A Analysis of Imitating-policies with BC

Here, we present an error propagation analysis to derive the compounding errors of BC under the
setting of infinite-horizon MDP. Our derivation is based on the framework of error-propagation
(see Figure[3)), which illustrates the cause of compounding errors. Note that the error-propagation
framework focuses on the absolute value of policy value gap |V, — V.|, and the one side bound
Vr — Vi, can be easily derived from it.
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Figure 5: Error propagation of behavioral cloning.

A.1 Error-propagation Analysis

We firstly introduce the following Lemma, which tells that how much state distribution discrepancy
grows based on the policy distribution discrepancy.

Lemma 4. For two policies m and wg, we have that

——Eqa,, [Dov(n(]s), me(-]s))] .

Drv(dz,dr) <
v ( e) T

Proof. The proof is based on the permutation theory presented in [41]. First, we show that

—_(1_ ot _
d. =(1—7) Zt:()'y Pr(s; = s|m,dp)
= (1 =) —yPx) " do,
where Pr(s'|s) = >, 4 M*(s'|s,a)m(als). Then we obtain that
dr —dry = (1 =7)[({ - 'YPTr)_l - (I - 'YPTrE)_l] do
= (1 —=7)(Mz — Mx,) do, (3)
where M, = (I —vP,;)" " and M,, = (I —~vP,,)" " . For the term M, — M, we obtain that
My — My, = My (M " — M') My,

T

“4)
= M (Py — Pr,) M, .

Combining Eq. (3) with Eq. (@), we have

dr — dﬂ'E = (1 - ’Y)VM‘IT (Pﬂ' - Pﬂ'E) Mﬂ'EdO
=My (Pr — Pry) dny-
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Therefore, we obtain that

~
DTV(d‘rr»drrE) = §||MW(P7T - Pﬂ'E)dﬂ'EHl

Y
< §||MWH1||(PW*Pﬂa)dn”l- (5)

We can show that M ; is bounded:

o0 o0 o0 1
IMally =D APl <D AP <D v = ——.
t=0 t=0 t=0 1—y

Consequently, we show that ||(P; — Py, )dx,||; is also bounded,

||(P7T - Pﬂ'E)dﬂ'Eul S Z |P7T(s/‘8) - Pﬂ'E(s/‘S” dﬂ'E(S)

s,s’

= Z ZM*(s’\s, a)(m(als) — m(als))| dry(s)

< Y M5, a)|n(als) — me(als)]dus ()
(s,a),s’

= dn(5) > |r(als) — me(als)]
= 2B, [Drv (me(-|s), 7(:]s))]-

Combining Eq. (5) with the above two inequalities completes the proof. [

Next, we further bound the state-action distribution discrepancy based on the policy discrepancy.
Lemma 5. For any two policies w and g, we have that

Doy (pr, prg) < ﬁﬂ‘:wdm [Dyv (n(:|s), me(-]s))] -

Proof. Note that the relationship p(s,a) = m(a|s)d,(s) for any policy 7, we have
DTV (p7r y Prg )

= % > |[me(als) = w(als)|duy (s) + [dug(s) — dn(s)]| 7 (als)|
(s.a)

5 " [me(als) — m(als)dny (5) + 5 3 m(als)|dry(5) — do()
(s,a) (s,a)

= Esnd,, [Drv (7(-|5), 6 (-[5))] + Drv (dr, dry)

1

ﬁEswd,\.E [Dry (7(-]s), me(-]s))],

IN

IN

where the last inequality follows Lemma 4] O

Finally, we bound the policy value gap (i.e., the difference between value of learned policy 7 and the
expert policy 7g) based on the state-action distribution discrepancy.

Lemma 6. For any two policies m and g, we have that

2RIH X
|V7r - V7TE| < 1 -

DTV (Pm ng) .
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Proof. 1t is a well-known fact that for any policy , its policy value can be reformulated as V'™ =
ﬁE(s,a)Nm [r(s,a)] [38]]. Based on this observation, we derive that

Vi = Vi = ‘ ,}/H:f(s,a)w),r [r(s,a)] — ﬁE(S’a)NP”E [r(s,a)]
1
- 11— Z ‘(p”(s’a) pﬂE<S7a))T(S7CL)’
v (s,a)eSx.A
< 2RmaX

D 7 Prg ).
_177 TV(P pE)

A.2  Proof of Theorem

Proof of Theorem|I} Suppose that the imitated policy m; optimizes the objective of BC up to an ¢
error, i.e., Eguq,, [DkL(m(:|s), me(-]s))] < e. Combining Lemmaand Lemma@, we have that,
for policy 7y and 7,

2Rmax
1—~ DTV(pma pﬂ'E)

< 2RIl’la.X

T (1=9)?

Thanks to Pinsker’s inequality [[15] that for two arbitrary distributions g and v, Dry(p,v) <
2Dxk1,(u, v), we obtain that

VTrE - VTrI S

Esnd [DTV(T"I('|S)77TE('|S)” :

2RIH3X
Ve = Vo < WEswdwE [\/2DKL (771('|5)77TE('|5))
2\/§Rmax
< VB, [Dra (o). 7t 1)
2\/§Rlnax
T N9 671'7
(1—=7)?
where the penultimate inequality follows Jensen’s inequality ¢(E[X]) < E[¢(X)], where ¢(z) =
—/z. O

Based on Theorem [T} we provide a sample complexity analysis of BC using classical learning theory.

Proof of Corollary[l} From Lemmal5and Lemmal6] we obtain that

2Rmax
Vig = Vi < WESN(L\—E [DTV(T‘-I('|S)77TE('|S))} : ©)

Here we consider that 7y and 7g are deterministic policies, thus we obtain that
Esndo [Drv(m(-]s), me(:]5))] = Esnan, [I(m(s) # mE(s))],
(4)

where I is the indicator function. The policy 7 is obtained by solving Eq., thus 7T1(871—E) =
ang),W € {1,---,m}. Since behavioral cloning employs supervised learning to learn a pol-
icy, we follow the standard argument in the classical learning theory [32] in the remaining

proof. We define the expected risk L(7) = Egva, [[(7(s) # m&(s))] and the empirical risk
Lp(r) = Ly, H(W(SQE)) # ang)). For a fixed e > 0, we define the bad policy class
Iz = {m € II : L(w) > €}. Then we bound the probability of policy 7 belongs to the bad
policy class I1g:

Pr(L(m) > €) = Pr(m € IIp).

Because the empirical risk of 7y equals zero, we get that

Pr(m € IIg) < Pr(3Ir € 11, L, (7) = 0).
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Forafixed w € I, Pr(L,,(7) = 0) = (1 — L(m))™ < (1 — €)™ < e~ ™, where the last step follows
1 — a < e “. Then we obtain that

Pr(L(m) > €) < Pr(Im € II, Ly, (1) = 0) < Y Pr(Lyn(m) = 0) < [II[e™™.

wellg

Setting the right-hand side to be equal to &, we get that L(m) < - (log(|II]) + log(5)). Combining
it with Eq. (6) completes the proof. O

A.3 Tightness of Theorem 1

S @

Figure 6: A “hard” deterministic MDP corresponding to Theorem[I] Digits on arrows are correspond-
ing rewards. Initial state is sg while s; and s, are two absorbing states.

Here we validate that the y-dependence in Theorem [Iis tight by the simple example in Figure [
Note that the initial state is so and two absorbing states are s; and so. That is, the agent always
starts with sg and takes an action a; (as); consequently, the system transits into the absorbing state
s1 (s2). Here we consider a sub-optimal expert policy 7g that chooses a; with probability of 0.9 and
chooses ag with probability of 0.1 at sy, meaning that 7g(a1|so) = 0.9, mg(az|se) = 0.1 and we
can show that the policy value of expert policy 7 is V, = %. In addition, we can show that
the state distribution of expert policy 7 is dr, = (dr; (50), dmy (51), dri(52)) = (1 =7, 57, 157)-
Consider a policy obtained by behavioral cloning 7y that chooses a; at sy with probability of 0.85
and a2 with probability of 0.15, meaning that m(aq|sg) = 0.85,m(az|sg) = 0.15. Similarly, we
can show that V;, = ﬁ and the policy value gap V, — V, = 10%77). It is easy to verify that
the error bound Esq, [Dkr (7 (+|s), w(:|s))] on the RHS of Eq. H is about 0.011(1 — ) and
consequently V, — V,, = C - ﬁEsNdWE [Dxr (me(+|s), (:|s))], where C'is a constant. The
equality implies that in the worst case, the quadratic discount complexity is tight in Theorem [T}

B Analysis of Imitating-policies with GAIL

B.1 f-divergence

A large class of divergence measures called f-divergence [30] can be applied to depict the difference
between two probability distributions. Given two probability density function p and v with respect to
a base measure defined on the domain X, f-divergence is defined as

p()
Dsu) = [ nla) s (s,
! 2t )
where f(-) is a convex function that satisfies f(1) = 0. Different choices of f decides specific
measures. When f(u) = —(u + 1) log(2£*) + ulog(u), f-divergence recovers the JS divergence

used in GAIL. Table[I]lists many of the common f-divergences and the f functions to which they
correspond (see also [35])). In the following, we provide a proof of Lemmal[I] The proof is based on
the concentration between different f-divergences.

B.2 Proof of Lemmalll

Proof of Lemmall] Here we prove that GAIL with f-divergence listed in Table [I] enjoys a linear
policy value gap. Derived from Lemma[6] we obtain that

2 Rinax
V‘ITE - Vﬂ' S 1_ : DTV(mewE)~ (7)
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Table 1: List of f-divergences

Name Dy(p,v) fu)

Kullback-Leibler [ s( log 2)) e ulog(u)

Reverse KL Jv( é g)dm —log(u)

Pearsion y? f (“(r) V(z)) dx (u—1)2

Jensen-Shannon i f,u( log %) +v(x) log(%)d —(u+ 1)log(“$) + ulog(u)
Squared Hellinger [ (\/u(z) — \/v(z))?dz (Vu—1)2

JS divergence:
In the following, we connect the total variation with the JS divergence based on Pinsker’s inequality,

]. T + ] ) + )
Dys (pms pme) = 5 <DKL (s %) + DxL (e PIQPE))

Pm + P Pm + Pre ) (8)

2 )+D”2[‘V(pﬂ'|<:7 2

Z Dng (pmv

1
= §D%V(pm’ p‘ﬂ'E)'
Combining Eq. (7) with Eq. (§)., we get that

2\/§Rmax
Vﬂ'E - Vm < ﬁ DJS(pﬂ’HpﬂE)'

KL divergence & Reverse KL divergence:
Again, thanks to Pinsker’s inequality, we obtain that the policy value gap is bounded by KL divergence
and Reverse KL divergence.

\/§Rm X
Vﬂ'E VTFI S 1 = DKL(pmv sz)'
-7
\@Rm X
V‘ITE _Vﬂ'l S 1_,; DKL(pmypm)'

For x? divergence and Squared Hellinger divergence, we can build similar upper bounds of policy
value gap.

Rmax

Vms Vm = f X2(p7717p7TE)
2R

VTFE - VTFI S ?mi‘;( DH(pmvarE)'

In conclusion, for policy 7y imitated by GAIL with f-divergence listed in Table |1} we have that
Vig =V, <O ( D¢ (pm, p,rE)), which finishes the proof. O

B.3 Proof of Lemmalf2]

Proof of Lemma[2] When the policy 7 optimizes the empirical GAIL 10ss dp (fr;, fx) UP tO an eqp
error, we have that

dD(pA‘n'Ea ﬁwl) S ﬂl—IElng (ﬁﬂEv /371') + €opt (9)

where pr, denotes the expert demonstrations with m state-action pairs {(s,fE , am; )}"’ , and py, is

the empirical version of population distribution p,, with m samples {(sgfI ,a&?) " , collected by 7.

By standard derivation, we get that

dp(prgs Pry) < dp(Prgs Pry) — A (P, Pry) + ﬂi_relfndD(ﬁ’ﬂ'Eﬂ pr) + €opt- (10)
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According to the definition of neural network distance dp(u,v), we prove that dp(prg, ) —
dp (P, Pry ) has an upper bound.

dD (pﬂ'h‘7 pm) - dD (pAm;': [)71'1)

SUD [E(s.0)pn, [D(5:0)] = B aympy, [D(5,)]| = 510 [Es.01p,, [D(5,0)] = Egs gy, [Dls, 0)]
DeD DeD

< Blé]% { [}E(s,a)fvp,rh. [D(Sa (Z)] - ]E(s,a)fvp,rl [D(Sv (1)” - [E(s,a)wﬁﬂ-ﬁ [D(87 (1)] - ]E(s,a)wﬁﬂl [D(87 (1)” }

< sup [E(s,a%pm [D(s,a)] = E(s.a)~pr, [D(s,a)]} + sup |:]E(s,a)~/5m [D(s,a)] = E¢s.a)~pn, [D(s,a)ﬂ
DeD DeD

<

SUD [E e 01y [D(5, )] = By, [D(5,0)]| + 50D [E(o a1, [D(5,0)] = Egsa)p,, [D(s5, )]
DeD DeD

We first show that sup pp |E(s,a)~p7r5 [D(s, a)] = E(s,a)~pn, [D(5,0)] | can be bounded. Note that the
assumption that the discriminator set D consists of bounded functions with A, i.e. sup || D(s,a)|loc <
DeD

A,V(s,a) € S x A. According to McDiarmid ’s inequality [32]], with probability at least 1 — %, the
following inequality holds.

SUD |E o 01,y [D(5:0)] = Es.0)p, [D(5, 0)]|
DeD

1D
log(4/6)
<E|su ‘]ESGN D(s,a)] —E(s ay~s [D(s,a H—&-QA —_—
|:DEp'D ( s ) p‘rrE[ ( )] ( s ) pﬂE[ ( )] 2m
where the outer expectation is taken over the random choice of expert demonstrations p,, with m
state-action pairs. According to the Rademacher complexity theory [32], for the first term of Eq. (TT)
we have that

B |51 [y, [D05:0)] - By, 1G5 0)]

DeD
m 1 (12)
<R , L D5 o
< 2Eq Blé%;ma (s,a')
= 2R (D).

Based on the connection between Rademacher complexity and empirical Rademacher complexity,
we have that with probability at least 1 — g, the following inequality holds.

N log(4/0
R{™(D) < R{™ (D) + 24 %, (13)

where 7@5:;) (D) =E, [supDGD S %UZ-D(SSQ, aS:E))] . Combining Eq. with Eq. l) with
probability at least 1 — %, we have

N log(4/6
D [E 1, [D(5,0)] ~ By [D(s,0)]] < 2RGV (D) + 681/ BL 14

DeD

By a similar derivation, we obtain that with probability at least 1 — %, the following inequality holds.

. log(4/6
Sup [E 0y [D(5,0)] ~ By aypy [D(s, ]| < 2059(D) + 621/ B g5
DeD m

where 7@;? (D) =E» [supDeD S %UiD(sgfl), aSJ))]. Combining Eq. with Eq. 1! and
Eq. (13), we complete the proof. O

B.4 Proof of Theorem 2]

Proof of Theorem[2] We use the re-formulation of policy value V; =
derive that

25 E(s a)~p, [1(5,0)] and

V7TE - Vﬂ'l S m E(S’G)pr] [T(S’ a)} - E(Saa)NPWE [T(S7 a’)] .



As we assume that the reward function r lies in the linear span of D, there exists n € N, {¢; € R},
and {D; € D}, such thatr = ¢+ >, ¢; D;. Noticed by ¢o will be eliminated by the difference
of policy value, we obtain that

Vie = Vi <

Z Cz (s a)~p7r ( )]
1
< ﬁ Z’C’L‘ ‘E(s,a)wp,rI [D'L(& (L)] - IE:(s,a)wp,rE [Dz (87 a)] ’
=1

1 n
m (Z |Ci>d9(pma Pre)
=1

1
_ ,y||r||DdD<pW1?pﬂE))

IN

IA

1

where ||r||p = inf{>""_ |¢;| : ¥ = >0 | &;D; + ¢o,Vn € N, o, ¢; € R, D; € D}. Combining the
above inequality with Lemma [ completes the proof. O

C Analysis of Imitating-environments

We first introduce the error bound of policy evaluation without policy divergences, which will be
used to prove Lemma 3] later.

Lemma 7. Given an MDP with true transition model M*, suppose the model error is €,
e [DKL (M*( [s,a), Mg (+|s, a))] < €, (see Eq. (3)), then for the data-collecting

e, B qympn
policy mp we have
Proof. The proof is similar to what we have done in Appendix [A] First, we show that
Ay = (1—7) i’f Pr(s; = s;mp, My, do) = (1 — ) (I — vPs) " 'dy. A7)

=0

where Py(s'|s) = >, Mo(s'|s,a)mp(als). Following the similar algebraic transformation in

Lemmad] we obtain that . . o

dyf —di, =G(Py— P*)d;, ,

where Gy = (I — vPy)~! and G* = (I — yP*)~!. Based on the Cauchy—Schwarz inequality, we
have that

Dry(dyp,dyy)) = *IlGe(P P)d™ ||, < *HGelllll(Pe = P)dy |

™D 'TD

We first show that |Gy ||; is bounded as

oo oo oo
1Gollr = \IthPéHl < thHPelli <Y A=
= = =0

‘We then show that || (Py — P*) dM ||1 is bounded,

o= Prya2iy ]| < ST 1P 15) = (s 13)1a2 (o)

< Y [Mp(s']s,a) — M*(5'[s,a)|mp(als)diL (s)

s’,s,a

= QE(S@)NP%D* [DTV(MG('|3a CL), M*<|87 a))]
Thanks to Pinsker’s inequality and Jensen’s inequality, we can get that

V2y
My M*
Dry(dMe dM") < = _Wﬁem. (18)
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From Lemmal6} we obtain that

* Rmax
VMo _yM < >
~
(s,a)
Rmax
— d
meax
=2 Ve

which concludes the proof. O

Pl (5, ) = phL (s,0)

My
T™D S

IN

C.1 Proof of Lemma[3

Proof of Lemma[3] Derived by the triangle inequality, the evaluation error can be decomposed into
three parts.

M* M, M* M* M* M, M, M,
|V7r _VTK‘ elg ‘Vﬂ' _Vﬂ'D |+|V7rD _V7TD9|+‘V7TD9_V7T el'
For the second term on the RHS, according to Lemmam we have

V2R maxy )
(=2 v

For the first term, applying Lemma[5|and Lemmal[f] we get that

2Rmax M* *
1 _ DT ( Pr 7p7]:£)

%EM Drv(aC19), 7 (15)]

meaX
STopVer

VA — VM) <

IN

VM —yMT

™

IN

Similar results hold for the third term, meaning that [V — v Me| < %1 /é-. Combining the
above three bounds completes the proof. O

C.2 Proof of Theorem

Proof of Theorem[3} Due to Lemma[f] we obtain that
2Rmax

|V7TM - Vﬂ']\/[* < 1 _,YDTV(p‘]r\r/[7p7]-\r/[*)
2Rmax M M M M* M* M*
< ﬁ(DTv(mr ) + Drv(pzy,. pry, ) + Drv(pny, ).

The last inequality follows the triangle inequality. For the term Dy ( p%j ; p%; ), we obtain that

DTV(pﬂ*DvpﬁID*) = Z ‘ Z S a, S l‘LM* (svaa 81))‘

I /\

5 Z ’MJM(SaaaSI) - MJW* (S,a,S/)’

= Dry (™, ™).

From Eq.(8), we derive that

Drv(phL, pht) \/ 2Dys(prL, pi7) < \/ 2Dys (™M, 7).
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Derived by Lemma for the first term Dy (p2, piL ), we get that
, 1
Drv(pY, pit) < mEsdeM [Drv (7(:|s), mp(-]s))]
vz
2(1 =)

V2
AR

The last two inequalities follow Pinsker’s inequality and the definition of e, respectively. Similarly,
for the second term Drv (p2L", pM"), we have that

IN

oy |y/Dra (719, 7(15)

Drv(py, o) < m\/;

Combining the above three upper bounds completes the proof. O

C.3 Environment-learning with GAIL

Algorithm 1 Environment-learning with GAIL

1: Input: data-collecting policy 7p, total iterations [V, model update iteration N, discriminator
update iteration Np.

2: Initialize discriminator D, model Mjy, and empty dataset B* as well as 5.

3: B* + Collect samples using 7w in model M*.

4: for N iterations do

5: for N iterations do

6: B < Collect samples using 7p in model Mjy.

7: Assign rewards to state-action-next-state pairs in 3 by discriminator D.
8: Update model My by maximizing rewards with samples from 5.

9: end for
10: for Np iterations do
11: Update discriminator D by maximizing the following function:

> log(D(s,a,s)]+ > [log(l—D(s,a,s"))].
(s,a,s’")eB (s,a,s")eB*

12: end for
13: end for

14: Output: environment model My.

The process of applying GAIL to learn the environment transition model is summarized in Algorithm

[

D Wasserstein GAIL

Similar to Wasserstein GAN (WGAN) [4], we can also introduce Wasserstein distance into GAIL.
We call such an algorithm as Wasserstein GAIL (WGAIL for short). Specifically, the discriminator is
selected from all 1-Lipschitz function classes by considering the following optimization problem.

max

D = E(s,a)~p. [D(8,
o (5:0)] ~ Eguayep [D(s, )]

E(s,a)mpmg |

Due to computation intractability, we cannot compute all 1-Lipschitz functions in practice, and thus
we are shifted to its neural network approximation, where D is parameterized by certain neural
networks. As our result suggests, this method can still generalize well when its model complexity
is controlled. However, ordinary neural networks are often not Lipschitz continuous. To maintain
a good approximation to 1-Lipschitz continuous function classes, the gradient penalty technique is
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Algorithm 2 Wasserstein GAIL

1: Input: Expert demonstrations 3*, total iterations IV, policy update iterations N¢, discriminator
update iterations Np.

2: Initialize discriminator D, policy 7, and an empty dataset 5.

3: for N iterations do

4: for N iterations do

5: B < Collect samples using policy .

6.

7

8

Assign scaled rewards to state-action pairs in B by discriminator D.
Update policy 7 by maximizing rewards with samples from 5.

: end for
9: for Np iterations do
10: Update discriminator D by maximizing Eq. with samples from B* and B.
11: end for
12: end for

13: Output: policy 7.

Table 2: Information about tasks in imitating policies.

Tasks State Dimension  Action Dimension Episode Length
HalfCheetah-v2 17 6 1000
Hopper-v2 11 3 1000
Walker2d-v2 17 6 1000

introduced in WGAN [21]. This technique adds a regularization term that employs a quadratic cost to
the gradient norm. Hence, denoting (s, a) as z, the loss function for the discriminator in WGAIL is:

L(D) = E.rp, [D(2)] = Eonp, [D(2)] + AE.5[(I[V-D(2)]| — 1)), (19)

where p is a mixing distribution of p. and p,,, and )\ is a positive regularization coefficient (A = 10
performs well in practice). Following [24], we also scale reward function (discriminator’s output)
properly to stabilize training. This is important because the optimization in WGAIL is different from
the one in WGAN. Concretely, reinforcement learning algorithms often use the evaluation value
rather than the gradient information to perform gradient descent. Without scaling, rewards given by
the discriminator often fluctuate, which may lead to an unstable optimization. To tackle this issue,
at each iteration, we firstly centralize the given rewards by subtracting the mean and subsequently
scale them by dividing the range (the difference between the maximal value the minimal value). The
algorithm procedure is outlined in Algorithm 2]

E Experiment Details

E.1 Imitating Policies

We evaluate the considered algorithms on OpenAl Gym [[10] benchmark tasks. Information about
state dimension, action dimension, and episode length information is listed in Table ‘We run the
state-of-the-art algorithm SAC [22]] for 1 million samples to obtain expert policies. All imitation
learning approaches use 2-layer MLP policy network with 100 hidden sizes and tanh activation
function. Except for DAgger that continues to collect new samples and query expert policies (i.e.,
DAgger collects 1000 samples and gets action labels from expert policies per 5000 iterations), all
methods are provided the same 3 expert trajectories with length 1000. Key parameters of BC and
DAgger are give in Table [3] and Table [] respectively. Other methods including GAIL, FEM [1]]
and GTAL [49] use TRPO [41]] to optimize policies, and key parameters are given in Table@ All
experiments run with 3 random seeds (namely, 100, 200 and 300). During the training process, we
periodically evaluate the learned policies on true environments with 10 trajectories. Learning curves
are given in Figure[/| The final performance of imitated policies and expert policies are listed in
Table[6] Please refer to our source code in supplementary materials for other details.

23



Table 3: Key parameters of Behavioral Cloning.

Parameter Value
learning rate 3e-4
batch size 128

total number of iters 100k

Table 4: Key parameters of DAgger.

Parameter Value
learning rate 3e-4
batch size 128
number of total training iterations 100k
collecting frequency Sk

number of new demonstrations per iteration 1k

Table 5: Key parameters of GAIL, AIRL, FEM and GTAL.

Parameter Value
number of generator iterations 5
number of discriminator iterations 1
number of rollout samples per iteration 1k
total number of collecting samples 3M
maximal KL divergence 0.01

Table 6: Discounted returns of learned policies. We use =+ to denote the standard deviation

Tasks Expert BC DAgger FEM GTAL GAIL WGAIL AIRL
HalfCheetah-v2  10.59 & 0.00 4.02 +0.97 8.06 £ 0.33 —11.40 £ 1.67 —14.39 + 4.37 1.86 4 0.08 —2.134+2.78 157+ 1.78

v=09 Hopper-v2 10.85 + 0.00 10.69 +0.10 10.86 +0.02 12.75 £ 0.81 13.93 +£0.74 10.31 £0.19 11.30 + 1.06 13.50 + 0.56
Walker2d-v2 5.31 £ 0.00 5.60 £ 0.20 5.30+0.11 9.86 £ 0.87 11.31 £ 0.49 5.24+0.41 9.64 £+ 1.30 5.96 £ 0.56
HalfCheetah-v2  511.994+0.00  137.30+70.70  465.37 + 4.56 —148.64 & 10.50 —193.40 =+ 88.66 251.49 + 22.00 315.21 £57.95 305.69 + 94.93

v =099  Hopper-v2 275.81+0.00  155.19+16.27  276.10 £0.15 238.63 +7.24 227.96 + 18.18 263.17 £ 3.47 178.17 £ 106.70 259.35 + 5.48
‘Walker2d-v2 346.63+£0.00  244.67 £30.28  345.87 £ 1.79 129.21 +16.38 176.27 £ 22.33 338.60 +£9.28 249.95 + 27.41 314.11 + 34.82
HalfCheetah-v2  4097.30 £ 0.00  536.68 + 384.66 3730.81 £31.57 —1150.45 4 235.64 —1509.39 +877.41 3338.52+191.06 2670.44 +437.00  3303.42 = 262.79

~v=0.999 Hopper-v2 222349 £0.00 408.25 +222.42 1903.02 4+ 83.18  1878.19 + 122.06 1731.93 +233.34 2177.76 £43.64  1184.20 £805.75  2187.72 £ 17.90
Walker2d-v2 3151.77 £0.00  995.05 + 330.00 2963.82 £ 26.59  1039.71 4 231.21 1765.62 + 212.79 2912.35 +335.22  1565.15 £ 1006.01  1877.53 £ 651.77

E.2 Imitating Environments

To evaluate algorithms for imitating environments, we add necessary information (e.g., robot position
information) to the original state space defined by OpenAl Gym [10]. This is important since we
need the learned environment model to predict the position information, upon which we can compute
rewards for policy evaluation in the learned environments. Followed prior works [31} 25, the true
reward function is assumed to be known in advance. We also normalize the robot position information
by dividing 10 (but the reward function is not normalized). We use SAC [22] to re-train a sub-optimal
policy as what we have done when imitating policies. We collect samples using this sub-optimality
on true environments. Algorithmic configuration for BC and GAIL is the same as the one of imitating
policies. Different from imitating-policies, the model output space (action space) is not bounded
between —1 and +1. To overcome this difficulty, we normalize the model’s outputs with statistics
obtained from given demonstrations. During the training process, we also periodically evaluate the
policy value of data-collecting policies on the learned environment models.
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Figure 7: Learning curves of imitation approaches (v = 0.999) including DAgger, GAIL, AIRL,
WGAIL, FEM, GTAL, and BC. The solid lines are mean of results and the shaded region corresponds
to the stand deviation over 3 random seeds, while the dashed lines indicate the performance of expert

policies.
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