equation (1) also bounds the cumulative sizeP

T

k=1(
eVk,1(sk,1) � ⇠Vk,1(sk,1)) of policy certificates [12] which implies that the algorithm also

satisfies a sample-complexity bound N(✏) = eO
�
µH

2

✏2
+

bSMH
2

✏

�
.

Theorem 1 replaces a factor of SA in the best known regret bounds for RL, without side observations
[12, 11], with the mas-number µ (see also Table 1). This is a substantial improvement, since, in
many feedback graphs SA may be very large while µ is a constant. The only remaining polynomial
dependency on bS  S is in the lower-order term, and is standard for model-based RL algorithms.
Even in the tabular MDP setting without the feedback graph, removing this term without incurring
a significant penalty in H is an interesting open problem. On the lower bound side, we show
in Appendix B that the worst-case regret of any algorithm is e⌦(

p
↵H2T ), where ↵ denotes the

independence number of G. While µ and ↵ can differ for general graphs, they are equal for
undirected feedback graphs. In that case, the regret bound in Theorem 1 is optimal up to lower-order
terms and log-factors. We will show in the following sections that the sample-complexity, however,
can be improved further to depend on the domination number �, instead of ↵ or µ as above.

Technical challenges and proof technique. See Appendix C.7 for a brief discussion of how our
analysis differs from existing ones. In essence, at the core of UCB analyses with feedback graphs
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in bandits [24] is a discrete pigeon-hole argument on the vertices of the graph. Applying such an
argument in the MDP setting yields an undesirable regret term of ⌦(

p
H3T ), due to an additional

concentration argument to account for the stochasticity in the visitation of various state-action pairs by
the corresponding policies. We avoid this concentration argument by generalizing the bandit analysis
and developing a series of novel technical results on self-normalizing sequences of weight-functions
on vertices of a graph. These might be of independent interest (see Appendix E).

4 Example: Multi-task RL

In Section 5, we show that the sample complexity of RL can be improved further when the feedback
graph has a small dominating set. As a preparation for that discussion, we first show here that
feedback graphs can be used to efficiently learn in certain multi-task RL problems. This may be of
independent interest. The specific setting we consider is:

There are m tasks that share the same underlying transition dynamics P . Each task admits different
reward distributions, denoted by P (i)

R
for the i-th task, where i 2 [m]. We assume that the initial state

is fixed and that reward distributions of all but one task are known to the agent.2 The goal is to learn a
policy that, given the task identity i, performs ✏-optimally. This is equivalent to learning an ✏-optimal
policy for each task.

The naive approach is to use m instances of any PAC-RL algorithm to learn each task separately.
With Algorithm 1 for example, this would require in total

eO
⇣m(1 + ✏bS)µH2

✏2

⌘

episodes. If the number of tasks m is large, this can be significantly more costly than learning a single
task. We will now show that this dependency on m can be removed with the help of feedback graphs.

Extended MDP. We can learn the m tasks jointly by running Algorithm 1 in an extended MDP M̄.
In this extended MDP, the state is augmented with a task index, that is, S̄ = S ⇥ [m]. In states with
index i, the rewards are drawn from P (i)

R
and the dynamics according to P with successor states

having the same task i. Formally, the dynamics P̄ and expected rewards r̄ of the extended MDP are

P̄ ((s0, j)|(s, i), a) = 1{i = j}P (s0|s, a), and, r̄((s, i), a) = ri(s, a)

for all s 2 S, a 2 A, i, j 2 [m] where ri(s, a) = E
r⇠P

(i)
R (s,a)

[r] are the expected rewards of task i.
Essentially, the extended MDP consists of m disjoint copies of the original MDP, each with the
rewards of the respective task.

The key for learning all tasks jointly is to define the feedback graph Ḡ of the extended MDP so that it
connects all copies of state-action pairs that are connected in the feedback graph G of the original
MDP. That is, for all s, s0 2 S , a, a0 2 A, i, j 2 [m], ((s, i), a) Ḡ! ((s0, j), a0) , (s, a) G! (s0, a0).
Note that we can simulate an episode of M̄ by running the same policy in the original MDP because
we assumed that the immediate rewards of all but one task are known. Therefore, to run Algorithm 1 in
the extended MDP, it is only left to determine the task index ik of each episode k. To ensure learning
all tasks equally fast and not wasting resources on a single task, we choose the task for which the
value confidence bounds are farthest apart, i.e., ik 2 argmax

i2[m]
eVk,1((sk,1, i))� ⇠Vk,1((sk,1, i)).

This choice implies that if this difference is at most ✏ for the chosen task, then the same holds for all
other tasks. Thus, when the algorithm encounters eVk,1((sk,1, ik))� ⇠Vk,1((sk,1, ik))  ✏, the current
policy is ✏-optimal for all tasks as eVk,1  V ⇡k

1  V ?

1  eVk,1. By Remark 2 above, this happens for
Algorithm 1 in

eO
⇣ (1 + ✏bS)µH2

✏2

⌘

episodes. Note that we used the mas-number µ and maximum number of successor states bS of
the original MDP, as these quantities are identical in the extended MDP. By learning tasks jointly
through feedback graphs, the total number of episodes needed to learn a good policy for all tasks

2Note that this assumption holds in most auxiliary task learning settings and does not trivialize the problem
(e.g. see Section 5).
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Algorithm 3: RL using given dominating set XD and parameters � 2 (0, 1] and bS  S

1 Initialize model statistics D and active task set I  {1, . . . , �};
/* First phase: find policy to reach each vertex in given dominating set */

2 while I 6= ? do
3 ⇡, eVh,⇠Vh  OptimistPlan(D) ; // Alg. 5, with probability parameter �/2

4 j  argmax
i2I

eV1((s1, i))� ⇠V1((s1, i));
5 for i 2 I do
6 if eV1((s1, i))  2⇠V1((s1, i)) then
7 ⇡(i)((s, 0), h) ⇡((s, i), h) for all s 2 S and h 2 [H] ; // map policy to task 0

8 I  I \ {i}, bp(i)  ⇠V1((s1, i))

9 D  SampleEpisode(⇡, (s1, j), D) ; // Alg. 2, apply to extended MDP M̄

/* Second phase: play learned policies to uniformly sample from dominating set */

10 while eV1((s1, 0))� ⇠V1((s1, 0)) > ✏ do
11 j  (j mod �) + 1 ; // Choose policy in circular order

12 D  SampleEpisode(⇡(j), (s1, 0), D) ; // Alg. 2, apply to extended MDP M̄

13 ⇡, eVh,⇠Vh  OptimistPlan(D) ; // Alg. 5, with probability parameter �/2

14 ⇡̂(s, h) ⇡((s, 0), h) for all s 2 S and h 2 [H]; // map policy back to original MDP
return :⇡̂

does not grow (polynomially) with the number of tasks and we save a factor of m compared to the
naive approach without feedback graphs. This might seem to be too good to be true but it is possible
because the rewards of all but one task are known and the dynamics is identical across tasks. While
one could derive and analyze a specialized algorithm without feedback graphs for this setting, this
would likely be much more tedious.

5 Domination number based sample-complexity bounds

Algorithm 1 uses additional observations efficiently, despite being agnostic to the feedback graph
structure. Yet, sometimes, an alternative approach can be further beneficial. In some problems,
there are state-action pairs which are highly informative, that is, they have a large out-degree in
the feedback graph. Consider for example a ladder in the middle of a maze. Going to this ladder
and climbing it may be time-consuming (low reward) but it reveals the entire structure of the maze,
thereby making a subsequent escaping much easier. In this case the domination number � ⌧ ↵  µ
is much smaller than other feedback graph properties. Explicitly exploiting such state-action pairs
may not be advantageous to improve over the regret (as such pairs could have low reward giving worst
case regret ⌦(T 2/3)), but may be useful when the goal is to eventually learn a good policy without
caring about the performance during the learning process. We therefore study the sample-complexity
of RL in the MDP setting given a small dominating set XD = {X1, . . . , X�} of the feedback graph.
We discuss in Appendix F.1 how to extend Algorithm 3 when the dominating set is not known.

We propose a simple algorithm that aims to explore the MDP by uniformly visiting state-action pairs
in the dominating set. This works because the dominating set admits outgoing edges to every vertex,
that is 8x 2 X , 9x0 2 XD : x0 G! x. However, compared to the bandit setting [13] with immediate
access to all vertices, there are additional challenges for such an approach in the MDP setting:

1. Unknown policy for visiting the dominating set: While we assume to know the identity
of the state-action pairs in a dominating set, we do not know how to reach those pairs.

2. Low probability of visiting the dominating set: Some or all state-action pairs in the
dominating set might be hard to reach under any policy.

The lower bound in Theorem 5 in Appendix B shows that these challenges are fundamental. To
address them, Algorithm 3 proceeds in two phases. In the first phase (lines 2–9), we learn policies
⇡(i) that visit each element Xi 2 XD in the dominating set with probability at least p

(i)

2 . Here,
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p(i) = max⇡ E[
P

H

h=1 1{(sh, ah) = X(i)} | ⇡] is the highest expected number of visits to Xi per
episode possible. The first phase leverages the construction for multi-task learning from Section 4.
We define an extended MDP for a set of tasks 0, 1, . . . , �. Task 0 is to maximize the original reward
and tasks 1, . . . , � aim to maximize the number of visits to each element of the dominating set. To
this end, we define the rewards for each task of the extended MDP as

r̄((s, 0), a) = r(s, a) r̄((s, k), a) = 1{(s, a) = Xk}, 8k 2 [�], s 2 S, a 2 A.

The only difference with Section 4 is that we use a subset of the tasks and stop playing a task once we
have identified a good policy for it. The stopping condition in Line 6 ensures that policy ⇡(i) visits
Xi in expectation at least bp(i) � p

(i)

2 times. In the second phase (lines 10–14), each policy ⇡(i) is
played until there are enough samples per state-action pair to identify an ✏-optimal policy.
Theorem 3 (Sample complexity of Algorithm 3). For any tabular episodic MDP with state-actions
X , horizon H , feedback graph with mas-number µ and given dominating set XD with |XD| = � and
accuracy ✏ > 0, Algorithm 3 returns with probability at least 1� � an ✏-optimal policy after

eO
⇣�H3

p0✏2
+

� bSH3

p0✏
+

µbSH2

p0

⌘
(2)

episodes. Here, p0 = mini2[�] p
(i) is possible expected number of visits to the node in the dominating

set that is hardest to reach.

The last term µbSH
2

p0
is spent in the first phase on learning how to reach the dominating set. If

the algorithm did not use the extended MDP for multi-task learning as sketched in Section 4, the
sample-complexity for the first phase would be �µbSH

2

p0
(since we then would pay an additional linear

factor in the number of state-action pairs we want to learn to reach).

The first two terms in (2) come from visiting the dominating set uniformly in the second phase.
Comparing that to the sample-complexity of Algorithm 1 in Table 1, µ is replaced by �H

p0
in

poly(✏�1) terms. This can yield substantial savings when there is a small and easily accessible
dominating set, e.g., when � ⌧ µp0

H
and ✏⌧ p0. There is a gap between the bound above and the

sample-complexity lower bound in Table 1 (see also Theorem 5 in Appendix B) , but one can show
that a slightly specialized version of the algorithm reduces this gap to a single factor of H in the class
of MDPs of the lower bound (by using that p0  1, Ŝ = 2 in this class, see Appendix F for details).

Technical challenges and proof technique. By building on the analysis of Algorithm 1 and the
arguments sketched in Section 4, we first show an intermediate sample complexity bound of eO

�
�H

3

p0✏
2 +

� bSH
3

p0✏
+ µH

2

p
2
0

+ µbSH
2

p0

�
. To remove the undesirable p�2

0 term, we adapt the analysis of EULER [11]
from regret to sample-complexity which gives that µH2p�2

0 can be replaced by µHv?p�2
0 where v?

is the average optimal return in the first phase. While one can easily bound v?  maxi pi, this does
not cancel a factor of p0 = mini pi in the denominator. Dealing with this max vs. min mismatch
is the main technical challenge in our proof and requires a novel induction argument over subset of
tasks or episodes (see Appendix F).

6 Related work

To the best of our knowledge, we are the first to study RL with feedback graphs in the MDP setting.
In the bandit setting, many works on feedback graphs exist, going back to Mannor and Shamir [6].
For stochastic bandits, Caron et al. [25] provided the first regret bound for UCB in terms of clique
covering number which was later improved to mas-number [24].3 Both are gap-dependent bounds as
is common in bandits. Recently, the first gap-dependent bounds in the MDP setting were proved for
a version of EULER [23, 11]. To keep the analysis simple, we here provided problem-independent
bounds. A slight generalization of our technique could yield similar problem-dependent bounds.

Mas-number is the best dependency known for UCB algorithms, but action elimination and exponen-
tial weights algorithms can achieve regret bound of

p
↵T in the bandit setting [26, 13]. Buccapatnam

3They assume undirected feedback graphs and state their results in terms of independence number.
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et al. [27] even achieved regret scaling with � by using a dominating set . Unfortunately, all these
techniques rely on immediate access to each feedback graph vertex which is unavailable in an MDP.

Albeit designed for different purposes, Algorithm 3 is similar to a concurrently developed algorithm
[28] for exploration in absence of rewards. But there is a key technical difference: Algorithm 3
learns how to reach each element of the dominating set jointly, while the approach by Jin et al. [28]
learns how to reach each state pair separately. Following Section 4, we expect that, by applying our
technique to their setting, one could improve the state space dependency of their sample complexity
bound from eO(S2/✏2 + S4/✏) to eO(S2/✏2 + S3/✏).

A common assumption in RL is access to a generative model that allows an algorithm to request
reward and the next-state from any state-action pair [29], e.g. for sample-based planning. Our
feedback graph setting is much weaker, since, in order to receive a sample transition for a state-action
pair x, the agent needs to learn to either reach x or an incoming neighbor of x in the feedback graph.
One can interpret additional observations through a feedback graph as an explicit way of generalizing
from one state-action pair to others while using an unstructured representation of the model and
value functions. This is complementary to many existing approaches that generalize by introducing
structure into the model representation (for example in factored Markov decision processes) or the
value function and policy representation [2, 30]

7 Conclusion

We studied the effect of additional observations, stipulated by a feedback graph, on the regret and
sample-complexity of episodic RL in tabular MDP setting. Our results show that, when the feedback
graph is undirected, optimistic model-based algorithms that just incorporate all available observations
into their model update step achieve the minimax-optimal regret bound. We also proved with a new
algorithm that exploiting the feedback graph structure by visiting highly informative state-action
pairs (dominating set) is possible but fundamentally more difficult in the MDP setting, as compared
to the well-studied bandit setting. Our work paves the way for a more extensive study of this setting.
Promising directions include a regret analysis for feedback graphs in combination with function
approximation motivated by impressive empirical successes [7, 8, 9]. Another question of interest is
an analysis of model-free methods [31] with graph feedback which likely requires a very different
analysis, as existing proofs hinge on observations arriving in trajectories.

Broader Impact

This work is of theoretical nature and the presented insights are unlikely to have a direct impact on
society at large. That said, it might guide future research with such impact.
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