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1 Proofs
1.1 Proof of Theorem 1
By definition, the subdifferential ∂J(β;λ) is the set of all g ∈ Rp such that

J(y;λ) ≥ J(β;λ) + gT (y − β) =
p∑

j=1
|β|(j)λj + gT (y − β), (1)

for all y ∈ Rp.
Assume that we have K clusters A1,A2, . . . ,AK (as defined per Equation 2

(main article)) and that β = |β|↓, which means we can rewrite (1) as

0 ≥ J(β;λ)− J(y;λ) + gT (y − β)

=
∑

i∈A1

(λi|β|(i) − giβi − λi|y|(i) + giyi) + . . .

+
∑

i∈AK

(λi|β|(i) − giβi − λi|y|(i) + giyi).

Notice that we must have
∑

i∈Aj
(λi|β|(i) − giβi − λi|y|(i) + giyi) ≤ 0 for all

j ∈ {1, 2, . . . ,K} since otherwise the inequality breaks by selecting yi = βi for
i ∈ Ac

j . This means that it is sufficient to restrict attention to a single set as
well as take this to be the set Ai = {1, . . . , p}.
Case 1 (β = 0). In this case (1) reduces to J(y;λ) ≥ gT y. Now take a c ∈ Z
where

Z =
{
s ∈ Rp

∣∣ cumsum(|s|↓ − λ) � 0
}

(2)

and assume that |c1| ≥ · · · ≥ |cp| without loss of generality.
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Clearly, J(y;λ) ≥ cT y holds if and only if J(y∗;λ)− cT y∗ ≥ 0 where

y∗ = arg min
y

{
J(y;λ)− cT y

}
.

Now, since J(y;λ) is invariant to changes in signs and permutation of y, it follows
from the rearrangement inequality [HLP52, Theorem 368] that |y|∗1 ≥ · · · ≥ |y|∗p.
This permits us to formulate the following equivalent problem:

minimize yT (sign(y)� λ− c)
subject to sign(y) = sign(c),

|y1| ≥ · · · ≥ |yp|.

To minimize the objective yT (sign(y)�λ− |c|) = |y|T (λ− |c|), recognize first
that we must have y∗1 = y∗2 since c ∈ Z, which implies λ1 − |c1| ≥ 0. Likewise,
y∗2(λ1 − |c1|) + y∗2(λ2 − |c2|) ≥ 0 since λ1 + λ2 − (|c1|+ |c2|) ≥ 0, which leads us
to conclude that y∗2 = y∗3 . Then, proceeding inductively, it is easy to see that
y∗p
∑p

i=1(λi − |ci|) ≥ 0, which implies y∗1 = · · · = y∗p = 0. At this point, we have
shown that c ∈ Z =⇒ c ∈ ∂J(β;λ).

For the next part note that g ∈ Z is equivalent to requiring |g|(1) ≤ λ1 and

|g|(i) ≤
i∑

j=1
λj −

i∑
j=2
|g|(j), i = 1, . . . , p. (3)

Now assume that there is a c such that c ∈ ∂J(β;λ) and c /∈ Z. Then there
exists an ε > 0 and i ∈ {1, 2, . . . , p} such that

|c|(i) ≤
i∑

j=1
λj −

i∑
j=2
|c|(j) + ε, i = 1, . . . , p.

Yet if c = [λ1, . . . , λi−1, λi + ε, λi+1, . . . , λp]T then (1) breaks for y = 1, which
implies that c /∈ Z =⇒ c /∈ ∂J(β;λ).
Case 2 (β 6= 0). Now let |βi| := α for all i = 1, . . . , p, since by construction all β
are equal in absolute value. Now (1) reduces to

J(y;λ) ≥ J(β;λ)− gTβ + gT y

=
p∑

i=1
λiα−

p∑
i=1

gi sign(βi)α+ gT y

= α

p∑
i=1

(λi − gi sign(βi)) + gT y.

(4)

The first term on the right-hand side of the last equality must be zero since
otherwise the inequality breaks for y = 0. In addition, it must also hold that
sign(βi) = sign(gi) for all i such that |βi| > 0. To show this, suppose the opposite
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is true, that is, there exists at least one j such that sign(gj) 6= sign(βj). But then
if we take yj = α sign(gj) and yi = −α sign(gi), (4) is violated, which proves the
statement by contradiction.

Taken together, this means that we have g ∈ H where

H =

s ∈ Rp |
p∑

j=1
(|sj | − λj) = 0.


We are now left with J(y;λ) ≥ gT y, but this is exactly the setting from case one.
Direct application of the reasoning from that part shows that we must have g ∈ Z.
Connecting the dots, we finally conclude that c ∈ Z ∩H =⇒ c ∈ ∂J(β;λ).

1.2 Proof of Proposition 1
Suppose that we have B 6= ∅ after running Algorithm 1 (main article). In this
case we have

cumsum(cB − λB) = cumsum
((∣∣∇f(β̂(λ(m+1)))

∣∣
↓

)
B
− λ(m+1)
B

)
≺ 0,

which implies via Theorem 1 (main article) and Equation 3 (main article) that
all predictors in B must be inactive and that S contains the true support set.

1.3 Proof of Proposition 2
We need to show that the strong rule approximation does not violate the
inequality on the fourth line in Algorithm 1 (main article). Since cumsum(y) �
cumsum(x) for all x, y ∈ Rp if and only iff y � x, it suffices to show that

|cj(λ(m))|+ λ
(m)
j − λ(m+1)

j ≥ |cj(λ(m+1))|

for all j = 1, 2, . . . , p, which in turn means that Algorithm 1 (main article) with
|cj(λ(m))|+ λ

(m)
j − λ(m+1)

j as input cannot result in any violations.
From our assumptions we have

|cj(λ(m+1))− cj(λ(m))| ≤ |λ(m+1)
j − λ(m)

j |.

Using this fact, observe that

|cj(λ(m+1))| ≤ |cj(λ(m+1))− cj(λ(m))|+ |cj(λ(m))|

≤ λ(m)
j − λ(m+1)

j + |cj(λ(m))|.

1.4 Proof of Proposition 3
Let c = (∇f(β̂(λ))) and λ1 = λ2 and assume without loss of generality that
p = 2 and c1 ≥ c2 ≥ 0. Recall that the strong rule for lasso discards the jth
predictor whenever cj < λ1. There are three cases to consider.
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Case 3 (c2 ≤ c1 < λ1). cumsum(c − λ) ≺ 0, which means both predictors are
discarded.
Case 4 (c1 ≥ λ1 > c2). The first predictor is retained since cumsum(c− λ)1 > 0;
the second is discarded because c2 ≤ λ.
Case 5 (c1 ≥ c2 ≥ λ1). Both predictors are retained since cumsum(c− λ) � 0.

The two results are equivalent for the lasso and thus the strong rule for
SLOPE is a generalization of the strong rule for the lasso.

2 Algorithms

Algorithm 1 Strong set algorithm
V ← ∅
E ← S(λ(m+1)) ∪ T (λ(m))
do

compute β̂E(λ(m+1))
V ← KKT violations in full set
E ← E ∪ V

while V 6= ∅
return β̂E(λ(m+1))

Algorithm 2 Previous set algorithm
V ← ∅
E ← T (λ(m))
do

compute β̂E(λ(m+1))
V ← KKT violations in S(λ(m+1))
if V = ∅ then
V ← KKT violations in full set

end if
E ← E ∪ V

while V 6= ∅
return β̂E(λ(m+1))
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