
Appendix

In this appendix, we first present a visualization of the data structure used for SVGs in Sec. A. We
provide detailed instructions used to preprocess our data in Sec.B. Additional details on training and
architectures are given in Sec. C and Sec. D. Sec. E goes through the procedure to predict filling
along with SVG paths. Finally, additional results for font generation, icons generation, latent space
algebra, animations and interpolations are presented in sections F, G, H, I and J respectively.

A SVG Representation visualization

For a visual depiction of the data structure described in Sec. 3.1, we present in Fig. 1 an example of
SVG image along with its tensor representation. The SVG image consists of 2 paths, P1 and P2. The
former, P1 starts with a move m command from the top left corner. The arc is constructed from two
Cubic Bézier curve c commands. This is followed by a line l and close path z command. The <EOS>
command indicates the end of path P1. P2 is constructed in a similar fashion using only a single
Cubic Bézier curve.

Index Command Arguments Index Command Arguments

2

1 5

4
3

21

1

2

6

5

4

3

0 <SOS>

m

c

c

l

<EOS>

143 180 215 6616 14

-1 -1 -1 -1-1 -1

-1 -1 -1 -1-1 -1

z -1 -1 -1 -1-1 -1

-1 -1 95 54-1 -1

-1 -1 95 54-1 -1

255 244 191 181118 152

1

2

6

5

4

3

0 <SOS> -1 -1 -1 -1-1 -1

<EOS> -1 -1 -1 -1-1 -1

<EOS> -1 -1 -1 -1-1 -1

<EOS> -1 -1 -1 -1-1 -1

<EOS> -1 -1 -1 -1-1 -1

m

c 93 48 11 125183 176

-1 -1 132 130-1 -1

Figure 1: Example of SVG representation. Left: Input SVG image. Right: Corresponding tensor
representations with 2 paths and 7 commands (NP = 2, NC = 7). Commands in the image and the
corresponding tensor are color-coded for a better visualization. The arguments are listed in the order
qx1, qy1, qx2, qy2, x2 and y2. Best viewed in color.

B SVG Preprocessing

In Sec. 3.1, we consider that SVG images are given as a set of paths, restricted to the 6 commands
described in Tab. 1. As mentioned, this does not reduce the expressivity of vector graphics since
other basic shapes and commands can be converted to that format. We describe next the details of
these conversions.

Path commands conversion. Lower-case letters in SVG path commands are used to specify that
their corresponding arguments are relative to the preceding command’s end-position, as opposed
to absolute for upper-case letters. We start by converting all commands to absolute. Other avail-
able commands (H: HorizonalLineTo, V: VerticalLineTo, S: SmoothBezier, Q: QuadraticBezier, T:
SmoothQuadraticBezier) can be trivially converted to the commands subset of Tab. 1. The only
missing command that needs further consideration is the elliptical-arc command A, described below.

Elliptical arc conversion. As illustrated in Fig. 2, command A rx, ry ϕ fA fS x2, y2 draws
an elliptical arc with radii rx and ry (semi-major and semi-minor axes), rotated by angle ϕ to the
x-axis, and end-point (x2, y2). The bit-flags fA and fS are used to uniquely determine which one
of the four possible arcs is chosen: large-arc-flag fA is set to 1 if the arc spanning more than 180°
is chosen, 0 otherwise; and sweep-flag fs is set to 0 if the arc is oriented clockwise, 1 otherwise.
We argue that this parametrization, while being intuitive from a user-perspective, adds unnecessary
complexity to the commands argument space described in Sec.3.1 and the bit-flags make shapes
non-continuous w.r.t. their arguments, which would result in less smooth animations. We therefore
convert A commands to multiple Cubic Bézier curves. We first start by converting the endpoint
parametrization (x1, y1), (x2.y2) to a center parametrization (cx, cy). The center of the ellipse is

1



Figure 2: Elliptical Arc command visualization. The command is parametrized with arguments: rx,
ry , ϕ, fA, fS , x2 and y2.

computed using: (
cx
cy

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)(
c′x
c′y

)
+

(
x1+x2

2
y1+y2

2

)
(1)

where, (
c′x
c′y

)
= ±

√√√√r2xr
2
y − r2x (y′1)

2 − r2y (x′1)
2

r2x (y′1)
2

+ r2y (x′1)
2

(
rxy
′
1

ry

− ryx
′
1

rx

)
(2)

(
x′1
y′1

)
=

(
cosϕ sinϕ
− sinϕ cosϕ

)(
x1−x2

2
y1−y2

2

)
(3)

We then determine the start angle θ1 and angle range ∆θ which are given by computing:

θ1 = ∠

((
1
0

)
,

(
x′1−c

′
x

rx
y′1−c

′
y

ry

))
(4)

∆θ = ∠

((
x′1−c

′
x

rx
y′1−c

′
y

ry

)
,

(−x′1−c′x
rx

−y′1−c
′
y

ry

))
(5)

Using (cx, cy), θ1 and ∆θ, we obtain the parametric elliptical arc equation as follows (for θ ranging
from θ1 to θ1 + ∆θ):

E(θ) =

(
cx + rx cosϕ cos θ − ry sinϕ sin θ
cy + rx sinϕ cos θ − ry cosϕ sin θ

)
(6)

and the derivative of the parametric curve is:

E′(θ) =

(
−rx cosϕ sin θ − ry sinϕ cos θ
−rx sinϕ sin θ − ry cosϕ cos θ

)
(7)

Given both equations, [5] shows that the section of elliptical arc between angles θ1 and θ2 can be
approximated by a cubic Bézier curve whose control points are computed as follows:

P1 = E(θ1)
P2 = E(θ2)
Q1 = P1 + αE′(θ1)
Q2 = P2 − αE′(θ2)

(8)

where α = sin θ2 − θ1

√
4+3 tan2 θ2−θ1

2 −1
3 .

Basic shape conversion. In addition to paths, SVG images can be built using 6 basic shapes:
rectangles, lines, polylines, polygons, circles and ellipses. The first four can be converted to paths

2



Table 1: Examples of conversion from basic shapes (rectangle, circle, ellipse, line, polyline and
polygon) to paths.

Basic Shape Path equivalent

<rect x="0" y="0"
width="1" height="1" />

<path d="M0,0 L1,0 L1,1
L0,1 L0,0 z" />

<circle cx="1" cy="1"
r="1" />,

<ellipse cx="1" cy="1"
rx="1" ry="1" />

<path d="M1,0 A1,1 0 0 1 2,1
A1,1 0 0 1 1,2
A1,1 0 0 1 0,1
A1,1 0 0 1 1,0 z" />

<line x1="0" x2="1" y1="0"
y2="1" /> <path d="M0,0 L1,1" />

<polyline points="0, 0 1, 0 1,
1" /> <path d="M0,0 L1,0 L1,1" />

<polgon points="0, 0 1, 0 1, 1"
/> <path d="M0,0 L1,0 L1,1 z" />

using Line commands, while the latter two are transformed to a path using four Elliptical Arc
commands, which themselves are converted to Bézier curves using the previous section. Table 1
below shows examples of these conversions.

Path simplification. Similarly to Sketch-RNN [3], we preprocess our dataset in order to simplify
the network’s task of representation learning. However, unlike the latter work, our input consists
of both straight lines and parametric curves. Ideally, if shapes were completely smooth, one could
reparametrize points on a curve so that they are placed equidistantly from one another. In practice
though, SVG shapes contain sharp angles, at which location points should remain unchanged. We
therefore first split paths at points that form a sharp angle (e.g. where the angle between the incoming
and outgoing tangents is less than some threshold η = 150°). We then apply either the Ramer-
Douglas-Peucker [2] algorithm to simplify line segments or the Philip J. Schneider algorithm [8] for
segments of cubic Bézier curves. Finally, we divide the resulting lines and Bézier curves in multiple
subsegments when their lengths is larger than some distance ∆ = 5. Examples of SVG simplifications
are shown in Fig. 3. Notice how our algorithm both adds points when curve segments are too long or
reduces the amount of points when the curve resolution is too high.

Figure 3: Examples of SVG simplifications. Top: original SVGs as downloaded from the https:
//icons8.com website. Bottom: Same icons after path simplification.

3

https://icons8.com
https://icons8.com


SVG normalization. All SVGs are scaled to a normalized viewbox of size 256 × 256, and paths are
canonicalized, meaning that a shape’s starting position is chosen to be the topmost leftmost point,
and commands are oriented clockwise.

C Additional Training details

We augment every SVG of the dataset using 20 random augmentations with the simple transformations
described as follows.

Scaling. We scale the SVG by a random factor s in the interval [0.8, 1.2].

Translation. We translate the SVG by a random translation vector t where tx and ty are sampled
independently in the interval [−2.5, 2.5].

We believe further robustness in shape representation learning and interpolation stability can be
obtained by simply implementing more complex data augmentation strategies.

D Architectural details

Fig. 4 presents an overview illustration of our Hierarchical autoencoder architecture. In Fig. 4, we
here show a more detailed view of the four main components of DeepSVG, i.e. the two encoders E(1),
E(2) and decoders D(2), D(1). Similarly to [6], we use the improved Transformer variant described
in [1, 7] as building block in all our components. E(1) and E(2) employ a temporal pooling module
to retrieve a single dE-dimensional vector from the NC and NP outputs respectively. D(2) and D(1)

use learned embeddings as input in order to generate all predictions in a single forward-pass (non-
autoregressively) and break the symmetry. The decoders are conditioned on latent vector z or path
representation ui by applying a linear transformation and adding it to the intermediate transformer
representation in every block.

Figure 4: Detailed view of architectures of E(1), E(2), D(2) and D(1).

4



E Filling procedure visualization

Thanks to its hierarchical construction, DeepSVG can predict any number of global path-level
attributes, which could be e.g. color, dash size, stroke-width or opacity. As a first step towards
a network modeling all path attributes supported by the SVG format, we demonstrate support for
filling. When using the default non-zero fill-rule in the SVG specification, a point in an SVG path is
considered inside or outside the path based on the draw orientations (clockwise or counter-clockwise)
of the shapes surrounding it. In particular, the insideness of a point in the shape is determined by
drawing a ray from that point to infinity in any direction, and then examining the places where a
segment of the shape crosses the ray. Starting with a count of zero, add one each time a path segment
crosses the ray from left to right and subtract one each time a path segment crosses the ray from right
to left. We argue that this parametrization is not optimal for neural networks to encode filling/erasing.
Therefore, we simply let the network output a fill-attribute that can take one of three values: outline,
fill or erase. This attribute is trained in a supervised way along with the other losses and is then used
to export the actual SVG file. In particular, overlapping fill and erase shapes are grouped together in
a same path and oriented in a clockwise/counterclockwise fashion respectively, while outlined shapes
remain unchanged.

Figure 5: Examples of icon interpolations when using the fill attribute, predicted by the global
decoder D(1). Look at how shapes’ filling generally changes at the middle of interpolation, while
being deformed in a smooth way.

5



F Font generation

In this section, we provide details and additional results for font generation, presented in Sec. 4.4.

Experimental setup. We train our models on the SVG-Fonts dataset [4] for 5 epochs using the
same training hyper-parameters as described in Sec. 3.4, reducing the learning rate by a factor 0.9
every quarter epoch. Furthermore, all encoder and decoder Transformer blocks are extended to
be class-conditioned. Similarly to how latent vector z is fed into D(2), we add the learned label
embedding to the intermediate transformer representation, after liner transformation. This is done in
E(1), E(2), D(2) and D(1) and applies for both our final model and the one-stage baselines.

Additional results. To validate that our model generates diverse font samples, we also present in
Fig. 6 different samples for every glyph. Note how the latent vector z is decoded into a style-consistent
set of font characters. Diversity here includes different levels of boldness and more or less italic
glyphs.

Figure 6: Font samples from DeepSVG – Ordered, generated from 7 different latent vectors. As
observed in SVG-VAE [4], we notice a style consistency across the generated glyphs for a same latent
vector. For instance, note how columns 5 & 6 correspond to an italic font style, column 4 to an extra
thin one, and column 2 to a bolder one.

6



G Random samples of icons

In this section, we show random samples of icons by our model. Fig. 7 presents a set of icons
generated by DeepSVG, obtained by sampling random latent vectors z. These results show diverse
icons that look visually reasonable. Note that the problem of generic icon generation is much more
challenging than font generation. Results are promising, but much scope for improvement remains.

Figure 7: Random samples of icons.

H Additional results on latent space algebra

As mentioned in Sec.4.3, operations on vectors in the latent space lead to semantically meaningful
SVG manipulations. By the hierarchical nature of our architecture, we here demonstrate that such
operations can also be performed at the path-level, using path encodings (ûi)

NP
1 . In Fig. 8 we

consider the difference ∆ between path encodings of similar shapes, that differ by a horizontal or
vertical translation. Adding or removing ∆ from a path encoding in arbitrary SVG images applies the
same translation to it.

Figure 8: Vector operations at the path-level. û1 corresponds to the path encoding of the blue shape,
while û2 corresponds to the shape in green.

I Additional animations by interpolation

We here show three additional animations, generated by DeepSVG from two user-created drawings.
DeepSVG handles well deformation, scaling and rotation of shapes, see Fig. 9.

Figure 9: Additional animation examples.

7



J Additional interpolations

Finally, we present additional interpolation results in Fig. 10 using our DeepSVG – ordered model,
showing successful interpolations between challenging pairs of icons, along with some failure cases.

Figure 10: Additional interpolations of DeepSVG – ordered. The last two rows show examples of
challenging icons, where interpolations appear visually less smooth.

8


	SVG Representation visualization
	SVG Preprocessing
	Additional Training details
	Architectural details
	Filling procedure visualization
	Font generation
	Random samples of icons
	Additional results on latent space algebra
	Additional animations by interpolation
	Additional interpolations

