
Decentralized Langevin Dynamics for
Bayesian Learning

Anjaly Parayil1, He Bai2, Jemin George1, and Prudhvi Gurram1,3

1CCDC Army Research Laboratory, Adelphi, MD 20783, USA
2Oklahoma State University, Stillwater, OK 74078, USA

3Booz Allen Hamilton, McLean, VA 22102, USA
1panjaly05@gmail.com, jemin.george.civ@mail.mil, pkgurram@ieee.org

2he.bai@okstate.edu

Abstract

Motivated by decentralized approaches to machine learning, we propose a collab-
orative Bayesian learning algorithm taking the form of decentralized Langevin
dynamics in a non-convex setting. Our analysis show that the initial KL-divergence
between the Markov Chain and the target posterior distribution is exponentially de-
creasing while the error contributions to the overall KL-divergence from the additive
noise is decreasing in polynomial time. We further show that the polynomial-term
experiences speed-up with number of agents and provide sufficient conditions
on the time-varying step-sizes to guarantee convergence to the desired distribu-
tion. The performance of the proposed algorithm is evaluated on a wide variety
of machine learning tasks. The empirical results show that the performance of
individual agents with locally available data is on par with the centralized setting
with considerable improvement in the convergence rate.

1 Introduction
With the recent advances in computational infrastructure, there has been an increase in the use of
larger machine learning models with millions of parameters. Even though there is a parallel increase
in the size of training datasets for these models, there is a significant disparity between the amount of
existing data and the data required to train the large models to avoid overfitting and provide good
generalization performance. Such models trained in point estimate settings such as Maximum A
Posteriori (MAP) neglect any associated epistemic uncertainties and make overconfident predictions.
Bayesian learning framework provides a principled way to avoid over-fitting and model uncertainties
by estimating the posterior distribution of the model parameters. However, analytical solutions of
exact posterior or sampling from the exact posterior is often impossible due to the intractability of the
evidence. Therefore, one needs to resort to approximate Bayesian methods such as Markov Chain
Monte Carlo (MCMC) sampling techniques. To this effect, we focus on a specific class of MCMC
methods, called Langevin dynamics to sample from the posterior distribution and perform Bayesian
machine learning.

Langevin dynamics derives motivation from diffusion approximations and uses the information
of a target density to efficiently explore the posterior distribution over parameters of interest [1].
Langevin dynamics, in essence, is the steepest descent flow of the relative entropy functional or the
KL-divergence with respect to the Wasserstein metric [2–4]. Just as the gradient flow converges
exponentially fast under a gradient-domination condition, Langevin dynamics converges exponentially
fast to the stationary target distribution if the relative entropy functional satisfies the log-Sobolev
inequality [3–5].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

The Unadjusted Langevin Algorithm (ULA) is a popular inexact first-order discretized implementation
of the Langevin dynamics without an acceptance/rejection criteria. Analysis of convergence properties
of the ULA and other Langevin approximations has been a topic of active research over past several
years [6–12]. Reference [3] shows that a bias exists in the ULA for any arbitrarily small (fixed)
step size, even for a Gaussian target distribution. Controlling the bias and exponential convergence
of KL divergence for strongly log-concave smooth target distributions using ULA is discussed
in [3, 6, 7, 9–11]. Non-asymptotic bounds on variation error of the Langevin approximations for
smooth log-concave target distributions have been established by [6] and [8]. Assuming a Lipschitz
continuous Hessian, [6] introduces a modified version of the Langevin algorithm requiring fewer
iterations to achieve the same precision level. Tight relations between the Langevin Monte Carlo for
sampling and the gradient descent for optimization for (strongly) log-concave target distributions
are presented in [7]. Similarly, using the notion of gradient flows over probability space and KL-
divergence, [9] analyzes the non-asymptotic convergence of discretized Langevin diffusion. These
results were improved and extended with particular emphasis on scalability of the approach with
dimension, smoothness, and curvature of the function of interest in [10–12].

Compared to log concave ULA settings where local properties replicate the global behavior and
optimal values are attained in a single pass, non-convex objective functions naturally require multiple
passes through training data. Analysis of ULA in such cases often requires assuming that the
negative log of the target distribution satisfies some dissipative property [13–17], contractivity
condition [18], or limiting the non-convexity to a local region [19, 20]. In particular, [13] makes the
first attempt in analyzing non-asymptotic convergence in a nonconvex setting and shows SGLD tracks
continuous Langevin diffusion in quadratic Wasserstein distance for empirical risk minimization.
Recent work [14, 19, 21] reports computational efficiency of sampling algorithm to optimization
methods in the nonconvex setting. The approach is extended to relaxed dissipativity conditions, to
evaluate dependent data streams and provides sharper convergence estimates uniform in the number
of iterations in [15, 16]. More recently, it is shown that the convergence is polynomial in terms of
dimension and error tolerance [17, 18, 20].

Besides the ULA, higher-order Langevin diffusion for accelerated sampling algorithms are presented
in [22, 23]. Analysis of “leapfrog” implementation of Hamiltonian Monte-Carlo (HMC) for strongly
log-concave target distributions is presented in [24] and [25]. Following the introduction of a
stochastic gradient-based Langevin approach for Bayesian inference in [26], stochastic gradient based
Langevin diffusion and other HMC schemes are presented in [27–31].

Related Work: The approaches discussed so far assume a centralized entity to process large datasets.
However, communication challenges associated with transferring large amounts of data to a central
location and the associated privacy issues motivate a decentralized implementation over its centralized
counterparts [32, 33]. Master-slave architecture for distributed MCMC via moment sharing is
presented [34]. Data-parallel MCMC algorithms for large-scale Bayesian posterior sampling are
presented in [35–38]. These parallel MCMC schemes [39–42] are not applicable in decentralized
setting since they require a central node to aggregate and combine the samples from individual chains
generated by the computing nodes in a final post-processing step to generate an approximation of the
true posterior. Recently, decentralized Stochastic gradient Langevin dynamics (SGLD) and stochastic
gradient Hamiltonian Monte Carlo (SGHMC) methods for strongly log-concave posterior distribution
are presented in [43].

Contribution: In this paper, we draw on the recent ULA literature and develop a decentralized
learning algorithm based on the centralized ULA in a nonconvex setting. We consider the problem of
collaboratively inferencing the global posterior of a parameter of interest based on independent data
sets distributed among a network of n agents. The communication topology between the agents can
be any undirected connected graph, including the master-slave topology as a special case. We propose
a decentralized ULA (D-ULA) that incorporates an average consensus process into the ULA with
time-varying step-sizes. In this algorithm, each agent shares its current Markov Chain sample with
neighboring agents at each time step. We show that the resulting distribution of the averaged sample
converges to the true posterior asymptotically. We provide theoretical analysis of the convergence
rate and step-size conditions to achieve speed up of convergence with respect to the number of agents.
Empirical results show that the performance of our proposed algorithm is on par with centralized
ULA with considerable improvement in the convergence rate, for three different machine learning
tasks.

2

Notation: Let Rn×m denote the set of n ×m real matrices. For a vector φ, φi is the i − th entry
of φ. An n × n identity matrix is denoted as In and 1n denotes an n-dimensional vector of all
ones. For p ∈ [1, ∞], the p-norm of a vector x is denoted as ‖x‖p. For matrices A ∈ Rm×n and
B ∈ Rp×q, A ⊗ B ∈ Rmp×nq denotes their Kronecker product. For a graph G (V, E) of order n,
V , {v1, . . . , vn} represents the agents or nodes and the communication links between the agents
are represented as E , {e1, . . . , e`} ⊆ V × V . Let A = [ai,j] ∈ Rn×n be the adjacency matrix
with entries of ai,j = 1 if (vi, vj) ∈ E and zero otherwise. Define ∆ = diag (A1n) as the in-degree
matrix and L = ∆−A as the graph Laplacian.

2 Problem formulation
Consider a connected network of n agents, each with a randomly distributed set of mi data items,

Xi =
{
xji

}j=mi
j=1

, ∀ i = 1, . . . , n. Here xji ∈ Rdx is the j-th data element in a set of mi data items

available to the i-th agent. Letw ∈ Rdw be the parameter vector associated with the model and p(w)
is the prior associated with the model parameters. The global posterior distribution of w given the n
independent data sets distributed among the agents can be expressed as

p(w|X1, . . . ,Xn) ∝ p(w)

n∏
i=1

p(Xi|w) =

n∏
i=1

p(Xi|w)p (w)
1
n︸ ︷︷ ︸

local posterior

. (1)

In the optimization literature, the prior, p (w), regularizes the parameter and the likelihood, p(Xi|w),
represents the local cost function available to each agent. Here, the set of n independent data sets are
distributed among n agents each with a size of mi, i = 1, . . . , n. At the risk of abusing the notation,
define p(w|Xi) as the local posterior distribution. Thus the global posterior can be written as the
product of local posteriors as

p(w|X1, . . . ,Xn) ∝
n∏
i=1

p(w|Xi). (2)

The main issue with point estimates obtained from optimization schemes like maximum likelihood
and maximum a posteriori estimation is that they fail to capture the parameter uncertainty and
they can potentially over-fit the data. This paper is aimed at developing a method for collaborative
Bayesian learning from large scale datasets distributed among a networked set of agents as a solution
to the numerous issues associated with the point estimation schemes. In particular, we present a
decentralized version of the unadjusted Langevin algorithm to distributedly obtain samples from the
global posterior p(w|X1, . . . ,Xn). For the ease of notation, we use X to denote the entire data set.
Thus the global posterior can be written as p(w|X).

3 Decentralized unadjusted Langevin algorithm
To efficiently explore the global posterior p(w|X), we first rewrite the target distribution in terms of
an energy function U as follows [1, 44, 45]:

p(w|X) ∝ exp(−U(w)), (3)
where U is the analogue of potential energy given by

U(w) ∝ − log p(w|X). (4)
The Langevin algorithm is a well known family of gradient based Monte Carlo sampling algorithms.
The sample obtained using Unadjusted Langevin Algorithm (ULA) at a given time instant k is given
by [19]

w(k + 1) = w(k)− αk∇U(w(k)) +
√

2αkv(k) (5)
where αk is the algorithm step-size, w(k) represents the sample obtained at the k-th time instant
and v(k) is a dw-dimensional, independent, zero-mean, unit variance, Gaussian sequence, i.e.,
v(k) ∼ N (0, Idw), ∀k ≥ 0. Now substituting (4) yields

w(k + 1) = w(k) + αk∇ log p(w(k)|X) +
√

2αkv(k). (6)
Substituting (1) yields

w(k + 1) = w(k) + αk

n∑
i=1

(
∇ log p(Xi|w(k)) +

1

n
∇ log p(w(k))

)
+
√

2αkv(k). (7)

3

The samples obtained using the continuous-time version of the centralized ULA given in (7) have
shown to exponentially converge to the target posterior distribution [46] for a certain class of
distributions with exponential tails. Convergence properties of the ULA had been widely studied for
log-concave target distributions [6, 8–12]. Non-asymptotic analysis of centralized ULA without the
strong log-concavity assumption on target distribution is presented in [13–20].

However, when the data is distributed among n agents and there is no central agent to pool all the
local gradients, exact implementation of the above ULA is difficult, if not impossible. Therefore we
propose the following decentralized ULA:

wi(k + 1) = wi(k)− βk
n∑
j=1

ai,j (wi(k)−wj(k))

+ αkn

(
∇ log p(Xi|wi(k)) +

1

n
∇ log p(wi(k))

)
+
√

2αkvi(k),

(8)

where ai,j denotes the entries of the adjacency matrix corresponding to the communication network
G (V, E), βk is the consensus step-size and vi(k) are dw-dimensional, independent, zero-mean,
Gaussian sequence with variance n, i.e., vi(k) ∼ N (0dw , nIdw), ∀i ∈ I.

Remark 1. Compared to the parallel MCMC setting, our formulation do not require a
central coordinator and each computing nodes reconstruct the approximation to the poste-
rior simply relying on individually available data set and prior information (incorporated as
∇ log p(Xi|wi(k)) + 1

n∇ log p(wi(k)) into the algorithm as shown in (8)) and by interacting with
their one-hop neighbors as dictated by the undirected communication graph G(V, E) (as denoted as∑n
j=1 ai,j (wi(k)−wj(k)) in (8)). Here ai,j is the (i, j)-th entry of the n× n adjacency matrix A.

ai,j = 1 if the i-th node can communicate with the j-th node and zero otherwise. Similar technique
is used in decentralized supervised learning [32, 47, 48].

Define w(k) ,
[
w>1 (k) . . . w>n (k)

]> ∈ Rndw and v(k) ,
[
v>1 (k) . . . v>n (k)

]> ∈ Rndw .
Now (8) can be written as

w(k + 1) = w(k)− βk (L ⊗ Idw) w(k)− αkng(w(k),X) +
√

2αkv(k), (9)
where L is the network Laplacian and

g(w(k),X) ,

g1 (w1(k),X1)
...

gn (wn(k),Xn)

 =

∇U1 (w1(k),X1)
...

∇Un (wn(k),Xn)


where Ui(w,Xi) = − log p(w|Xi) and p(w|Xi) is the local posterior, given in (1). Define the
network weight-matrixWk = (In − βkL). Thus the proposed decentralized ULA can be written as

w(k + 1) = (Wk ⊗ Idw) w(k)− αkng(w(k),X) +
√

2αkv(k). (10)
If we ignore the additive noise term, then the decentralized ULA of (10) can be considered a consensus
optimization algorithm aimed at solving the problem, minw U(w,X), where

U(w,X) =

n∑
i=1

Ui(w,Xi). (11)

Denote by p∗ the stationary probability distribution corresponding to the global posterior distribution,
i.e., the target distribution. It then follows from (3) that

p∗(·) = exp (−U (· ,X) + C) , (12)
for some positive constantC corresponding to the normalizing constant. Now note that the centralized
ULA for generating samples from the target distribution p∗(w̄∗) of (12) is given as [9]

w̄∗(k + 1) = w̄∗(k)− αk∇U (w̄∗(k),X) +
√

2αkv̄(k). (13)
The continuous-time limit of (13) can be obtained as the following Stochastic Differential Equation
(SDE) known as the Langevin equation [49]:

dw̄∗(t) = −∇U(w̄∗(t),X)dt+
√

2dBt, (14)
where Bt is a dw-dimensional Brownian motion. The pseudocode of the proposed decentralized ULA
is given in Algorithm 1, where αk = a

(k+1)δ2
and βk = b

(k+1)δ1
(see Condition 1 in S1). We refer

materials from supplementary sections with the prefix S.

4

4 Main Results
Though our proposed algorithm is built on ULA, analysis of even the centralized ULA (C-ULA) for
non-log-concave target distributions requires assuming that the negative log of the target distribution
satisfies some dissipative property [13–17], contractivity condition [18], or limiting the non-convexity
to a local region [19, 20]. Given analysis of D-ULA is novel/non-trivial compared to the existing
non-convex consensus-optimization and non-log-concave ULA literature because: (i) the consensus
analysis and the results in Theorem 1 are novel since we use time-varying step-sizes αk and βk
and provide an explicit consensus rate in term of step-size decay rates (see (25)), (ii) compared to
existing C-ULA analysis for non-log-concave target distributions, the continuous-time approximation
to the D-ULA contains an additional consensus error term ζ(·) in (21) that complicates the analysis.
Requirements on the time-varying step sizes are also not straightforward to obtain as the existing
literature is focused on fixed step-sizes.

Analysis of the proposed distributed ULA given in (10) requires that the sequences {αk} and {βk}
be selected as (see Condition 1 in S1)

αk =
a

(k + 1)δ2
and βk =

b

(k + 1)δ1
, (15)

where 0 < a, 0 < b, 0 ≤ δ1 and 1
2 + δ1 < δ2 < 1. Furthermore, we make the following

three assumptions (formally stated in S1): (i) the gradients ∇Ui are Lipschitz continuous with
Lipschitz constant Li > 0, ∀i = 1, . . . , n; (ii) the communication network is given as a connected
undirected graph; and (iii) there exists a positive constant µg <∞ such that the disagreement on
the gradient among the distributed agents, denoted as g̃(wk,X), satisfies E

[
‖g̃(wk,X)‖22 |wk

]
≤

nµg(1 + k)δ2, a.s., where g̃(wk,X) = g(wk,X)−
(

1
n1n1>n ⊗ Idw

)
g(wk,X).

From the proposed distributed ULA given in (10), the average dynamics is given as

w̄(k + 1) = w̄(k)− αk
n∑
i=1

∇Ui (wi(k),Xi) +
√

2αkv̄(k), (16)

where w̄(k) = 1
n

∑n
i=1 wi(k) and v̄(k) = 1

n

∑n
i=1 vi(k) is a zero-mean, unit-variance Gaussian

random vector. Now adding and subtracting αk
∑n
i=1 ∇Ui (w̄(k),Xi) = αk∇U (w̄(k),X) yields

w̄(k + 1) = w̄(k)− αk∇U (w̄(k),X)− αkζ(w̄(k), w̃(k)) +
√

2αkv̄(k), (17)
where U (w̄(k),X) is defined in (11), the consensus error w̃(k) is defined as w̃(k) =((
In − 1

n1n1>n
)
⊗ Idw

)
w(k) and ζ(w̄(k), w̃(k)) is defined as

ζ(w̄(k), w̃(k)) =

n∑
i=1

(∇Ui (w̄(k) + w̃i(k),Xi)−∇Ui (w̄(k),Xi)) . (18)

For all k ≥ 0, let [tk, tk+1) denote the current time-interval, i.e., t ∈ [tk, tk+1), where tk is defined
as tk =

∑k−1
j=0 αj . Here, tk+1 = tk + αk. Define ω̃(t) as

ω̃(t) = w̃(k), ∀t ∈ [tk, tk+1), k ≥ 0. (19)
Now (17) can be written as

w̄(tk+1) = w̄(tk)− αk∇U (w̄(tk),X)− αkζ(w̄(tk), w̃(tk)) +
√

2
(
Btk+1

−Btk
)
, (20)

where Bt is a dw-dimensional Brownian motion. Thus, for tk ≤ t < tk+1, the discretized equation
of (17) is given by

dw̄(t) = −∇U (w̄(tk),X) dt+
√

2dBt − ζ(w̄(tk), ω̃(t))dt. (21)
Let w̄(t) in (21) admits a probability distribution pt(w̄) for tk ≤ t < tk+1. Here we aim to show
that ptk(w̄)→ p∗ as k →∞.

4.1 Kullback-Leibler (KL) divergence and log-Sobolev inequality

Sampling can be viewed as optimization in the space of measures, where the objective function in the
space of measures attains its minimum at the target distribution. Following [3, 4, 19, 20], we use the
relative entropy or the KL-divergence of pt(w̄) to the target distribution p∗, denoted by F (pt(w̄)),
as the objective, i.e.,

F (pt(w̄)) =

∫
pt(w̄) log

(
pt(w̄)

p∗(w̄)

)
dw̄. (22)

5

Algorithm 1 Decentralized ULA (D-ULA)

1: Initialization : w(0) =
[
w>1 (0) . . . w>n (0)

]>
2: Input : a, b, δ1 and δ2
3: for k ≥ 0 do
4: for i = 1 to n do
5: Sample vi(k) ∼ N (0, nIdw) & compute gi (wi(k),Xi)
6: Compute ŵi(k) =

∑n
j=1 ai,j (wi(k)−wj(k))

7: Update wi(k + 1) = wi(k)− βk ŵi(k)− αkngi (wi(k), ξi(k)) +
√

2αkvi(k)
8: end for
9: end for

KL-divergence is non-negative and it is minimized at the target distribution, i.e., F (pt(w̄)) ≥ 0
and F (pt(w̄)) = 0 if and only if pt = p∗. The property of p∗ that we rely on to show convergence
of the proposed algorithm is that it satisfies a log-Sobolev inequality. Consider a Sobolev space
defined by the weighted norm:

∫
g(w̄)2p∗(w̄) dw̄, where p∗(w̄) ∝ exp(−U(w̄)). We say that

p∗(w̄) satisfies a log-Sobolev inequality if there exists a constant ρU > 0 such that for any smooth
function g satisfying

∫
g(w̄)p∗(w̄) dw̄ = 1, we have:∫

g(w̄) log g(w̄)p∗(w̄) dw̄ ≤ 1

2ρU

∫
‖∇g(w̄)‖2

g(w̄)
p∗(w̄) dw̄, (23)

where ρU is the log-Sobolev constant. Let g(w̄) =
pt(w̄)

p∗(w̄)
. Thus we have

F (pt(w̄)) = Ept(w̄)

[
log

(
pt(w̄)

p∗(w̄)

)]
≤ 1

2ρU
Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

]
. (24)

Now we present our first result, which shows that the average-consensus error w̃k is decreasing at the
rate O

(
1

(k+1)δ2−2δ1

)
(see (S96) for an explicit expression). This implies that the individual samples

wi(k) are converging to w̄k and this is possible only because of the decaying step-size αk, which
also multiplies the additive Gaussian noise.

Theorem 1. Consider the decentralized ULA (D-ULA) given in Algorithm 1 under Assumptions 1-3.
Then, for the average-consensus error defined as w̃k =

(
Indw − 1

n1n1>n ⊗ Idw
)
wk, there holds:

E
[
‖w̃k+1‖22

]
≤ W3

exp (W1(k + 1)1−δ1)
+

W2

(k + 1)δ2−2δ1
, (25)

where W1, W2 and W3 are positive constants defined in (S87), (S88), (S89) and (S90).

Detailed proof of Theorem 1 is given in S3. Now we present our main result which shows that the
KL-divergence between pt and p∗ is in fact decreasing.

Theorem 2. Consider the decentralized ULA (D-ULA) given in Algorithm 1 under Assumptions 1-3
with αk, βk given in Condition 1 and a in αk selected as

a =
1

nγ

(
ρU (3δ2 − 1)

25L4δ2

) 1
3

, γ > 2. (26)

Given that the target distribution satisfies the log-Sobolev inequality (24) with a constant ρU > 0,
and has a bounded second moment, i.e.,

∫
‖w̄‖22 p∗(w̄) dw̄ ≤ c1 for some bounded positive constant

c1, then for all initial distributions pt0(w̄) satisfying F (pt0(w̄)) ≤ c2, we have

F (ptk+1
(w̄)) ≤

F (pt0(w̄)) + C̄
F1

exp
(
ρU
∑k
`=0 α`

) +
1

nγ−2

C̄
F2

(k + 1)δ2−2δ1
+

C̄
F3

exp
(
ρUa
1−δ2 (k + 1)1−δ2

) (27)

where the positive constants C̄
F1

, C̄
F2

, C̄
F3

and associated parameters are defined in (S224)-(S232).

Proof of Theorem 2 is given in S4. Compared to the existing results, by using a decaying step-size,
we are able to remove the constant bias term present in the KL-divergence due to the additive noise.
In (27), the constants C̄

F1
and C̄

F3
are dominated by the consensus-error while the additive noise

contributes most to C̄
F2

. Note that the exponential convergence rate for the initial KL-divergence

6

F (pt0(w̄)) is similar to what is currently known in the literature [4, 9, 19]. More importantly, the
constant bias-term present in the existing results for the KL-divergence between the actual and target
distribution, which is absorbed into the constant C̄

F2
, is decreasing and we do see a speed-up for

decay with the number of agents due to the nγ−2-term. Even though this speed-up increases with
γ, an increasing γ in fact decreases the exponential rates of the first and the third terms in (27).
Furthermore, constants C̄

F1
, C̄

F2
are C̄

F3
are polynomial in the problem dimension dw.

Corollary 1. For the decentralized ULA (D-ULA) given in Algorithm 1 under the conditions of
Theorem 2 and error tolerance ε ∈ (0, 1), there holds

F (ptk(w̄)) ≤ ε, ∀ k ≥ k∗ (28)
where

k∗ = max

{(
1− δ2
aρU

log

(
2Q1

ε

)) 1
1−δ2

,

(
2Q2

ε

) 1
δ2−2δ1

}
,

Q1 =
(
F (pt0(w̄)) + C̄

F1

)
exp

(
aρU
1−δ2

)
+ C̄

F3
and Q2 =

C̄
F2

nγ−2 .

Corollary 1 follows from Theorem 2 and the proof is given in S5. Corollary 1 provides the minimum
number of iterations required to decrease the KL-divergence below a given error-tolerance ε.

5 Numerical experiments
We apply the proposed algorithm to perform decentralized Bayesian learning for Gaussian mixture
modeling, logistic regression, and classification and empirically compare our proposed algorithm
to centralized ULA (C-ULA). In all the experiments, we have used a network of five agents in
an undirected unweighted ring topology for the decentralized setting. Additional details of all the
experiments including step sizes and number of epochs are provided in the Supplementary material
(see S6).

5.1 Parameter estimation for Gaussian mixture

In this section, we compare the efficiency of D-ULA against the C-ULA for parameter estimation of
a multimodal Gaussian mixture with tied means [26]. The Gaussian mixture is given by

θ1 ∼N (0, σ2
1); θ2 ∼ N (0, σ2

2) and xi ∼
1

2
N (θ1, σ

2
x) +

1

2
N (θ1 + θ2, σ

2
x)

where σ2
1 = 10, σ2

2 = 1, σ2
x = 2 andw , [θ1, θ2]> ∈ R2. For the centralized setting, similar to [26],

100 data samples are drawn from the model with θ1 = 0 and θ2 = 1. Available 100 data samples are
randomly divided into 5 sets of 20 samples that are made available to each agent in the decentralized
network. The posterior distribution of the parameters is bimodal with negatively correlated modes at
w = [0, 1] and w = [1, −1]. As shown in Figure 1, the posteriors estimated by D-ULA and C-ULA
replicate the true posterior distribution of parameters. Quality of estimated posteriors are compared
using an approximate Wasserstein measure [50]. With accurate metric being computational complex,
we resort to the Sinkhorn distance and Sinkhorn’s algorithm introduced in [50] which in essence
defines the cost incurred while mapping the estimated posterior to the true posterior using a transport
matrix. The regularization parameter, λ in Sinkhorn algorithm is set to 0.1. The experiments are
performed for networks of size 1, 5 and 10 and the corresponding Sinkhorn distances, dM , are given
by 0.259, 0.251 and 0.244, respectively.

5.2 Bayesian logistic regression

We compare the performance of D-ULA and C-ULA for Bayesian inference of logistic regression
models using a9a dataset available at the UCI machine learning repository 1. The dataset contains
32561 observations and 123 parameters. We use a Laplace prior with a scale of 1 on the parameters.
Test accuracy averaged over 50 runs for both approaches are shown in Figure 2. During each run, we
chose random 80% of data for training and the remaining 20% for testing as in [26]. For D-ULA,
we consider networks with 5, 10, and 25 agents. The training data for each case is divided into
random sets of equal sizes and made available to agents in the decentralized network. During each
run, the same 20% partition is used to test the performance of C-ULA and D-ULA. Test results over
ten epochs averaged over 50 runs indicate that the performance of D-ULA is comparable to that
of C-ULA. Figures 2b, 2c, 2c, and 2d are zoomed into first 1200 iterations to better show faster

1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/ datasets/binary/a9a

7

(a)

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(b)

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(c)

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(d)

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(e)

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(f)

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(g)

Figure 1: (a) True posterior (b) Estimated posterior by C-ULA (c)-(g) Posteriors estimated by D-ULA

(a) Centralized ULA (b) Set of 5 agents

(c) Set of 10 agents (d) Set of 25 agents

Figure 2: Test accuracy averaged over 50 runs

convergence with increase in network size. Corresponding accuracy values for C-ULA and D-ULA
networks with agents 5, 10, and 25 are 83.89 %, 84.38%, 84.5637%, and 84.5637%. Insets of
Figures 2b, 2c, 2c, and 2d indicates faster convergence of D-ULA compared to C-ULA. Test accuracy
of all the agents in D-ULA networks settle to the same accuracy level as shown in the insets. The
shaded region in the figures indicates one standard deviation.

8

Table 1: Probability of predicted labels (mean/standard deviation)
SGD C-ULA Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

M
N

IS
T Mean 0.974 0.968 0.973 0.972 0.972 0.973 0.973

Std. dev. 0.078 0.086 0.079 0.08 0.08 0.08 0.08

SV
H

N Mean 0.849 0.604 0.659 0.6588 0.653 0.663 0.651

Std. dev 0.154 0.169 0.188 0.189 0.188 0.19 0.187

5.3 Bayesian learning for handwritten digit classification and OOD detection

In this section, we present decentralized Bayesian learning as a potential strategy to recognize
handwritten digits in images. For this, we use the MNIST data set containing 60000 gray scale images
of 10 digits (0-9) for training and 10000 images for testing. Each agent in D-ULA aims to train its
own neural network, which is a randomly initialized LeNet-5 [51] with Kaiming uniform prior [52]
on the parameters of the network. Each agent has access to 12000 randomly chosen training samples.
Test accuracy obtained using stochastic gradient descent (SGD), C-ULA, and 5 agents of D-ULA
after 10 epochs are 98.15%, 98.16%, 98.52%, 98.52%, 98.39%, 98.45% and 98.47%, respectively.

Next, we explore the efficacy of the proposed algorithm to detect out-of-distribution (OOD) samples
or outliers in the datasets. We train each LeNet-5 neural network on the MNIST training data set and
test it on MNIST test data set for normalcy class and Street View House Numbers (SVHN)2 test data
set for OOD data. SVHN data set is similar to MNIST, but with color images of 10 digits (0-9) and
extra confusing digits around the central digit of interest. We converted them to gray scale for this
experiment. Networks trained on MNIST are expected to give relatively low prediction probabilities
for SVHN data samples. Table 1 summarizes the mean and standard deviation of probabilities of
predicted labels obtained for all the approaches. Since SGD is a maximum a posteriori point estimate,
it fails to recognize out of sample data sets, and gives high prediction probabilities even for OOD
SVHN data. One the other hand, C-ULA and D-ULA show an improved performance in detecting
OOD SVHN data by giving lower prediction probabilities for SVHN data, but giving high prediction
probablities for MNIST test data as seen in Table 1. The plots of probability density of predicted
labels corresponding to all the approaches are provided in the Supplementary material.

The decentralized ULA results in Section 5.2 and 5.3 were obtained using a “mini-batch” version of
the proposed D-ULA algorithm, where the log-likelihood was obtained from random mini-batches of
Xi for agent i, i = 1, · · · , n. Although our theoretical analysis is based on the likelihood from the
entire Xi, the empirical results in these two sections show that the “mini-batch” D-ULA algorithm is
also effective. This is plausible since the additive noise

√
2αkvi(k) in (9) will dominate the noise in

the local posterior term as k increases.

6 Conclusion
In this paper, we present a decentralized collaborative approach for a group of agents to sample
the posterior distribution of a parameter of interest with locally available data sets. We assume an
undirected connected communication topology between the agents. We propose a decentralized
unadjusted Langevin algorithm with time-varying step-sizes and establish conditions on the step-sizes
for asymptotic convergence to the target distribution. The algorithm also exhibits a guaranteed
speed-up in convergence in the number of agents. We conducted three experiments on Gaussian
mixtures, logistic regression, and image classification. The experimental results demonstrated that
the proposed algorithm offers improved accuracy with enhanced speed of convergence. The results
from the last experiment also suggest a potential application of the proposed algorithm for outlier
detection.

Broader Impact
This work presents a basic line of research on reducing computational complexity, enhancing speed
of convergence, and addressing potential privacy issues associated with centralized Bayesian learning.
Experiments and empirical results cover a broad set of applications including parameter estimation
for local non-convex models, logistic regression, image classification and outlier detection. We have

2http://ufldl.stanford.edu/housenumbers/

9

used publicly available datasets, which have no implications on machine learning bias, fairness or
ethics. Hence, we believe that this section about potential negative impact of our work on society is
not applicable to the proposed work.

Acknowledgement
This work was supported by the CCDC Army Research Laboratory under Cooperative Agreement
W911NF-16-2-0008. The work of the second author was supported in part by the National Science
Foundation under Grant No. 1925147. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government purposes not withstanding any
copyright notation here on.

References
[1] R. M. Neal, “MCMC using Hamiltonian dynamics,” arXiv e-prints, arXiv:1206.1901, 2012.
[2] R. Jordan, D. Kinderlehrer, and F. Otto, “The variational formulation of the Fokker–Planck

equation,” SIAM Journal on Mathematical Analysis, vol. 29, no. 1, pp. 1–17, 1998.
[3] A. Wibisono, “Sampling as optimization in the space of measures: The Langevin dynamics as a

composite optimization problem,” in Proceedings of the 31st Conference On Learning Theory,
vol. 75. PMLR, 06–09 Jul 2018, pp. 2093–3027.

[4] S. Vempala and A. Wibisono, “Rapid convergence of the unadjusted Langevin algorithm:
Isoperimetry suffices,” in Advances in Neural Information Processing Systems, 2019, pp. 8094–
8106.

[5] F. Otto and C. Villani, “Generalization of an inequality by Talagrand and links with the
logarithmic Sobolev inequality,” Journal of Functional Analysis, vol. 173, pp. 361–400, 2000.

[6] A. S. Dalalyan, “Theoretical guarantees for approximate sampling from smooth and log-concave
densities,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 79,
no. 3, pp. 651–676, 2017.

[7] A. Dalalyan, “Further and stronger analogy between sampling and optimization: Langevin
Monte Carlo and gradient descent,” in Proceedings of the 2017 Conference on Learning Theory,
vol. 65. Proceedings of Machine Learning Research, 2017, pp. 678–689.

[8] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, “Underdamped langevin mcmc: A
non-asymptotic analysis,” in Proceedings of the 31st Conference On Learning Theory, vol. 75,
July 2018, pp. 300–323.

[9] X. Cheng and P. L. Bartlett, “Convergence of Langevin MCMC in KL-divergence,” Proceedings
of Machine Learning Research, no. 83, pp. 186–211, 2018.

[10] A. Durmus and E. Moulines, “Sampling from strongly log-concave distributions with the
unadjusted Langevin algorithm,” arXiv e-prints, vol. arXiv:1605.01559, 2016.

[11] A. Durmus, E. Moulines et al., “Nonasymptotic convergence analysis for the unadjusted
Langevin algorithm,” The Annals of Applied Probability, vol. 27, no. 3, pp. 1551–1587, 2017.

[12] ——, “High-dimensional Bayesian inference via the unadjusted Langevin algorithm,” Bernoulli,
vol. 25, no. 4A, pp. 2854–2882, 2019.

[13] M. Raginsky, A. Rakhlin, and M. Telgarsky, “Non-convex learning via stochastic gradient
Langevin dynamics: a nonasymptotic analysis,” in Proceedings of the 2017 Conference on
Learning Theory, vol. 65. PMLR, 07–10 Jul 2017, pp. 1674–1703.

[14] P. Xu, J. Chen, D. Zou, and Q. Gu, “Global convergence of Langevin dynamics based algorithms
for nonconvex optimization,” Advances in Neural Information Processing Systems, pp. 3122–
3133, 2018.

[15] Y. Zhang, Ö. D. Akyildiz, T. Damoulas, and S. Sabanis, “Nonasymptotic estimates for stochastic
gradient Langevin dynamics under local conditions in nonconvex optimization,” arXiv preprint,
vol. arXiv:1910.02008, 2019.

[16] N. H. Chau, É. Moulines, M. Rásonyi, S. Sabanis, and Y. Zhang, “On stochastic gradient
Langevin dynamics with dependent data streams: the fully non-convex case,” arXiv preprint,
vol. arXiv:1905.13142, 2019.

10

[17] W. Mou, N. Flammarion, M. J. Wainwright, and P. L. Bartlett, “Improved bounds for dis-
cretization of Langevin diffusions: near-optimal rates without convexity,” arXiv preprint, vol.
arXiv:1907.11331, 2019.

[18] M. B. Majka, A. Mijatović, and L. Szpruch, “Non-asymptotic bounds for sampling algorithms
without log-concavity,” arXiv preprint, vol. arXiv:1808.07105, 2018.

[19] Y.-A. Ma, Y. Chen, C. Jin, N. Flammarion, and M. I. Jordan, “Sampling can be faster than
optimization,” Proceedings of the National Academy of Sciences, vol. 116, no. 42, pp. 20 881–
20 885, 2019.

[20] X. Cheng, N. S. Chatterji, Y. Abbasi-Yadkori, P. L. Bartlett, and M. I. Jordan, “Sharp
convergence rates for Langevin dynamics in the nonconvex setting,” arXiv preprint, vol.
arXiv:1805.01648, 2018.

[21] K. Talwar, “Computational separations between sampling and optimization,” in Advances in
Neural Information Processing Systems, 2019, pp. 14 997–15 007.

[22] Y.-A. Ma, N. Chatterji, X. Cheng, N. Flammarion, P. Bartlett, and M. I. Jordan, “Is There an
Analog of Nesterov Acceleration for MCMC?” arXiv e-prints, Feb. 2019.

[23] W. Mou, Y.-A. Ma, M. J. Wainwright, P. L. Bartlett, and M. I. Jordan, “High-Order Langevin
Diffusion Yields an Accelerated MCMC Algorithm,” arXiv e-prints, Aug. 2019.

[24] O. Mangoubi and N. Vishnoi, “Dimensionally tight bounds for second-order Hamiltonian
Monte Carlo,” in Advances in Neural Information Processing Systems, 2018, pp. 6027–6037.

[25] O. Mangoubi and A. Smith, “Mixing of Hamiltonian Monte Carlo on strongly log-concave
distributions 2: Numerical integrators,” in Proceedings of Machine Learning Research, ser.
Proceedings of Machine Learning Research, K. Chaudhuri and M. Sugiyama, Eds., vol. 89.
PMLR, 16-18 Apr 2019, pp. 586–595.

[26] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient Langevin dynamics,” in
Proceedings of the 28th international conference on machine learning (ICML-11), 2011, pp.
681–688.

[27] S. Patterson and Y. W. Teh, “Stochastic gradient Riemannian Langevin dynamics on the
probability simplex,” in Advances in Neural Information Processing Systems 26, 2013, pp.
3102–3110.

[28] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and H. Neven, “Bayesian sampling using
stochastic gradient thermostats,” in Advances in Neural Information Processing Systems 27,
2014, pp. 3203–3211.

[29] C. Chen, N. Ding, and L. Carin, “On the convergence of stochastic gradient MCMC algorithms
with high-order integrators,” in Advances in Neural Information Processing Systems 28, 2015,
pp. 2278–2286.

[30] Y.-A. Ma, T. Chen, and E. Fox, “A complete recipe for stochastic gradient MCMC,” in Advances
in Neural Information Processing Systems 28, 2015, pp. 2917–2925.

[31] A. S. Dalalyan and A. Karagulyan, “User-friendly guarantees for the Langevin Monte Carlo
with inaccurate gradient,” Stochastic Processes and their Applications, vol. 129, no. 12, pp.
5278 – 5311, 2019.

[32] J. George, T. Yang, H. Bai, and P. Gurram, “Distributed stochastic gradient method for non-
convex problems with applications in supervised learning,” in IEEE 58th Conference on Decision
and Control (CDC), 2019, pp. 5538–5543.

[33] V. Kungurtsev, “Stochastic gradient Langevin dynamics on a distributed network,” arXiv
preprint, vol. arXiv:2001.00665, 2020.

[34] M. Xu, B. Lakshminarayanan, Y. W. Teh, J. Zhu, and B. Zhang, “Distributed Bayesian posterior
sampling via moment sharing,” in Advances in Neural Information Processing Systems 27, 2014,
pp. 3356–3364.

[35] S. L. Scott, A. W. Blocker, F. V. Bonassi, H. A. Chipman, E. I. George, and R. E. McCul-
loch, “Bayes and big data: The consensus Monte Carlo algorithm,” International Journal of
Management Science and Engineering Management, vol. 11, pp. 78–88, 2016.

[36] M. Rabinovich, E. Angelino, and M. I. Jordan, “Variational consensus Monte Carlo,” in
Advances in Neural Information Processing Systems, 2015, pp. 1207–1215.

11

[37] S. L. Scott, “Comparing consensus Monte Carlo strategies for distributed Bayesian computation,”
Braz. J. Probab. Stat., vol. 31, no. 4, pp. 668–685, 11 2017.

[38] L. J. Rendell, A. M. Johansen, A. Lee, and N. Whiteley, “Global consensus Monte Carlo,” arXiv
e-prints, Jul. 2018.

[39] X. Wang and D. B. Dunson, “Parallelizing MCMC via Weierstrass Sampler,” arXiv e-prints,
arXiv:1312.4605, 2013.

[40] W. Neiswanger, C.Wang, and E. Xing., “Asymptotically exact, embarrassingly parallel MCMC,”
in 30th Conference on Uncertainty in Artificial Intelligence, UAI, 2014, p. 623–632.

[41] X. Wang, F. Guo, K. A. Heller, and D. B. Dunson, “Parallelizing MCMC with random partition
trees,” in Advances in Neural Information Processing Systems 28, 2015, pp. 451–459.

[42] A. Chowdhury and C. Jermaine, “Parallel and distributed MCMC via shepherding distributions,”
in 31st International Conference on Artificial Intelligence and Statistics, 2018, pp. 1819–1827.

[43] M. Gürbüzbalaban, X. Gao, Y. Hu, and L. Zhu, “Decentralized Stochastic Gradient Langevin
Dynamics and Hamiltonian Monte Carlo,” arXiv e-prints, p. arXiv:2007.00590, 2020.

[44] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte Carlo,” Physics
letters B, vol. 195, no. 2, pp. 216–222, 1987.

[45] B. Leimkuhler, S. Reich, and C. U. Press, Simulating Hamiltonian Dynamics, ser. Cambridge
Monographs on Applied and Computational Mathematics. Cambridge University Press, 2004.

[46] G. O. Roberts and R. L. Tweedie, “Exponential convergence of Langevin distributions and their
discrete approximations,” Bernoulli, vol. 2, no. 4, pp. 341–363, 12 1996.

[47] J. George and P. Gurram, “Distributed stochastic gradient descent with event-triggered commu-
nication,” in AAAI 2020, 2020, pp. 7169–7178.

[48] N. Singh, D. Data, J. George, and S. Diggavi, “SPARQ-SGD: Event-Triggered and Com-
pressed Communication in Decentralized Stochastic Optimization,” in IEEE 59th Conference
on Decision and Control (CDC), 2020.

[49] D. S. Lemons and A. Gythiel, “Paul Langevin’s 1908 paper “On the Theory of Brownian
Motion” [“Sur la Théorie du mouvement Brownien,” C. R. Acad. Sci. (Paris) 146, 530–533
(1908)],” American Journal of Physics, vol. 65, no. 11, pp. 1079–1081, 1997.

[50] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” in Advances in
neural information processing systems, 2013, pp. 2292–2300.

[51] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” in Proceedings of the IEEE international conference
on computer vision, 2015, pp. 1026–1034.

[53] W. X. I. Gutman, “Generalized inverse of the Laplacian matrix and some applications,” Bulletin,
Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques, vol. 129, no. 29, pp.
15–23, 2004.

[54] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, ser. Computer
science. MIT Press, 2009.

[55] S. Kar, J. Moura, and H. Poor, “Distributed linear parameter estimation: asymptotically efficient
adaptive strategies,” SIAM Journal on Control and Optimization, vol. 51, no. 3, pp. 2200–2229,
2013.

[56] G. Pavliotis, Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck
and Langevin Equations, ser. Texts in Applied Mathematics. Springer New York, 2014.

[57] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows: in metric spaces and in the space of
probability measures. Springer Science & Business Media, 2008.

[58] T. Chen, E. Fox, and C. Guestrin, “Stochastic gradient Hamiltonian Monte Carlo,” in Interna-
tional conference on machine learning, 2014, pp. 1683–1691.

12

Decentralized Langevin Dynamics for Bayesian Learning
(Supplementary Material)

S1 Assumptions
We first make the following assumption regarding the Ui:
Assumption 1. The gradients3 ∇Ui are Lipschitz continuous with Lipschitz constant Li > 0, ∀i =
1, . . . , n, i.e., ∀ wa,wb ∈ Rdw

‖∇Ui(wa,Xi)−∇Ui(wb,Xi)‖2 ≤ Li‖wa −wb‖2. (S1)

Let

U(w,X) =

n∑
i=1

Ui(w,Xi). (S2)

Following Assumption 1, the function U is continuously differentiable and the gradient ∇U is
Lipschitz continuous, i.e., ∀wa, wb ∈ Rdw , there exists a positive constant L̄ such that

‖∇U(wa,X)−∇U(wb,X)‖2 ≤ L̄‖wa −wb‖2, (S3)

Now we introduce F : Rndw × R
∑
imidx 7→ R, an aggregate potential function of local variables

wi(k) and local dataXi

F (w(k),X) =

n∑
i=1

Ui (wi(k),Xi) . (S4)

Following Assumption 1, the function F is continuously differentiable and the gradient ∇F is
Lipschitz continuous, i.e., ∀wa, wb ∈ Rndw

‖∇F (wa,X)−∇F (wb,X)‖2 ≤ L‖wa −wb‖2, (S5)

where L = max
i
{Li} and ∇F (w,X) ,

[
∇U1(w1,X1)> . . . ∇Un(wn, Xn)>

]> ∈ Rndw .

Assumption 2. The interaction topology of n networked agents is given as a connected undirected
graph G (V, E).

For the connected undirected graph G (V, E), the graph Laplacian L is a positive semi-definite
matrix with one eigenvalue at 0 corresponding to the eigenvector 1n. Furthermore, it follows from
Lemma 3 [53] that for all x ∈ Rn, such that 1Tnx = 0, we have xTL (L)

+
x = xTx.

Here we require the following condition on {αk} and {βk}:
Condition 1. Sequences {αk} and {βk} are selected as

αk =
a

(k + 1)δ2
and βk =

b

(k + 1)δ1
, (S6)

where 0 < a, 0 < b, 0 ≤ δ1 and 1
2 + δ1 < δ2 < 1. Also, the parameter b = β0 in sequence {βk}

is selected such thatW0 = (In − bL) has a single eigenvalue at 1 corresponding to the right and
left eigenvectors 1n and 1>n , respectively. Furthermore, the remaining n− 1 eigenvalues ofW0 are
strictly inside the unit circle.

For sequences {αk} and {βk} that satisfy Condition 1, we have
∑∞
k=0 αk =∞,

∑∞
k=0 β

3
k =∞ and∑∞

k=0 α
2
k <∞. Thus αk, βk, β2

k and β3
k are not summable sequences while αk is square-summable.

Also note that βk is allowed to be a constant b for all k ≥ 0. However, b is selected such that
b < 1/σmax(L), where σmax(·) denotes the largest singular value. Thus, bσmax(L) < 1.

Let Fk denotes a filtration generated by the sequence {w0, . . . ,wk}, i.e., E[vk |Fk] = 0

E[wk+1 |Fk] = (Wk ⊗ Idw) wk − αknE[g(wk,X) |Fk] a.s., (S7)

3Unless otherwise specified, gradients are taken with respect to the parameter w or its aggregate w.

13

where a.s. (almost surely) denotes events that occur with probability one. Let

g̃(wk,X) = g(wk,X)−
(

1

n
1n1>n ⊗ Idw

)
g(wk,X). (S8)

Note that g̃(wk,X) ,
[
g̃1 (w1(k),X1)

>
. . . g̃n (wn(k),Xn)

>]> denotes the disagreement
on the gradient among the distributed agents. Here we make the following assumption regarding
g̃(wk,X):

Assumption 3. There exists a positive constant µg <∞ such that

sup
i=1...,n

E [‖g̃i (wi(k),Xi) ‖2 |Fk] ≤ √µg(1 + k)δ2/2, a.s., (S9)

or equivalently

E
[
‖g̃(wk,X)‖22 |Fk

]
≤ nµg(1 + k)δ2, a.s., (S10)

where δ2 is defined in Condition 1.

Note that Assumption 3 does not uniformly bound E
[
‖g̃(wk,X)‖22 |Fk

]
. In fact

E
[
‖g̃(wk,X)‖22 |Fk

]
can grow unbounded with time, i.e., as k →∞.

S2 Useful Lemmas
Lemma S1. Given Assumption 1, for U defined in (11), we have ∀wa, wb ∈ Rdw ,

U(wb, X) ≤ U(wa, X) +∇U (wa, X)
>

(wb −wa) +
1

2
nL‖wb −wa‖22. (S11)

Proof : Proof follows from the mean value theorem.

Lemma S2. Given Assumption 2, we have

M ,

(
In −

1

n
1n1>n

)
= L (L)

+
, (S12)

where (·)+ denotes the generalized inverse. Furthermore, for all x ∈ Rn such that x /∈ Rn1 , we have

x̃>Lx̃ = x>Lx > λ2(L)x>x, (S13)

where x̃ = Mx is the average-consensus error and λ2(L) denotes the second smallest eigenvalue of
L.

Proof : For the connected undirected graph, L is a positive semi-definite matrix with one eigenvalue
at 0 corresponding to the eigenvector 1n. Thus

Lx̃ = L
(
In −

1

n
1n1>n

)
x = Lx,

and for x ∈ Rn such that x /∈ Rn1 , we have x>Lx > λ2(L)x>x. See Lemma 3 of [53] for a detailed
proof of (S12).

Lemma S3. Let f(k) is be a non-negative and decreasing sequence for all k ≥ k0. Then for all
k ≤ K, we have ∫ K

k

f(x) dx ≤
K∑
t=k

f(t) ≤
∫ K

k−1

f(x) dx. (S14)

Furthermore, if f(k) is non-negative and increasing, then for all k ≤ K we have∫ K

k−1

f(x) dx ≤
K∑
t=k

f(t) ≤
∫ K+1

k

f(x) dx. (S15)

14

Proof : See Appendix A2 in [54].

Lemma S4. For all k ≥ 0, let yk be a nonnegative sequence satisfying:

yk+1 ≤
(

1− µβ
(k + 1)δ1

)
yk +

µζ
(k + 1)δ4

, (S16)

where 0 < µβ ≤ 1, 0 < µζ , 0 ≤ δ1 < 1 and δ1 < δ4 are positive constants. Then we have

yk+1 ≤
Y3

exp (Y1(k + 1)1−δ1)
+

Y2

(k + 1)δ4−δ1
(S17)

where the constants Y1, Y2 and Y3 are defined as

Y1 =
µβ

1− δ1
(S18)

Y2 =
µζδ4
µβδ1

exp
(
Y121−δ1

)
(S19)

Y3 = exp (Y1)

y0 +

k̄∑
t=0

(
1

(1− µβ)t
µζ

(t+ 1)δ4

) (S20)

where y0 is the initial condition and k̄ > 0 is defined as

k̄ =

⌈(
δ4
µβ

) 1
1−δ1

⌉
. (S21)

Proof : Let

βk =
µβ

(k + 1)δ1
(S22)

ζk =
µζ

(k + 1)δ4
(S23)

and

ηk = (1− βk) . (S24)

Now (S16) can be written as

yk+1 ≤ ηk yk + ζk = ζk + y0

k∏
t=0

ηt +

k−1∑
t=0

ζt

(
k∏

i=t+1

ηi

)
(S25)

Since empty product is 1, we have

yk+1 ≤ y0

k∏
t=0

ηt +

k∑
t=0

ζt

(
k∏

i=t+1

ηi

)
(S26)

Note that ηk ≤ 1 and ηk → 1 as k →∞. Then, using

1− ϕ ≤ exp−ϕ, 0 ≤ ϕ ≤ 1 (S27)

yields

k∏
t=0

ηt =

k∏
t=0

(1− βt) ≤ exp

(
−

k∑
t=0

βt

)
(S28)

Since βk is monotonically decreasing, from Lemma S3 we have

k∑
t=0

βt ≥
∫ k

0

µβ
(t+ 1)δ1

dt =
µβ(k + 1)1−δ1

1− δ1
− µβ

1− δ1
(S29)

15

Thus
k∏
t=0

ηt ≤ exp

(
−

k∑
t=0

βt

)
≤ exp(Y1)

exp (Y1(k + 1)1−δ1)
, (S30)

where

Y1 =
µβ

1− δ1
.

Similarly

k∏
i=t+1

ηi =

k∏
i=t+1

(1− βi) ≤ exp

(
−

k∑
i=t+1

βi

)
(S31)

and
k∑

i=t+1

βi ≥
∫ k

t+1

µβ
(x+ 1)δ1

dx =
µβ(k + 1)1−δ1

1− δ1
− µβ(t+ 2)1−δ1

1− δ1
(S32)

Thus

exp

(
−

k∑
i=t+1

βi

)
≤ exp

(
− µβ(k + 1)1−δ1

(1− δ1)
+
µβ(t+ 2)1−δ1

(1− δ1)

)
, (S33)

= exp

(
− Y1(k + 1)1−δ1 + Y1(t+ 2)1−δ1

)
. (S34)

Note that for some t̄ ∈ (0, k), we have

k∑
t=0

ζt

(
k∏

i=t+1

ηi

)
=

k̄∑
t=0

ζt

(
k∏

i=t+1

ηi

)
+

k∑
t=k̄+1

ζt

(
k∏

i=t+1

ηi

)
(S35)

and
k∑

t=t̄+1

ζt

(
k∏

i=t+1

ηi

)
≤

k∑
t=t̄+1

µζ exp
(
−Y1(k + 1)1−δ1 + Y1(t+ 2)1−δ1

)
(t+ 1)δ4

(S36)

= µζ exp
(
−Y1(k + 1)1−δ1

) k∑
t=t̄+1

exp
(
Y1(t+ 2)1−δ1

)
(t+ 1)δ4

(S37)

≤ µζ exp
(
−Y1(k + 1)1−δ1

) k∑
t=t̄+1

exp
(
Y1t

1−δ1 + Y121−δ1
)

(t+ 1)δ4
(S38)

≤ µζ exp
(
−Y1(k + 1)1−δ1 + Y121−δ1

) k∑
t=t̄+1

exp
(
Y1t

1−δ1
)

tδ4
(S39)

Now it follows from Lemma S3 that
k∑

t=t̄+1

exp
(
Y1t

1−δ1
)

tδ4
≤
∫ k+1

t̄

exp
(
Y1t

1−δ1
)

tδ4
dt. (S40)

Thus we have
k∑

t=t̄+1

ζt

(
k∏

i=t+1

ηi

)
≤ µζ

exp
(
Y121−δ1

)
exp (Y1(k + 1)1−δ1)

∫ k+1

t̄

exp
(
Y1t

1−δ1
)

tδ4
dt (S41)

16

We note

d
(
exp

(
Y1t

1−δ1
)
t−δ4+δ1

)
dt

= Y1(1− δ1) exp
(
Y1t

1−δ1
)
t−δ4 − (δ4 − δ1) exp

(
Y1t

1−δ1
)
t−δ4+δ1−1

(S42)

=
(
Y1(1− δ1)− (δ4 − δ1)tδ1−1

)
exp

(
Y1t

1−δ1
)
t−δ4 (S43)

Thus for

t ≥ t̄ =

(
δ4

Y1(1− δ1)

) 1
1−δ1

=

(
δ4
µβ

) 1
1−δ1

(S44)

we have (
Y1(1− δ1)− (δ4 − δ1)

t1−δ1

)
≥ µβδ1

δ4
(S45)

and

d
(
exp

(
Y1t

1−δ1
)
t−δ4+δ1

)
dt

≥ µβδ1
δ4

exp
(
Y1t

1−δ1
)
t−δ4 . (S46)

Thus we have

exp
(
Y1t

1−δ1
)

tδ4
≤ δ4
µβδ1

d
(
exp

(
Y1t

1−δ1
)
t−δ4+δ1

)
dt

(S47)

and ∫ k+1

t̄

exp
(
Y1t

1−δ1
)

tδ4
dt ≤ δ4

µβδ1

(
exp

(
Y1t

1−δ1
)

tδ4−δ1

)∣∣∣∣k+1

t̄

(S48)

=
δ4
µβδ1

(
exp

(
Y1(k + 1)1−δ1

)
(k + 1)δ4−δ1

−
exp

(
Y1(t̄)1−δ1

)
(t̄)δ4−δ1

)
(S49)

Therefore we have
k∑

t=t̄+1

ζt

(
k∏

i=t+1

ηi

)
≤

µζ exp
(
Y121−δ1

)
exp (Y1(k + 1)1−δ1)

δ4
µβδ1

(
exp

(
Y1(k + 1)1−δ1

)
(k + 1)δ4−δ1

−
exp

(
Y1(t̄)1−δ1

)
(t̄)δ4−δ1

)
(S50)

=
µζ exp

(
Y121−δ1

)
exp (Y1(k + 1)1−δ1)

(
δ4 exp

(
Y1(k + 1)1−δ1

)
µβδ1 (k + 1)δ4−δ1

− Y4

)
(S51)

where Y4 is a positive constant defined as

Y4 =
δ4 exp

(
Y1(t̄)1−δ1

)
µβδ1 (t̄)δ4−δ1

(S52)

Therefore
k∑

t=t̄+1

ζt

(
k∏

i=t+1

ηi

)
≤

µζ exp
(
Y121−δ1

)
exp (Y1(k + 1)1−δ1)

(
δ4 exp

(
Y1(k + 1)1−δ1

)
µβδ1 (k + 1)δ4−δ1

− Y4

)
(S53)

=

(
µζδ4 exp

(
Y121−δ1

)
µβδ1 (k + 1)δ4−δ1

−
Y4µζ exp

(
Y121−δ1

)
exp (Y1(k + 1)1−δ1)

)
(S54)

Thus we have
k∑

t=t̄+1

ζt

(
k∏

i=t+1

ηi

)
≤
µζδ4 exp

(
Y121−δ1

)
µβδ1 (k + 1)δ4−δ1

(S55)

17

Now going back to (S26), we can write

yk+1 ≤ y0

k∏
t=0

ηt +

k∑
t=0

ζt

(
k∏

i=t+1

ηi

)
(S56)

= y0

k∏
t=0

ηt +

t̄∑
t=0

ζt

(
k∏

i=t+1

ηi

)
+

k∑
t=t̄+1

ζt

(
k∏

i=t+1

ηi

)
(S57)

= y0

k∏
t=0

ηt +

t̄∑
t=0

ζt∏t
i=0 ηi

(
k∏
i=0

ηi

)
+

k∑
t=t̄+1

ζt

(
k∏

i=t+1

ηi

)
(S58)

=

(
y0 +

t̄∑
t=0

ζt∏t
i=0 ηi

)
k∏
t=0

ηt +

k∑
t=t̄+1

ζt

(
k∏

i=t+1

ηi

)
. (S59)

Note that since ηk ≤ 1 and ηk → 1 as k →∞, we have

t∏
i=0

ηi ≥
t∏
i=0

η0 = (1− µβ)t (S60)

Thus

y0 +

t̄∑
t=0

ζt∏t
i=0 ηi

≤ y0 +

t̄∑
t=0

1

(1− µβ)t
µζ

(t+ 1)δ4
(S61)

Now define a bounded constant

Y5 ,

(
y0 +

t̄∑
t=0

1

(1− µβ)t
µζ

(t+ 1)δ4

)
(S62)

Thus we have

yk+1 ≤
exp(Y1)Y5

exp (Y1(k + 1)1−δ1)
+
µζδ4 exp

(
Y121−δ1

)
µβδ1 (k + 1)δ4−δ1

(S63)

Now (S17) follows from noting that Y3 = exp(Y1)Y5 and substituting for Y2.

S3 Proof of Threorem 1
Consider the DULA given in (10)

wk+1 = (Wk ⊗ Idw) wk − αkng(wk,X) +
√

2αkvk. (S64)

Define the average-consensus error as w̃k = (M ⊗ Idw) wk, where M = In − 1
n1n1>n . Thus we

have

w̃k+1 = (Wk ⊗ Idw) w̃k − αkng̃(wk,X) +
√

2αkṽk (S65)

where g̃(wk,X) = (M ⊗ Idw) g(wk,X), ṽk = (M ⊗ Idw) vk and we used the identities
M (In − βkL) = M − βkL and (L ⊗ Idw) wk = (L ⊗ Idw) w̃k. Taking the norm on both sides
yields

‖w̃k+1‖2 ≤ ‖ ((In − βkL)⊗ Idw) w̃k‖2 + αkn‖g̃(wk,X)‖2 +
√

2αk‖ṽk‖2. (S66)

Since 1>ndww̃k = 0, it follows from [55, Lemma 4.4] that

‖ ((In − βkL)⊗ Idw) w̃k‖2 ≤ (1− βkλ2(L))‖w̃k‖2, (S67)

where λ2(·) denotes the second smallest eigenvalue. Thus we have

‖w̃k+1‖2 ≤ (1− βkλ2(L))‖w̃k‖2 +
√

2αk‖ṽk‖2 + αkn‖g̃(wk,X)‖2. (S68)

18

Now we use the following inequality

(x+ y)2 ≤ (1 + θ)x2 +

(
1 +

1

θ

)
y2, (S69)

for all x, y,∈ R and θ > 0. Since βkλ2(L) < 1 for all k ≥ 0, selecting

θ = (1− βkλ2(L))
− 1

2 − 1

yields

‖w̃k+1‖22 ≤ (1− βkλ2(L))
− 1

2
(
(1− βkλ2(L))‖w̃k‖2 +

√
2αk‖ṽk‖2

)2
+ n2α2

k

(
(1− βkλ2(L))

− 1
2

(1− βkλ2(L))
− 1

2 − 1

)
‖g̃(wk,X)‖22

(S70)

= (1− βkλ2(L))
− 1

2
(
(1− βkλ2(L))‖w̃k‖2 +

√
2αk‖ṽk‖2

)2
+ n2α2

k

(
1

1− (1− βkλ2(L))
1
2

)
‖g̃(wk,X)‖22

(S71)

Since βkλ2(L) < 1 for all k ≥ 0, we have

(1− βkλ2(L))
1
2 ≤

(
1− βkλ2(L)

2

)
, (S72)

which results in (
1

1− (1− βkλ2(L))
1
2

)
≤

 1

1−
(

1− βkλ2(L)
2

)
 =

2

βkλ2(L)
(S73)

Now it follows from (S71) that

‖w̃k+1‖22 ≤ (1− βkλ2(L))
− 1

2
(
(1− βkλ2(L))‖w̃k‖2 +

√
2αk‖ṽk‖2

)2
+

(
2n2α2

k

βkλ2(L)

)
‖g̃(wk,X)‖22

(S74)

Again applying (S69) with the same θ yields(
(1− βkλ2(L))‖w̃k‖2 +

√
2αk‖ṽk‖2

)2 ≤ (1− βkλ2(L))
− 1

2 (1− βkλ2(L))2‖w̃k‖22

+

(
(1− βkλ2(L))

− 1
2

(1− βkλ2(L))
− 1

2 − 1

)
2αk‖ṽk‖22

(S75)

= (1− βkλ2(L))
3
2 ‖w̃k‖22 +

(
(1− βkλ2(L))

− 1
2

(1− βkλ2(L))
− 1

2 − 1

)
2αk‖ṽk‖22 (S76)

≤ (1− βkλ2(L))
3
2 ‖w̃k‖22 +

(
4αk

βkλ2(L)

)
‖ṽk‖22 (S77)

Combining (S74) and (S77) yields

‖w̃k+1‖22 ≤ (1− βkλ2(L))‖w̃k‖22 +

(
4αk (1− βkλ2(L))

− 1
2

βkλ2(L)

)
‖ṽk‖22

+

(
2n2α2

k

βkλ2(L)

)
‖g̃(wk,X)‖22

(S78)

= (1− βkλ2(L))‖w̃k‖22 +
2αk

βkλ2(L)

(
2‖ṽk‖22

(1− βkλ2(L))
1
2

+ n2αk‖g̃(wk,X)‖22

)
(S79)

19

Now taking the conditional expectation E [· |Fk] yields

E
[
‖w̃k+1‖22 |Fk

]
≤ (1− βkλ2(L))‖w̃k‖22

+
2αk

βkλ2(L)

(
2E
[
‖ṽk‖22 |Fk

]
(1− βkλ2(L))

1
2

+ n2αkE
[
‖g̃(wk,X)‖22 |Fk

]) (S80)

≤ (1− βkλ2(L))‖w̃k‖22 +
2αkn

2

βkλ2(L)

(
2dw

(1− bλ2(L))
1
2

+ anµg

)
(S81)

where we used Assumption 3 and the fact that

‖ṽk‖22 = ṽ>k ṽk = v>k (M ⊗ Idw)
>

(M ⊗ Idw) vk = v>k (M ⊗ Idw) vk (S82)

= v>k vk −
1

n
v>k 1ndw1>ndwvk = v>k vk −

1

n
1>ndwvkv

>
k 1ndw . (S83)

Thus taking the expectation yields

E
[
‖ṽk‖22

]
= E

[
v>k vk

]
− 1

n
1>ndwE

[
vkv

>
k

]
1ndw = n2dw − ndw ≤ n2dw. (S84)

Now taking the total expectation of (S81) gives

E
[
‖w̃k+1‖22

]
≤
(

1− bλ2(L)

(1 + k)δ1

)
E
[
‖w̃k‖22

]
+

2n2a

bλ2(L)

(
2dw

(1− bλ2(L))
1
2

+ anµg

)
1

(1 + k)δ2−δ1

(S85)

Now (S85) can be written in the form of (S16) with µβ = bλ2(L), δ4 = δ2 − δ1 and µζ =

2n2a
bλ2(L)

(
2dw

(1−bλ2(L))
1
2

+ anµg

)
. Thus it follows from Lemma S4 that

E
[
‖w̃k+1‖22

]
≤ W3

exp (W1(k + 1)1−δ1)
+

W2

(k + 1)δ2−2δ1
(S86)

where W1, W2 and W3 are positive constants defined as

W1 =
bλ2(L)

(1− δ1)
, (S87)

W2 =

2n2a

(
2dw

(1−bλ2(L))
1
2

+ naµg

)
(δ2 − δ1)

b2λ2(L)2δ1
exp

(
W121−δ1

)
, (S88)

W3 = exp (W1)

(
E
[
‖w̃0‖22

]
+

2n2a

(
2dw

(1−bλ2(L))
1
2

+ naµg

)
bλ2(L)

k̄∑
`=0

(
1

(1− bλ2(L))`
1

(`+ 1)δ2−δ1

))
(S89)

in which λ2(L) denotes the second smallest eigenvalue of L and k̄ > 0 is defined as

k̄ =

⌈(
δ2 − δ1
bλ2(L)

) 1
1−δ1

⌉
. (S90)

This concludes the proof of Theorem 1.

�

20

S3.1 Consensus rate

Note that

W3

exp (W1(k + 1)1−δ1)
=

W3

(k + 1)δ2−2δ1

(k + 1)δ2−2δ1

exp (W1(k + 1)1−δ1)
(S91)

≤ W3

(k + 1)δ2−2δ1
max
∀t≥0

(
(t+ 1)δ2−2δ1

exp (W1(t+ 1)1−δ1)

)
. (S92)

We have

max
∀t≥0

(
(t+ 1)δ2−2δ1

exp (W1(t+ 1)1−δ1)

)
= exp

(
−δ2 − 2δ1

1− δ1

)(
δ2 − 2δ1
W1(1− δ1)

) δ2−2δ1
1−δ1

, (S93)

which is attained when

δ2 − 2δ1
1− δ1

= W1(t+ 1)1−δ1 . (S94)

Note δ2−2δ1
W1(1−δ1) = δ2−2δ1

bλ2(L) . Define

W4 = W3 exp

(
−δ2 − 2δ1

1− δ1

)(
δ2 − 2δ1
bλ2(L)

) δ2−2δ1
1−δ1

. (S95)

Then

E
[
‖w̃k+1‖22

]
≤ W2 +W4

(k + 1)δ2−2δ1
. (S96)

S4 Proof of Theorem 2
Denote w̄(tk) and ω̃(tk) by Yk,1 and Yk,2, respectively. Let Yk = [Y >k,1 Y

>
k,2]> and Xk(s) =

[Y >k w̄>(s)]>. Then from (21) we have for s ∈ [tk, tk+1)

dXk(s) =

(
0
0

−∇U (Yk,1,X)− ζ(Yk,2, Yk,1)

)
ds+

 0
0√

2dBs

 . (S97)

Let Xk admit a distribution pt(Xk). The time evolution of pt(Xk) is given by the following Fokker-
Planck (FP) equation (see 4.1 in [56])

∂pt(Xk)

∂t
= −∇w̄ · [pt(Xk) (−∇U(Yk,1,X)−∇w̄ log pt(Xk)− ζ(Yk,2, Yk,1))] (S98)

where ∇ · [u(·)] denotes the divergence of a vector field u(·).

We next marginalize out Yk from pt(Xk) to obtain pt(w̄) =
∫
pt(Xk) dYk and

∂pt(w̄)

∂t
= −∇w̄ ·

[∫
pt(w̄, Yk) (−∇U(Yk,1,X)−∇w̄ log pt(w̄, Yk)− ζ(Yk,2, Yk,1)) dYk

]
.

(S99)
Note that ∫

pt(w̄, Yk)∇w̄ log pt(w̄, Yk) dYk = pt(w̄)∇ log pt(w̄) = ∇pt(w̄). (S100)

We further write (S99) as

∂pt(w̄)

∂t
= ∇w̄ · [pt(w̄)∇ log pt(w̄)]

−∇w̄ ·
[∫

pt(w̄, Yk) (−∇U(Yk,1,X)− ζ(Yk,2, Yk,1)) dYk

] (S101)

21

= ∇w̄ · [pt(w̄)∇ log pt(w̄)]

−∇w̄ ·
[∫

pt(w̄, Yk) (−∇U(Yk,1,X)±∇U(w̄,X)− ζ(Yk,2, Yk,1)) dYk

]
(S102)

= ∇w̄ · [pt(w̄)∇ log pt(w̄)]−∇w̄ ·
[∫

pt(w̄, Yk) (−∇U(w̄,X)) dYk

]
−∇w̄ ·

[∫
pt(w̄, Yk) (∇U(w̄,X)−∇U(Yk,1,X)− ζ(Yk,2, Yk,1)) dYk

]
(S103)

= ∇w̄ · [pt(w̄) (∇ log pt(w̄) +∇U(w̄,X))]

−∇w̄ ·
[∫

pt(w̄, Yk) (∇U(w̄,X)−∇U(Yk,1,X)− ζ(Yk,2, Yk,1)) dYk

]
(S104)

Let

ft(w̄) = pt(w̄) (∇ log pt(w̄) +∇U(w̄,X)) = pt(w̄)∇ log

(
pt(w̄)

p∗(w̄)

)
, (S105)

where we used ∇U (w̄,X) = −∇ log p∗(w̄) and let

f̃t(w̄) =

∫
pt(w̄, Yk) (∇U(w̄,X)−∇U(Yk,1,X)− ζ(Yk,2, Yk,1)) dYk. (S106)

Thus,
∂pt(w̄)

∂t
= ∇w̄ ·

[
ft − f̃t

]
. (S107)

We next derive the evolution of the KL divergence between pt(w̄) and p∗(w̄), denoted by F (pt(w̄)),
i.e.,

F (pt(w̄)) =

∫
pt(w̄) log

(
pt(w̄)

p∗(w̄)

)
dw̄. (S108)

Taking the time derivative of F (pt(w̄)) leads to

Ḟ (pt(w̄)) =
d

dt

∫
pt(w̄) log

(
pt(w̄)

p∗(w̄)

)
dw̄ (S109)

=

∫
∂

∂t
(pt(w̄) log (pt(w̄))− pt(w̄) log (p∗(w̄))) dw̄ (S110)

=

∫ (
log

(
pt(w̄)

p∗(w̄)

)
+ 1

)
∂pt(w̄)

∂t
dw̄. (S111)

Let

κ(w̄) = log

(
pt(w̄)

p∗(w̄)

)
+ 1. (S112)

Using (S107), we further obtain

Ḟ (pt(w̄)) =

∫
κ(w̄)

∂pt(w̄)

∂t
dw̄

=

∫
κ(w̄) (∇w̄ · [ft(w̄)]) dw̄ −

∫
κ(w̄)

(
∇w̄ ·

[
f̃t(w̄)

])
dw̄.

(S113)

The first term in (S113) corresponds to the continuous time Langevin dynamics. Using Lemma S5
(an alternative version of Lemma 10.4.1 in [57]) it can be shown that∫

κ(w̄) (∇w̄ · [ft(w̄)]) dw̄ = −
∫
∇ log

(
pt(w̄)

p∗(w̄)

)>
ft(w̄) dw̄. (S114)

22

Substituting (S105), we further get∫
∇ log

(
pt(w̄)

p∗(w̄)

)>
ft(w̄) dw̄ =

∫ ∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

pt(w̄) dw̄ (S115)

= Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

]
. (S116)

For the second term in (S113), we have∫
κ(w̄)

(
∇w̄ ·

[
f̃t(w̄)

])
dw̄

=

∫
κ(w̄)

(
∇w̄ ·

[∫
pt(w̄, Yk) (∇U(w̄,X)−∇U(Yk,1,X)− ζ(Yk,2, Yk,1)) dYk

])
dw̄

(S117)

=

∫∫
κ(w̄) (∇w̄ · [pt(w̄, Yk) (∇U(w̄,X)−∇U(Yk,1,X)− ζ(Yk,2, Yk,1))]) dw̄ dYk. (S118)

From Lemma S5, we further obtain∫∫
κ(w̄) (∇w̄ · [pt(w̄, Yk) (∇U(w̄,X)−∇U(Yk,1,X)− ζ(Yk,2, Yk,1))]) dw̄ dYk

=−
∫∫
∇w̄κ(w̄)> (∇U(w̄,X)−∇U(Yk,1,X)− ζ(Yk,2, Yk,1)) pt(w̄, Yk) dw̄ dYk

(S119)

=−
∫
∇ log

(
pt(w̄)

p∗(w̄)

)>
f̃t(w̄) dw̄. (S120)

It then follows from (S113), (S116) and (S120) that

Ḟ (pt(w̄)) = −Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

]
+

∫
∇ log

(
pt(w̄)

p∗(w̄)

)>
f̃t(w̄) dw̄. (S121)

To bound the second term in (S121), we note from (S106) that∫
∇ log

(
pt(w̄)

p∗(w̄)

)>
f̃t(w̄) dw̄

=

∫∫
∇ log

(
pt(w̄)

p∗(w̄)

)>
(∇U(w̄,X)−∇U(Yk,1,X)− ζ(Yk,2, Yk,1)) pt(w̄, Yk) dYk dw̄

(S122)

≤ 1

2

∫∫ ∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

pt(w̄, Yk) dYk dw̄

+
1

2

∫∫
‖∇U(w̄,X)−∇U(Yk,1,X)− ζ(Yk,2, Yk,1)‖22 pt(w̄, Yk) dYk dw̄

(S123)

≤ 1

2
Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

]
+

∫∫
‖∇U(w̄,X)−∇U(Yk,1,X)‖22 pt(w̄, Yk) dYk dw̄

+

∫∫
‖ζ(Yk,2, Yk,1)‖22 pt(w̄, Yk) dYk dw̄

(S124)

≤ 1

2
Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

]
+ L̄2

∫∫
‖w̄ − Yk,1‖22 pt(w̄, Yk) dYk dw̄

+

∫∫
‖ζ(Yk,2, Yk,1)‖22 pt(w̄, Yk) dYk dw̄.

(S125)

23

For the last term in (S125), it follows from Assumption 1 that

‖ζ(ω̃(tk), w̄(tk))‖22 =

∥∥∥∥∥
n∑
i=1

(∇Ui (w̄(tk) + ω̃i(tk),Xi)−∇Ui (w̄(tk),Xi))

∥∥∥∥∥
2

2

≤ L2 ‖ω̃(tk)‖22

(S126)

from which we obtain∫∫
‖ζ(Yk,2, Yk,1)‖22 pt(w̄, Yk) dYk dw̄ ≤ L2

∫∫
‖Yk,2‖22 pt(w̄, Yk) dYk dw̄ (S127)

= L2

∫∫
‖Yk,2‖22 pt(w̄, Yk,2) dYk,2 dw̄ (S128)

= L2

∫
‖Yk,2‖22 p(Yk,2) dYk,2 (S129)

= L2 Ep(Yk,2) ‖Yk,2‖
2
2 = L2 Eptk (ω̃)

[
‖ω̃(tk)‖22

]
.

(S130)

For the second term in (S125), since Yk,1 = w̄(tk), it follows from (S97) that ∀t ∈ [tk, tk+1]

‖w̄(t)− w̄(tk)‖22 =
∥∥∥−∇U(w̄(tk),X)(t− tk) +

√
2(Bt −Btk)− (t− tk)ζ(ω̃(tk), w̄(tk))

∥∥∥2

2

(S131)

= 2‖Bt −Btk‖22 + ‖∇U(w̄(tk),X)(t− tk) + (t− tk)ζ(ω̃(tk), w̄(tk))‖22
− 2
√

2(Bt −Btk)> (∇U(w̄(tk),X)(t− tk) + (t− tk)ζ(ω̃(tk), w̄(tk)))
(S132)

≤ 2‖Bt −Btk‖22 + 2α2
k ‖∇U(w̄(tk),X)‖22 + 2α2

k ‖ζ(ω̃(tk), w̄(tk))‖22
− 2
√

2(Bt −Btk)> (∇U(w̄(tk),X)(t− tk) + (t− tk)ζ(ω̃(tk), w̄(tk)))
(S133)

≤ 2‖Bt −Btk‖22 + 2α2
kL̄

2‖w̄(tk)‖22 + 2α2
kL

2 ‖ω̃(tk)‖22
− 2
√

2(Bt −Btk)> (∇U(w̄(tk),X)(t− tk) + (t− tk)ζ(ω̃(tk), w̄(tk))) .
(S134)

The last inequality follows from Lipschitz continuity of ∇U and assuming ∇U(0,X) = 0. Note
that assuming ∇U(0,X) = 0 is only to simplify the notation. Later we will bound the expectation
of ‖w̄(tk)‖22 in (S134). Then given any finitew? such that∇U(w?,X) = 0, ‖∇U(w̄(tk),X)‖22 ≤
L̄2‖w̄(tk)−w?‖22, whose expectation is also bounded.

Let B̃t = Bt −Btk . Then B̃t follows a zero mean Gaussian distribution with a variance of t− tk.
Note that w̄(t) depends on B̃t for tk < t ≤ tk+1 while Yk is independent of B̃t. Thus,∫∫

‖B̃t‖2pt(w̄, Yk) dYk dw̄ =

∫
‖B̃t‖2pt(w̄) dw̄ (S135)

=

∫
‖B̃t‖2

[∫
pt(w̄|B̃t)p(B̃t) dB̃t

]
dw̄ (S136)

=

∫
‖B̃t‖2p(B̃t)

[∫
pt(w̄|B̃t) dw̄

]
dB̃t (S137)

= Ep(B̃t)‖B̃t‖
2 = dw(t− tk) ≤ αkdw. (S138)

Similarly, for any function S of Yk, we have∫∫
B̃>t S(Yk)pt(w̄, Yk) dYk dw̄ =

∫∫
B̃>t S(Yk)

[∫
pt(w̄|Yk, B̃t)p(Yk)p(B̃t) dB̃t

]
dYk dw̄

(S139)

=

∫
B̃>t S(Yk)p(Yk)p(B̃t)

[∫
pt(w̄|Yk, B̃t) dw̄

]
dYk dB̃t

(S140)

24

=

∫
p(B̃t)B̃

>
t S(Yk)p(Yk) dYk dB̃t = 0. (S141)

Recall Yk,1 = w̄(tk) and Yk,2 = ω̃(tk). Using (S138) and (S141), we further obtain∫∫
‖w̄(t)− Yk,1‖22 pt(w̄, Yk) dYk dw̄

≤
∫∫ (

2α2
kL̄

2‖Yk,1‖22 + 2α2
kL

2 ‖Yk,2‖22 + 2αkdw

)
pt(w̄, Yk) dYk dw̄

(S142)

= 2α2
kL̄

2Ep(Yk,1)‖Yk,1‖22 + 2α2
kL

2Ep(Yk,2)‖Yk,2‖22 + 2αkdw (S143)

= 2α2
kL̄

2Ep(w̄(tk))‖w̄(tk)‖22 + 2α2
kL

2Ep(ω̃(tk))‖ω̃(tk)‖22 + 2αkdw. (S144)

Substituting (S144) and (S130) into (S125) yields∫
∇ log

(
pt(w̄)

p∗(w̄)

)>
f̃t(w̄) dw̄ ≤ 1

2
Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

]
+ L2 Ep(ω̃(tk))

[
‖ω̃(tk)‖22

]
+ L̄2

(
2α2

kL̄
2Ep(w̄(tk))‖w̄(tk)‖22 + 2α2

kL
2Ep(ω̃(tk))‖ω̃(tk)‖22 + 2αkdw

)
.

(S145)

Now substituting (S145) into (S121) gives

Ḟ (pt(w̄)) ≤− 1

2
Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

]
+ L2 Ep(ω̃(tk)) ‖ω̃(tk)‖22

+ L̄2
(
2α2

kL̄
2Ep(w̄(tk))‖w̄(tk)‖22 + 2α2

kL
2Ep(ω̃(tk))‖ω̃(tk)‖22 + 2αkdw

) (S146)

=− 1

2
Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

]
+
(
2α2

kL̄
2L2 + L2

)
Ep(ω̃(tk))‖ω̃(tk)‖22

+ 2α2
kL̄

4 Ep(w̄(tk))‖w̄(tk)‖22 + 2αkL̄
2dw.

(S147)

Recall the log-Sobolev inequality (24)

F (pt(w̄)) = Ept(w̄)

[
log

(
pt(w̄)

p∗(w̄)

)]
≤ 1

2ρU
Ept(w̄)

[∥∥∥∥∇ log

(
pt(w̄)

p∗(w̄)

)∥∥∥∥2

2

]
, (S148)

where ρU is the log-Sobolev constant. We then have

Ḟ (pt(w̄)) ≤ −ρUF (pt(w̄)) + 2α2
kL̄

4Ep(w̄(tk))‖w̄(tk)‖22
+ (2α2

kL̄
2L2 + L2)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2αkL̄

2dw
(S149)

= −ρU
(
F (pt(w̄))− 1

ρU

(
2α2

kL̄
4Ep(w̄(tk))‖w̄(tk)‖22

+ (2α2
kL̄

2L2 + L2)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2αkL̄
2dw

))
,

(S150)

which means ∀t ∈ [tk, tk+1]

F (pt(w̄)) ≤ exp (−ρU (t− tk))F (ptk(w̄)) +
1− exp (−ρU (t− tk))

ρU

(
2α2

kL̄
4Ep(w̄(tk))‖w̄(tk)‖22

+ (2α2
kL̄

2L2 + L2)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2αkL̄
2dw

)
.

(S151)

25

Since 1−exp(−ρU (t−tk))
ρU

≤ t− tk ≤ αk, we further obtain

F (pt(w̄)) ≤ exp (−ρU (t− tk))F (ptk(w̄)) +

(
2α3

kL̄
4Ep(w̄(tk))‖w̄(tk)‖22

+ (2α3
kL̄

2L2 + L2αk)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2α2
kL̄

2dw

)
.

(S152)

In particular, at t = tk+1, we have

F (ptk+1
(w̄)) ≤ exp (−ρUαk)F (ptk(w̄)) +

(
2α3

kL̄
4Ep(w̄(tk))‖w̄(tk)‖22

+ (2α3
kL̄

2L2 + L2αk)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2α2
kL̄

2dw

)
.

(S153)

We can then use (S153) to recursively bound the KL-divergence F (ptk+1
(w̄)). Note that

Ep(w̄(tk))

[
‖w̄(tk)‖22

]
≤ Cw̄ from Lemma S6 if we select a in αk = a

(k+1)δ2
as

a =
1

nγ

(
ρU (3δ2 − 1)

25L4δ2

) 1
3

, γ > 2. (S154)

Here γ > 2 is a design parameter to be specified by the user. Also recall from Theorem 1 that

E
[
‖w̃k‖22

]
≤ W3

exp (W1k1−δ1)
+

W2

kδ2−2δ1
. (S155)

Let

Zk =
W3(2α3

kL̄
2L2 + L2αk)

exp (W1k1−δ1)
, (S156)

Ca =
ρU (3δ2 − 1)

25L4δ2
, (S157)

and

ξk = 2α3
kL̄

4Cw̄ + (2α3
kL̄

2L2 + L2αk)
W2

kδ2−2δ1
+ 2α2

kL̄
2dw + Zk. (S158)

Also define

θk =
W̄3

exp (W1k1−δ1)
, (S159)

where
W̄3 = W3(2a3L̄2L2 + L2a). (S160)

Note that Zk ≤ θk. Now substituting

αk =

(
Ca
n3γ

) 1
3 1

(k + 1)δ2
≤
(
Ca
n3γ

) 1
3 1

kδ2
(S161)

into (S158) yields

ξk ≤
2CaL̄

4Cw̄

n3γk3δ2
+

(
2CaL̄

2L2

n3γk3δ2
+
C

1
3
a L2

nγkδ2

)
W2

kδ2−2δ1
+

2C
2
3
a L̄2dw

n2γk2δ2
+ Zk

=
2CaL̄

4Cw̄

n3γk3δ2
+

2CaL̄
2L2W2

n3γk4δ2−2δ1
+

C
1
3
a L2W2

nγk2δ2−2δ1
+

2C
2
3
a L̄2dw

n2γk2δ2
+ Zk (S162)

=
C

1
3
a

nγk2δ2−2δ1

(
2C

2
3
a L̄4Cw̄

n2γkδ2+2δ1
+

2C
2
3
a L̄2L2W2

n2γk2δ2
+ L2W2 +

2C
1
3
a L̄2dw
nγk2δ1

)
+ Zk (S163)

≤ Cξ
k2δ2−2δ1

+ θk, (S164)

26

where

Cξ =
C

1
3
a

nγ

(
2C

2
3
a L̄4Cw̄

n2γ
+

2C
2
3
a L̄2L2W2

n2γ
+ L2W2 +

2C
1
3
a L̄2dw
nγ

)
. (S165)

Now we rewrite (S153) as

F (ptk+1
(w̄)) ≤ exp (−ρUαk)F (ptk(w̄)) + ξk, (S166)

which results in

F (ptk+1
(w̄)) ≤ F (pt0(w̄)) exp

(
−ρU

k∑
`=0

α`

)
+

k∑
`=0

ξ` exp

(
−ρU

k∑
i=`+1

αi

)
. (S167)

When δ2 ∈ (0.5, 1), from Lemma S3 we have

k∑
`=0

α` ≥
∫ k

0

a

(x+ 1)δ2
dx =

a(k + 1)1−δ2

1− δ2
− a

1− δ2
. (S168)

Thus

exp

(
−ρU

k∑
`=0

α`

)
≤ exp

(
− aρU

1− δ2
(k + 1)1−δ2 +

aρU
1− δ2

)
(S169)

= exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
exp

(
aρU

1− δ2

)
. (S170)

Therefore from (S167) we obtain

F (ptk+1
(w̄)) ≤ F (pt0(w̄)) exp

(
aρU

1− δ2

)
exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
+

k∑
`=0

ξ` exp

(
−ρU

k∑
i=`+1

αi

)
.

(S171)

Substituting (S164) yields

F (ptk+1
(w̄)) ≤ F (pt0(w̄)) exp

(
aρU

1− δ2

)
exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
+

k∑
`=0

Cξ
`2δ2−2δ1

exp

(
−ρU

k∑
i=`+1

αi

)
+

k∑
`=0

θ` exp

(
−ρU

k∑
i=`+1

αi

)
.

(S172)

We first consider the last term in (S172). We write

θ` exp

(
−ρU

k∑
i=`+1

αi

)
= θ` exp(ρUα`) exp

(
−ρU

k∑
i=`

αi

)
≤ θ` exp(ρUa) exp

(
−ρU

k∑
i=`

αi

)
.

(S173)
From Lemma S3, we have

k∑
i=`

αi ≥
∫ k

`

a

(x+ 1)δ2
dx =

a(k + 1)1−δ2

1− δ2
− a(`+ 1)1−δ2

1− δ2

=
a
(
(k + 1)1−δ2 − (`+ 1)1−δ2

)
1− δ2

.

(S174)

27

Using (S159), (S173) and (S174), we bound the last term in (S172) by

k∑
`=0

θ` exp

(
−ρU

k∑
i=`+1

αi

)
≤

k∑
`=0

W̄3 exp(ρUa) exp

(
−ρU

a((k+1)1−δ2−(`+1)1−δ2)
1−δ2

)
exp (W1`1−δ1)

(S175)

= W̄3 exp(ρUa) exp

(
− ρUa

1− δ2
(k + 1)1−δ2

) k∑
`=0

exp

(
ρUa

1− δ2
(`+ 1)1−δ2 −W1`

1−δ1
)
(S176)

≤ W̄3 exp(ρUa) exp

(
− ρUa

1− δ2
(k + 1)1−δ2

) k∑
`=0

exp

(
ρUa

1− δ2
(`1−δ2 + 1)−W1`

1−δ1
)
(S177)

= W̄3 exp(ρUa) exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
exp

(
ρUa

1− δ2

)
×

k∑
`=0

exp

(
`1−δ1

(
ρUa

1− δ2
`δ1−δ2 −W1

))
. (S178)

Since δ1 < δ2, ρUa
1−δ2 `

δ1−δ2 − W1 decreases as ` increases. There exists a finite integer ¯̀ such
that ρUa

1−δ2 `
δ1−δ2 − W1 ≥ 0, ∀` < ¯̀, and ρUa

1−δ2 `
δ1−δ2 − W1 < 0, ∀` ≥ ¯̀. The sequence

exp
(
`1−δ1

(
ρUa
1−δ2 `

δ1−δ2 −W1

))
is decreasing after ¯̀because

d
[
`1−δ1

(
ρUa
1−δ2 `

δ1−δ2 −W1

)]
d`

< 0, ∀` ≥ ¯̀. (S179)

Note that ¯̀can be computed as

¯̀=

⌈(
ρUa

(1− δ2)W1

) 1
δ2−δ1

⌉
. (S180)

It then follows that for k > ¯̀

k∑
`=0

exp

(
ρUa

1− δ2
`1−δ2 −W1`

1−δ1
)

=

¯̀∑
`=0

exp

(
ρUa

1− δ2
`1−δ2 −W1`

1−δ1
)

+

k∑
`=¯̀+1

exp

(
ρUa

1− δ2
`1−δ2 −W1`

1−δ1
)
.

(S181)

Applying Lemma S3 yields

k∑
`=¯̀+1

exp

(
ρUa

1− δ2
`1−δ2 −W1`

1−δ1
)
≤ (S182)

∫ k

¯̀
exp

(
t1−δ1

(
ρUa

1− δ2
tδ1−δ2 −W1

))
dt. (S183)

Let κ = −
(
ρUa
1−δ2

¯̀δ1−δ2 −W1

)
. Note κ > 0. Then∫ k

¯̀
exp

(
t1−δ1

(
ρUa

1− δ2
tδ1−δ2 −W1

))
dt ≤

∫ k

¯̀
exp

(
−κt1−δ1

)
dt (S184)

28

= κ−
1

1−δ1
1

1− δ1

∫ κk1−δ1

κ¯̀1−δ1
exp (−z) z

δ1
1−δ1 dz (S185)

≤ κ−
1

1−δ1
1

1− δ1

∫ ∞
0

exp (−z) z
δ1

1−δ1 dz (S186)

≤ κ−
1

1−δ1
1

1− δ1
Γ

(
1

1− δ1

)
(S187)

where Γ(·) is the Gamma function defined as

Γ(z) =

∫ ∞
0

xz−1 exp(−x)dx, ∀z > 0. (S188)

We substitute (S181) into (S178) together with the bound in (S187) to get

k∑
`=0

θ` exp

(
−ρU

k∑
i=`+1

αi

)
≤ Cθ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
(S189)

where

Cθ = W̄3 exp(ρUa) exp

(
ρUa

1− δ2

)(¯̀∑
`=0

exp

(
ρUa

1− δ2
`1−δ2 −W1`

1−δ1
)

+ κ−
1

1−δ1
1

1− δ1
Γ

(
1

1− δ1

))
.

(S190)

We next consider the second term on the right hand side of (S172). Note that for some k̄ ∈ (0, k),
we have

k∑
`=0

Cξ
`2δ2−2δ1

exp

(
−ρU

k∑
i=`+1

αi

)
=

k̄∑
`=0

Cξ
`2δ2−2δ1

exp

(
−ρU

k∑
i=`+1

αi

)

+

k∑
`=k̄+1

Cξ
`2δ2−2δ1

exp

(
−ρU

k∑
i=`+1

αi

)
.

(S191)

From Lemma S3, we have

k∑
i=`+1

αi ≥
∫ k

`+1

a

(x+ 1)δ2
dx =

a(k + 1)1−δ2

1− δ2
− a(`+ 2)1−δ2

1− δ2

=
a
(
(k + 1)1−δ2 − (`+ 2)1−δ2

)
1− δ2

.

(S192)

The second term in (S191) is bounded as follows

k∑
`=k̄+1

Cξ
`2δ2−2δ1

exp

(
−ρU

k∑
i=`+1

αi

)
≤

k∑
`=k̄+1

Cξ exp

(
−ρU

a((k+1)1−δ2−(`+2)1−δ2)
1−δ2

)
`2δ2−2δ1

(S193)

=

k∑
`=k̄+1

Cξ exp
(
− ρUa

1−δ2 (k + 1)1−δ2 + ρUa
1−δ2 (`+ 2)1−δ2

)
`2δ2−2δ1

(S194)

= Cξ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

) k∑
`=k̄+1

exp
(
ρUa
1−δ2 (`+ 2)1−δ2

)
`2δ2−2δ1

(S195)

29

≤ Cξ exp

(
− ρUa

1− δ2
(k + 1)1−δ2 +

ρUa

1− δ2
21−δ2

) k∑
`=k̄+1

exp
(
ρUa
1−δ2 `

1−δ2
)

`2δ2−2δ1
. (S196)

Note that from Lemma S3 we have

k∑
`=k̄+1

exp
(
ρUa
1−δ2 `

1−δ2
)

`2δ2−2δ1
≤
∫ k+1

k̄

exp
(
ρUa
1−δ2 `

1−δ2
)

`2δ2−2δ1
d`. (S197)

Now it follows from the proof of Lemma S4 (see (S48)) that for k̄ =

⌈(
2δ2−2δ1
ρUa

) 1
1−δ2

⌉
, we have

∫ k+1

k̄

exp
(
ρUa
1−δ2 t

1−δ2
)

t2δ2−2δ1
dt ≤ 2δ2 − 2δ1

ρUaδ2

exp
(
ρUa
1−δ2 t

1−δ2
)

tδ2−2δ1

∣∣∣∣∣
k+1

k̄

(S198)

=
2δ2 − 2δ1
ρUaδ2

exp
(
ρUa
1−δ2 (k + 1)1−δ2

)
(k + 1)δ2−2δ1

−
exp

(
ρUa
1−δ2 k̄

1−δ2
)

k̄δ2−2δ1

 . (S199)

We further obtain

Cξ exp

(
− ρUa

1− δ2
(k + 1)1−δ2 +

ρUa

1− δ2
21−δ2

) k∑
`=k̄+1

exp
(
ρUa
1−δ2 `

1−δ2
)

`2δ2−2δ1

≤ Cξ exp

(
− ρUa

1− δ2
(k + 1)1−δ2 +

ρUa

1− δ2
21−δ2

)

× 2δ2 − 2δ1
ρUaδ2

exp
(
ρUa
1−δ2 (k + 1)1−δ2

)
(k + 1)δ2−2δ1

−
exp

(
ρUa
1−δ2 k̄

1−δ2
)

k̄δ2−2δ1


(S200)

=
2Cξ (δ2 − δ1)

ρUaδ2

exp
(
ρUa
1−δ2 21−δ2

)
exp

(
ρUa
1−δ2 (k + 1)1−δ2

)
exp

(
ρUa
1−δ2 (k + 1)1−δ2

)
(k + 1)δ2−2δ1

−
exp

(
ρUa
1−δ2 k̄

1−δ2
)

k̄δ2−2δ1


(S201)

=
2Cξ (δ2 − δ1)

ρUaδ2

exp
(
ρUa
1−δ2 21−δ2

)
(k + 1)δ2−2δ1

−
exp

(
ρUa
1−δ2 21−δ2

)
exp

(
ρUa
1−δ2 (k + 1)1−δ2

) exp
(
ρUa
1−δ2 k̄

1−δ2
)

k̄δ2−2δ1

 (S202)

≤ 2Cξ (δ2 − δ1)

ρUaδ2

exp
(
ρUa
1−δ2 21−δ2

)
(k + 1)δ2−2δ1

 . (S203)

Therefore, using (S189), (S191), and (S203), we rewrite (S172) as

F (ptk+1
(w̄)) ≤ F (pt0(w̄)) exp

(
−ρU

k∑
`=0

α`

)
+ Cθ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)

+

k̄∑
`=0

Cξ
`2δ2−2δ1

exp

(
−ρU

k∑
i=`+1

αi

)
+

k∑
`=k̄+1

Cξ
`2δ2−2δ1

exp

(
−ρU

k∑
i=`+1

αi

) (S204)

30

≤ F (pt0(w̄)) exp

(
−ρU

k∑
`=0

α`

)
+ Cθ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)

+

k̄∑
`=0

Cξ
`2δ2−2δ1

exp

(
−ρU

k∑
i=`+1

αi

)
+

2Cξ (δ2 − δ1)

ρUaδ2

exp
(
ρUa
1−δ2 21−δ2

)
(k + 1)δ2−2δ1

 (S205)

= F (pt0(w̄)) exp

(
−ρU

k∑
`=0

α`

)
+ Cθ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)

+

k̄∑
`=0

Cξ exp
(
ρU
∑`
i=0 αi

)
`2δ2−2δ1

exp

(
−ρU

k∑
i=0

αi

)
+

2Cξ (δ2 − δ1)

ρUaδ2

exp
(
ρUa
1−δ2 21−δ2

)
(k + 1)δ2−2δ1


(S206)

=

F (pt0(w̄)) +

k̄∑
`=0

Cξ exp
(
ρU
∑`
i=0 αi

)
`2δ2−2δ1

 exp

(
−ρU

k∑
`=0

α`

)

+ Cθ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
+

2Cξ (δ2 − δ1)

ρUaδ2

exp
(
ρUa
1−δ2 21−δ2

)
(k + 1)δ2−2δ1

 .

(S207)

Note that

k̄∑
`=0

Cξ exp
(
ρU
∑`
i=0 αi

)
`2δ2−2δ1

=

k̄∑
`=0

Cξ exp (ρUa) exp
(
ρU
∑`
i=1 αi

)
`2δ2−2δ1

(S208)

≤
k̄∑
`=0

Cξ exp (ρUa) exp
(
aρU
1−δ2

(
`1−δ2

))
`2δ2−2δ1

, (S209)

where the last inequality follows from

∑̀
i=1

αi ≤
∫ `

0

a

(x+ 1)δ2
dx =

a

1− δ2
(
(`+ 1)1−δ2 − 1

)
(S210)

≤ a

1− δ2
(
`1−δ2 + 11−δ2 − 1

)
=

a

1− δ2
(
`1−δ2

)
. (S211)

Therefore (S207) can be written as

F (ptk+1
(w̄)) ≤

F (pt0(w̄)) +

k̄∑
`=0

Cξ exp (ρUa) exp
(
aρU
1−δ2

(
`1−δ2

))
`2δ2−2δ1

 exp

(
−ρU

k∑
`=0

α`

)

+ Cθ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
+

2Cξ (δ2 − δ1)

ρUaδ2
exp

(
ρUa

1− δ2
21−δ2

)
1

(k + 1)δ2−2δ1
.

(S212)

Define Cρ as

Cρ =
2 (δ2 − δ1)

ρUδ2
exp

(
ρUa

1− δ2
21−δ2

)
. (S213)

31

Now (S212) can be written as

F (ptk+1
(w̄)) ≤

F (pt0(w̄)) +

k̄∑
`=0

Cξ exp (ρUa) exp
(
aρU
1−δ2

(
`1−δ2

))
`2δ2−2δ1

 exp

(
−ρU

k∑
`=0

α`

)

+ Cθ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
+
CξCρ
a

1

(k + 1)δ2−2δ1
.

(S214)

From (S161) we have a =

(
Ca
n3γ

) 1
3

and from (S165) we have Cξ = aC̄ξ, where

C̄ξ =

(
2C

2
3
a L̄4Cw̄

n2γ
+

2C
2
3
a L̄2L2W2

n2γ
+ L2W2 +

2C
1
3
a L̄2dw
nγ

)
. (S215)

Thus it follows from (S214) that

F (ptk+1
(w̄)) ≤

F (pt0(w̄)) +

k̄∑
`=0

Cξ exp (ρUa) exp
(
aρU
1−δ2

(
`1−δ2

))
`2δ2−2δ1

 exp

(
−ρU

k∑
`=0

α`

)

+ Cθ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
+ C̄ξCρ

1

(k + 1)δ2−2δ1
.

(S216)

Considering the termL2W2 in (S215), recallW2 =
2n2a

(
2dw

(1−bλ2(L))
1
2

+naµg

)
(δ2−δ1)

b2λ2(L)2δ1
exp

(
W121−δ1

)
from Theorem 1, which, together with a in (S154), leads to

W2 =
(δ2 − δ1) exp

(
W121−δ1

)
b2λ2(L)2δ1

(
4dw

nγ−2(1− bλ2(L))
1
2

(
ρU (3δ2 − 1)

25L4δ2

) 1
3

+
2µg
n2γ−3

(
ρU (3δ2 − 1)

25L4δ2

) 2
3

)
(S217)

=
(δ2 − δ1) exp

(
W121−δ1

)
nγ−2b2λ2(L)2δ1

(
4dw

(1− bλ2(L))
1
2

(
ρU (3δ2 − 1)

25L4δ2

) 1
3

+
2µg
nγ−1

(
ρU (3δ2 − 1)

25L4δ2

) 2
3

)
(S218)

=
C̄
W2

nγ−2
, (S219)

where

C̄
W2

=
(δ2 − δ1) exp

(
W121−δ1

)
b2λ2(L)2δ1

(
4dw

(1− bλ2(L))
1
2

(
ρU (3δ2 − 1)

25L4δ2

) 1
3

+
2µg
nγ−1

(
ρU (3δ2 − 1)

25L4δ2

) 2
3

)
.

(S220)

Note that when γ > 2, C̄W2 is bounded as n increases. Substituting (S219) into (S215) yields

C̄ξ =

(
2C

2
3
a L̄4Cw̄

n2γ
+

2C
2
3
a L̄2L2C̄W2

n3γ−2
+
L2C̄

W2

nγ−2
+

2C
1
3
a L̄2dw
nγ

)
. (S221)

32

Now substituting (S221) into (S216), we have

F (ptk+1
(w̄)) ≤

F (pt0(w̄)) +

k̄∑
`=0

Cξ exp (ρUa) exp
(
aρU
1−δ2

(
`1−δ2

))
`2δ2−2δ1

 exp

(
−ρU

k∑
`=0

α`

)

+

2C
2
3
a L̄4Cw̄Cρ
n2γ

+
2C

2
3
a L̄2L2C̄

W2
Cρ

n3γ−2
+
L2C̄

W2
Cρ

nγ−2
+

2C
1
3
a L̄2dwCρ
nγ

 1

(k + 1)δ2−2δ1

+ Cθ exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
.

(S222)

Note that the first and the third terms in (S222) are exponentially decaying while the second term is
polynomial in k. However the polynomial term decreases with the number of agents, n. We further
rewrite (S222) as

F (ptk+1
(w̄)) ≤

(
F (pt0(w̄)) + C̄

F1

)
exp

(
−ρU

k∑
`=0

α`

)
+

1

nγ−2

C̄
F2

(k + 1)δ2−2δ1

+ C̄
F3

exp

(
− ρUa

1− δ2
(k + 1)1−δ2

)
(S223)

where

C̄
F1

=

k̆∑
`=0

Cξ exp (ρUa) exp
(
aρU
1−δ2

(
`1−δ2

))
`2δ2−2δ1

, k̆ =

⌈(
2δ2 − 2δ1
ρUa

) 1
1−δ2

⌉
(S224)

C̄
F2

=

2C
2
3
a L̄4Cw̄Cρ
nγ+2

+
2C

2
3
a L̄2L2C̄

W2
Cρ

n2γ
+ L2C̄

W2
Cρ +

2C
1
3
a L̄2dwCρ
n2

 (S225)

C̄
F3

= W3(2a3L̄2L2 + L2a) exp

(
ρUa(2− δ2)

1− δ2

)(˘̀∑
`=0

exp

(
ρUa

1− δ2
`1−δ2 −W1`

1−δ1
)

+ κ−
1

1−δ1
1

1− δ1
Γ

(
1

1− δ1

))
(S226)

κ = −
(

ρUa

1− δ2
˘̀δ1−δ2 −W1

)
, ˘̀=

⌈(
ρUa

(1− δ2)W1

) 1
δ2−δ1

⌉
(S227)

Cξ = a

(
2C

2
3
a L̄4Cw̄

n2γ
+

2C
2
3
a L̄2L2W2

n2γ
+ L2W2 +

2C
1
3
a L̄2dw
nγ

)
(S228)

Cρ =
2 (δ2 − δ1)

ρUδ2
exp

(
ρUa

1− δ2
21−δ2

)
(S229)

Ca =
ρU (3δ2 − 1)

25L4δ2
⇒ a =

(
ρU (3δ2 − 1)

25n3γL4δ2

) 1
3

(S230)

Cw̄ = max

{
E
[
‖w̄(t0)‖22

]
,

2c1 + 4
ρU

(c2 + d1)

1− 24n4L4δ2a3

ρU (3δ2−1)

}
(S231)

C̄
W2

=
(δ2 − δ1) exp

(
W121−δ1

)
b2λ2(L)2δ1

(
4dw

(
ρU (3δ2 − 1)

25L4δ2

) 1
3

+
2µg
nγ−1

(
ρU (3δ2 − 1)

25L4δ2

) 2
3

)
(S232)

33

while W1, W2 and W3 are defined in (S87), (S88) and (S89), respectively, and c1, c2 and d1 are given
in Lemma S6. This concludes the proof of Theorem 2.

�

S4.1 Lemmas used in the proof of Theorem 2

Lemma S5. For ft(w̄), f̃t(w̄) and κ(w̄) defined in (S105), (S106) and (S112), respectively, we
have ∫

κ(w̄) (∇w̄ · [ft(w̄)]) dw̄ = −
∫
∇ log

(
pt(w̄)

p∗(w̄)

)>
ft(w̄) dw̄, (S233)

and ∫
κ(w̄)

(
∇w̄ ·

[
f̃t(w̄)

])
dw̄ = −

∫
∇ log

(
pt(w̄)

p∗(w̄)

)>
f̃t(w̄) dw̄. (S234)

Proof : This lemma is similar to [57, Lemma 10.4.1]. Here we use the identity for x ∈ Rd,
b(x) : Rd 7→ R and a(x) : Rd 7→ Rd:

∇x · [b(x)a(x)] = (∇xb(x))
>

a(x) + b(x) (∇x · [a(x)]) . (S235)

Thus we have

κ(w̄) (∇w̄ · ft(w̄)) = ∇w̄ · [κ(w̄)ft(w̄)]− (∇w̄κ(w̄))
>
ft(w̄). (S236)

Note that∫
∇w̄ · [κ(w̄)ft(w̄)] dw̄ =

∫
. . .

∫ dw∑
i=1

∂

∂w̄i
(κ(w̄)ft(w̄)) dw̄1 . . . dw̄dw (S237)

=

dw∑
i=1

∫
. . .

∫
∂

∂w̄i
(κ(w̄)ft(w̄)) dw̄1 . . . dw̄i−1 dw̄i dw̄i+1 . . . dw̄dw (S238)

=

dw∑
i=1

∫
. . .

∫ (
(κ(w̄)ft(w̄)) |w̄i=+∞

w̄i=−∞
)
dw̄1 . . . dw̄i−1 dw̄i+1 . . . dw̄dw (S239)

= 0. (S240)

The last equality holds when
(
(κ(w̄)ft(w̄)) |w̄i=+∞

w̄i=−∞
)

= 0 for all i = 1, . . . , dw, which is satisfied
under the condition that pt(w̄)→ 0 as w̄i → ±∞. The same technical condition has been assumed
in the literature, see e.g., one of the assumptions in [58, Theorem 3.1] and the “sufficiently fast decay
at infinity” condition in [4, Appendix A.1].

It then follows that ∫
κ(w̄)∇w̄ · [ft(w̄)] dw̄ = −

∫
∇κ(w̄)>ft(w̄) dw̄. (S241)

Similar argument can be used to prove (S234).

Lemma S6. Let w̄∗ denotes samples from the target-distribution p∗, i.e., w̄∗ ∼ p∗ and w̄∗ satisfies

E
[
‖w̄∗‖22

]
≤ c1. (S242)

Let w̄(t) denotes samples from the distribution pt(w̄), i.e., w̄(t) ∼ pt(w̄). Suppose that the
KL-divergence between the initial distribution pt0(w̄) and the target distribution p∗, denoted as
F (pt0(w̄)) is bounded by c2, i.e.,

F (pt0(w̄)) ≤ c2. (S243)

Also, suppose that 2δ2 − 2δ1 > 1 and a in (15) is chosen such that 24n4L4δ2a
3

ρU (3δ2−1) < 1. Then there exists
a Cw̄ > 0 such that ∀k ≥ 0,

E
[
‖w̄(tk)‖22

]
≤ Cw̄, (S244)

34

where

Cw̄ = max

{
Ew̄(t0)∼pt0

[
‖w̄(t0)‖22

]
,

2c1 + 4
ρU

(c2 + d1)

1− 24n4L4δ2a3

ρU (3δ2−1)

}
(S245)

and d1 is a positive constant satisfying

d1 ≥
∞∑
k=0

(2α3
kL̄

2L2 + L2αk)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2α2
kL̄

2dw. (S246)

Proof : We prove the boundedness of Eptk (w̄))

[
‖w̄(tk)‖22

]
by induction. Assume that there exists a

sufficiently large Cw̄ > 0 such that

Eptn (w̄)

[
‖w̄(tn)‖22

]
≤ Cw̄, ∀ n ≤ k. (S247)

We next show that
Eptk+1

(w̄)

[
‖w̄(tk+1)‖22

]
≤ Cw̄. (S248)

Following the proof of [19, Lemma 6], we couple w̄∗ optimally with w̄(t) ∼ pt(w̄), i.e.,
(w̄(t), w̄∗) ∼ γ ∈ Γopt(pt(w̄), p∗). We then obtain

Ew̄(tk+1)∼ptk+1

[
‖w̄(tk+1)‖22

]
= E(w̄(tk+1),w̄∗)∼γ

[
‖w̄∗ + w̄(tk+1)− w̄∗‖22

]
(S249)

≤ 2Ew̄∗∼p∗‖w̄∗‖2 + 2E(w̄(tk+1),w̄∗)∼γ‖w̄(tk+1)− w̄∗‖2 (S250)

≤ 2c1 + 2W2
2 (ptk+1

(w̄), p∗) (S251)

≤ 2c1 +
4

ρU
F (ptk+1

(w̄)), (S252)

whereW2(·, ·) denotes the Wasserstein metric between two distributions and the last inequality holds
due to [5, Theorem 1].

From our analysis in (S153), we have

F (ptk+1
(w̄)) ≤ exp (−ρUαk)F (ptk(w̄)) +

(
2α3

kL̄
4Eptk (w̄)‖w̄(tk)‖22

+ (2α3
kL̄

2L2 + L2αk)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2α2
kL̄

2dw

)
(S253)

≤ exp (−ρUαk)F (ptk(w̄)) + 2α3
kL̄

4Cw̄

+ (2α3
kL̄

2L2 + L2αk)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2α2
kL̄

2dw. (S254)

Let
gk = (2α3

kL̄
2L2 + L2αk)Ep(ω̃(tk))‖ω̃(tk)‖22 + 2α2

kL̄
2dw. (S255)

We rewrite (S254) as

F (ptj+1
(w̄)) ≤ exp (−ρUαj)F (ptj (w̄)) + gj + 2α3

j L̄
4Cw̄, ∀j ≤ k, (S256)

from which we further obtain

F (ptk+1
(w̄)) ≤ exp (−ρUαk)F (ptk(w̄)) + gk + 2α3

kL̄
4Cw̄ (S257)

≤ exp (−ρUαk)
(
exp (−ρUαk−1)F (ptk−1

(w̄)) + gk−1 + 2α3
k−1L̄

4Cw̄

)
+ gk + 2α3

kL̄
4Cw̄ (S258)

≤ exp (−ρU (αk + αk−1))F (ptk−1
(w̄)) + gk−1 + gk + 2(α3

k−1 + α3
k)L̄4Cw̄

(S259)

≤ exp

(
−ρU

k∑
i=0

αi

)
F (pt0) +

k∑
i=0

gi + 2Cw̄n
4L4

k∑
i=0

α3
i (S260)

≤ F (pt0) +

∞∑
i=0

gi + 2Cw̄n
4L4

k∑
i=0

α3
i (S261)

35

≤ c2 +

∞∑
i=0

gi + 2Cw̄n
4L4

k∑
i=0

α3
i . (S262)

Here we used the relation L̄ ≤ nL. Since α3
k = a3

(k+1)3δ2
and 2δ2 > 1, it follows from (S14) that

k∑
i=0

α3
i ≤ a3 +

∫ ∞
0

a3

(t+ 1)3δ2
dt = a3 +

a3

3δ2 − 1
=

3δ2
3δ2 − 1

a3. (S263)

From (S255), we note that gk ∼ O
(

1
k2δ2−2δ1

)
because Ep(ω̃(tk))

[
‖ω̃(tk)‖22

]
∼ O

(
1

kδ2−2δ1

)
from

(S96). Since 2δ2 − 2δ1 > 1, gk is a summable sequence, that is, there exists a d1 > 0 such that
∞∑
i=0

gi ≤ d1. (S264)

We obtain from (S262), (S263) and (S264) that

F (ptk+1
) ≤ c2 + d1 +

6δ2a
3n4L4

3δ2 − 1
Cw̄ (S265)

which together with (S252) leads to

Ew̄(tk+1)∼ptk+1

[
‖w̄(tk+1)‖22

]
≤ 2c1 +

4

ρU
c2 +

24n4L4δ2a
3

ρU (3δ2 − 1)
Cw̄ +

4

ρU
d1. (S266)

Since a is chosen such that
24n4L4δ2a

3

ρU (3δ2 − 1)
< 1, (S267)

it follows that

Ew̄(tk+1)∼ptk+1

[
‖w̄(tk+1)‖22

]
≤ 2c1 +

4

ρU
c2 +

24n4L4δ2a
3

ρU (3δ2 − 1)
Cw̄ +

4

ρU
d1 ≤ Cw̄ (S268)

for any Cw̄ such that

Cw̄ ≥
2c1 + 4

ρU
(c2 + d1)

1− 24n4L4δ2a3

ρU (3δ2−1)

. (S269)

One choice of Cw̄ is

Cw̄ = max

{
Ew̄(t0)∼pt0

[
‖w̄(t0)‖22

]
,

2c1 + 4
ρU

(c2 + d1)

1− 24n4L4δ2a3

ρU (3δ2−1)

}
. (S270)

S5 Proof of Corollary 1
From (S223) we have

F (ptk+1
(w̄)) ≤

(
F (pt0(w̄)) + C̄

F1

)
exp

(
−ρU

k∑
`=0

α`

)

+
1

nγ−2

C̄
F2

(k + 1)δ2−2δ1
+

C̄
F3

exp
(
ρUa
1−δ2 (k + 1)1−δ2

) (S271)

When δ2 ∈ (0.5, 1), from Lemma S3 we have

k∑
`=0

α` ≥
∫ k

0

a

(x+ 1)δ2
dx =

a(k + 1)1−δ2

1− δ2
− a

1− δ2
(S272)

36

Thus

exp

(
−ρU

k∑
`=0

α`

)
≤ exp

(
aρU

1− δ2

)
exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
(S273)

and (S271) can be written as

F (ptk+1
(w̄)) ≤

(
F (pt0(w̄)) + C̄

F1

)
exp

(
aρU

1− δ2

)
exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
+

1

nγ−2

C̄
F2

(k + 1)δ2−2δ1
+ C̄

F3
exp

(
− aρU

1− δ2
(k + 1)1−δ2

) (S274)

Now define constants Q1 and Q2 as

Q1 =
(
F (pt0(w̄)) + C̄

F1

)
exp

(
aρU

1− δ2

)
+ C̄

F3
(S275)

Q2 =
C̄
F2

nγ−2
. (S276)

Thus we have

F (ptk+1
(w̄)) ≤ Q1 exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
+

Q2

(k + 1)δ2−2δ1
(S277)

We would like to find a k such that

F (ptk+1
(w̄)) ≤ ε, (S278)

which is satisfied if

Q1 exp

(
− aρU

1− δ2
(k + 1)1−δ2

)
≤ ε

2
(S279)

and

Q2
1

(k + 1)δ2−2δ1
≤ ε

2
. (S280)

From (S279) we have

k ≥
(

1− δ2
aρU

log

(
2Q1

ε

)) 1
1−δ2

(S281)

and from (S280) we have

k ≥
(

2Q2

ε

) 1
δ2−2δ1

(S282)

Therefore, for all k ≥ k∗, we have

F (ptk(w̄)) ≤ ε, (S283)

where

k∗ = max

{(
1− δ2
aρU

log

(
2Q1

ε

)) 1
1−δ2

,

(
2Q2

ε

) 1
δ2−2δ1

}
(S284)

This concludes the proof of Corollary 1.

�

37

Table S1: Test accuracy (%) for different approaches after 10 epochs
SGD C-ULA Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

MNIST 98.15 98.16 98.52 98.52 98.39 98.45 98.47

SVHN 7.648 8.9313 14.897 13.44 15.346 13.506 15.934

S6 Numerical Experiments
S6.1 Parameter estimation for Gaussian mixture

For the centralized setting, 100 data samples are drawn from the mixture of Gaussians in Section 5.1.
For D-ULA, these 100 samples were randomly divided into 5 data sets of 20 samples, one for each
of the five agents in the network. Both C-ULA and D-ULA are run for 1000000 epochs using their
respective batch gradients. Step-size αk = α0/(b1 + k)δ2 is varied from 0.01 to 0.0001 similar
to [26] with consensus step-size, βk = β0/(b2 + k)δ1 in the interval [0.36, 0.24]. Figure S1 shows
estimated posteriors from C-ULA and the proposed approach. Posteriors estimated by the D-ULA
replicate the true posterior with samples from both the modes.

S6.2 Bayesian logistic regression

Expressions for time-varying step-size αk and βk are same as in Section S6.1 with α0 = 0.004,
b1 = 230, δ2 = 0.55 for C-ULA and α0 = 0.00082, b1 = 230, δ2 = 0.55, β0 = 0.48 b2 = 230,
δ1 = 0.05 for D-ULA. Data is processed in batches of 10 for both approaches with 10 epochs through
the whole data set for 50 runs. Accuracy at each iteration averaged over 50 runs for C-ULA and
the 5 agents in D-ULA is shown in Figure S2. The shaded region of the figure indicates 1 standard
deviation. Zoomed version of the accuracy with centralized ULA shown in Figure S6.2.c indicates
a faster convergence of D-ULA to 84.38 % in 1040 iterations when compared to C-ULA which
converges to the final accuracy of 83.89 %.

S6.3 Decentralized Bayesian learning for handwritten digit recognition

Variations in step-size, αk and βk are similar to Section S6.1 with α0 = 0.00024, b1 = 230,
δ2 = 0.55 for stochastic gradient descent (SGD), α0 = 0.00034, b1 = 230, δ2 = 0.55 for C-ULA,
and α0 = 0.00032, b1 = 230, δ2 = 0.55, β0 = 0.48, b2 = 230, δ1 = 0.05 for D-ULA. Data
sets for training are processed in batches of 1024, 1024, and 256 images for SGD, C-ULA, and
D-ULA, respectively. Tables S1 summarize MNIST and SVHN test accuracy after 10 epochs for
SGD, C-ULA, and D-ULA. Figure S3 shows prediction probability density for MNIST and SVHN
data sets using all the approaches considered. For SGD, prediction probability corresponding to all
the class labels (0-9) are obtained for each test case and the maximum value evaluated across the class
labels corresponds to the predicted probability for each individual test case. Density on the y axis
represents the normalized count of the predicted probabilities so that the cumulative density over the
probability of predicted labels integrates to one. For C-ULA and D-ULA, prediction probability is the
mean of samples over epochs after burn-in period and its maximum value over all the 10 class labels
represents the predicted probability for each test case. We illustrate the performance of SGD and
Bayesian methods, C-ULA and D-ULA for hand-written digit recognition using confusion matrices
based on the true and predicted labels evaluated with MNIST and SVHN test samples. Figure S4
shows heat maps corresponding to the confusion matrices generated with predicted and actual labels
from MNIST test samples for both SGD and C-ULA. Heat maps for D-ULA resembles same C-ULA
and the plots are not included to avoid redundancy. Though, both the approaches indicate a high level
of prediction accuracy across the test samples, confidence scores of the predictions obtained by the
Bayesian approach indicate reliability of predictions. Figure S5 show average prediction probability
scores for each MNIST labels. This is relevant in particular for OOD sample detection as shown in
Figures S6 and S7. Figure S6 show predicted label across SVHN test sets wherein the prediction
accuracy is fairly low as the test samples are out of the distribution. Approaches such as SGD provides
a single prediction score along with predicted labels, where as the Bayesian approaches provide
mean and standard deviation of the predictions as well. Expected values of prediction probabilities
averaged across each labels are shown in Figure S7. Such distributions indicate reliability of the
predicted scores and helps to detect OOD samples.

Next, the predicted labels and corresponding scores are shown for three test samples selected from
MNIST and SVHN data sets. Here, we select one sample each from a high, medium, and low

38

(a) True posterior distribution

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(b) Centralized setting

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(c) Agent 1

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(d) Agent 2

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(e) Agent 3

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(f) Agent 4

θ1

-1 0 1 2

θ
2

-3

-2

-1

0

1

2

3

(g) Agent 5

Figure S1: True and estimated posteriors

39

Iteration

0 1000 2000 3000 4000 5000 6000

A
cc
u
ra
cy

30

40

50

60

70

80

85

90

0 500 1000

50

60

70

80

85

(a) Centralized ULA

Iteration

0 200 400 600 800 1000 1200

A
cc
u
ra
cy

30

40

50

60

70

80

85

90

(b) Agent 1

Iteration

0 200 400 600 800 1000 1200

A
cc
u
ra
cy

30

40

50

60

70

80

85

90

(c) Agent 2

Iteration

0 200 400 600 800 1000 1200

A
cc
u
ra
cy

30

40

50

60

70

80

85

90

(d) Agent 3

Iteration

0 200 400 600 800 1000 1200

A
cc
u
ra
cy

30

40

50

60

70

80

85

90

(e) Agent 4

Iteration

0 200 400 600 800 1000 1200

A
cc
u
ra
cy

30

40

50

60

70

80

85

90

(f) Agent 5

Figure S2: Accuracy on test sets averaged over 50 runs

40

Table S2: Predicted labels and predicted scores for images with different confidence levels
True label Confidence C-ULA Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

M
N

IS
T

4 High

Predicted label 4 4 4 4 4 4

Mean 0.999 0.99970 0.9997 0.9997 0.9997 0.99971

Std. dev. 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002

7 Medium

Predicted label 1 7 7 7 7 7

Mean 0.617 0.8974 0.8912 0.8875 0.8994 0.8843

Std. dev. 0.142 0.0730 0.0622 0.0737 0.0561 0.0682

8 Low

Predicted label 7 7 7 7 7 7

Mean 0.349 0.4612 0.4512 0.4157 0.4574 0.4853

Std. dev. 0.124 0.1852 0.1896 0.1806 0.1835 0.1855

SV
H

N

8 High

Predicted label 8 8 8 8 8 8

Mean 0.993 0.995 0.995 0.995 0.995 0.995

Std. dev. 0.006 0.005 0.005 0.005 0.005 0.005

5 Medium

Predicted label 8 8 8 8 8 8

Mean 0.407 0.6024 0.6144 0.6033 0.6237 0.5892

Std. dev. 0.143 0.1363 0.1451 0.1476 0.1289 0.1411

4 Low

Predicted label 9 9 9 9 9 9

Mean 0.369 0.4007 0.3835 0.3574 0.4034 0.4151

Std. dev. 0.124 0.1824 0.1772 0.164 0.1768 0.1836

confidence cases. Table S2 summarizes predictions, mean, and standard deviation of the predicted
scores for both C-ULA and D-ULA.

41

(a) SGD (b) Centralized ULA

(c) Agent 1 (d) Agent 2

(e) Agent 3 (f) Agent 4

(g) Agent 5

Figure S3: Probability of predicted labels

42

(a) SGD (b) Centralized ULA

Figure S4: Actual and predicted MNIST labels across test data for SGD and C-ULA

Figure S5: Probability heat map across MNIST test labels for C-ULA

43

(a) SGD (b) Centralized ULA

Figure S6: Actual and Predicted SVHN labels across test data for C-ULA

Figure S7: Probability heat map across SVHN test labels for C-ULA

44

