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1 Proofs

1.1 Proof of Theorem 1
By definition, the subdifferential 9J(3; \) is the set of all g € RP such that

T N) = T30 + 9" (= B8) =D _1Bl;pAi +9" (- B), (1)

j=1

for all y € RP.
Assume that we have K clusters Aj, Asg, ..., Ak (as defined per Equation 2
(main article)) and that 8 = |§];, which means we can rewrite (1) as

0> J(B;A) = J(y; A) + 9" (y — B)
= Z (NilBlay — 9iBi — Ailyl @y + giye) + ...
1€A;
+ Z (NilBlay — 9iBs — Ailylay + 9iyi)-
i€EAK
Notice that we must have 7, 4 (XilBlt) — 9i8i — Ailyl) + giyi) < 0 for all
j€{1,2,..., K} since otherwise the inequality breaks by selecting y; = 3; for

i € Aj. This means that it is sufficient to restrict attention to a single set as
well as take this to be the set A; = {1,...,p}.

Case 1 (8 = 0). In this case (1) reduces to J(y;\) > g7y. Now take a c € Z
where
Z = {s€R" | cumsum(|s|; — A) < 0} (2)

and assume that |c1| > - -+ > |¢p| without loss of generality.


mailto:johan.larsson@stat.lu.se

1.1 Proof of Theorem 1 1 PROOFS

Clearly, J(y; \) > cT'y holds if and only if J(y*; \) — ¢Ty* > 0 where
y* = argmin {J(y; \) — cTy} .
y

Now, since J(y; A) is invariant to changes in signs and permutation of y, it follows
from the rearrangement inequality [HLP52, Theorem 368] that |y|7 > --- > [y}
This permits us to formulate the following equivalent problem:

minimize  y? (sign(y) © A — ¢)
subject to  sign(y) = sign(c),
lyrl > - > ypl.

To minimize the objective yT (sign(y) ® A — |¢|) = |y|T (A — |c|), recognize first
that we must have yj = y3 since ¢ € Z, which implies A\; — |¢1] > 0. Likewise,
Y5 (A1 — |ea]) +yd (A2 — |e2]) > 0 since Ay + Aa — (Jei| + |e2]) > 0, which leads us
to conclude that y5 = y5. Then, proceeding inductively, it is easy to see that
Yy 1(Ai = |ei]) > 0, which implies yj = --- =y, = 0. At this point, we have
bhOWIl that c€Z = ce€dJ(B;N).

For the next part note that g € Z is equivalent to requiring |g|(;) < A1 and

9l <D N =D gl i=1....p. (3)
j=1 =2

Now assume that there is a ¢ such that ¢ € 9J(5;\) and ¢ ¢ Z. Then there
exists an € > 0 and ¢ € {1,2,...,p} such that

oy <D N =D ldgy+e  i=1....p.
Jj=1 j=2

Yet if ¢ = [A1, ..., Ai—1, A + 6, Aiga, - .,)\p]T then (1) breaks for y = 1, which
implies that c ¢ Z2 = ¢ ¢ 0J(B; \).

Case 2 (B #0). Now let |5;] = a for all i =1,...,p, since by construction all 3
are equal in absolute value. Now (1) reduces to

Jy; A) > J(B;N) —g"B+g"y

p p
ZAla Zg 51gnﬂza+g Y
i=1 i=1 (4)

P
= Z — gisign(3)) + g%y

<

The first term on the right-hand side of the last equality must be zero since
otherwise the inequality breaks for y = 0. In addition, it must also hold that
sign(B;) = sign(g;) for all 7 such that |5;] > 0. To show this, suppose the opposite
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is true, that is, there exists at least one j such that sign(g;) # sign(5;). But then
if we take y; = acsign(g;) and y; = —asign(g;), (4) is violated, which proves the
statement by contradiction.

Taken together, this means that we have g € H where

p
H=SseR|Y (|s;| —Aj) =0.
j=1

We are now left with J(y; A\) > g7y, but this is exactly the setting from case one.
Direct application of the reasoning from that part shows that we must have g € Z.
Connecting the dots, we finally conclude that c € ZNH = c € dJ(B; \).

1.2 Proof of Proposition 1

Suppose that we have B # & after running Algorithm 1 (main article). In this
case we have

cumsum(cg — Ap) = cumsum ((|Vf(3(/\(m+1)))|i)5

— Agm“)) <0,

which implies via Theorem 1 (main article) and Equation 3 (main article) that
all predictors in B must be inactive and that S contains the true support set.

1.3 Proof of Proposition 2

We need to show that the strong rule approximation does not violate the
inequality on the fourth line in Algorithm 1 (main article). Since cumsum(y) =
cumsum(z) for all z,y € R? if and only iff y = z, it suffices to show that

‘C]()\(m))‘ T )\Sm) _ A§m+1) > |Cj(A(m+l))|

for all j =1,2,...,p, which in turn means that Algorithm 1 (main article) with
e (A + )\g»m) - )\;mﬂ) as input cannot result in any violations.
From our assumptions we have

6 () = (0] < A X,

Using this fact, observe that

|Cj()\(’rn+1))| < |Cj(/\(m+1)) _ cj()\(’rn))| + |Cj()\(m))‘
< )\§m) _ )\§_m+1) + |Cj()\(m))|.

1.4 Proof of Proposition 3

PN

Let ¢ = (Vf(B(N\))) and Ay = A2 and assume without loss of generality that
p =2 and ¢; > cg > 0. Recall that the strong rule for lasso discards the jth
predictor whenever ¢; < A1. There are three cases to consider.
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Case 3 (ca < ¢1 < A1). cumsum(c — A) < 0, which means both predictors are
discarded.

Case 4 (¢1 > A1 > ¢2). The first predictor is retained since cumsum(c — \); > 0;
the second is discarded because ¢y < A.

Case 5 (¢ > ¢ > A1). Both predictors are retained since cumsum(c — A) = 0.

The two results are equivalent for the lasso and thus the strong rule for
SLOPE is a generalization of the strong rule for the lasso.

2 Algorithms

Algorithm 1 Strong set algorithm

Vo

E — Sy U T(AM)

do
compute Bg(AMFD)
V < KKT violations in full set
E—EUY

while V # &

return Sg (A1)

Algorithm 2 Previous set algorithm

Vo
E «— T(A™)
do
compute Bg(AMFD)
V < KKT violations in S(A(m+1)
if V = @ then
VY + KKT violations in full set
end if
E+EUY
while V # @
return g (A1)
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