A Proofs

We need the following Chernoff Bound for bounded i.i.d. random variables.

Lemma 3 (Chernoff Bound [9]) Consider a set {x;} (i € [1,n,]) of i.i.d. random variables with
mean p and x; € [0,7], we have
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A.1 Proof of Lemma 1

Recall that in the Monte-Carlo Propagation phase of Algorithm [I] we first generate n, random walks
of length L for each training/testing node s € V; to estimate the /-th transition probability matrix
SO, ¢ = 0,...,L. Since the number of training/testing nodes is |V;|, the total cost is bounded
by O(L|Vi|n,) . After deriving S, we need to compute Y1 wy Yo, SE"OR® (line 14 in
Algorithm . Since there are at most O(|V;| - n,.) non-zero entries in each S, the total cost can be
bounded by O(L|V;|n..F) .

On the other hand, in the Reverse Push Propagation phase of Algorithm [T} we push the residue
R (u, k) of node u to its neighbors whenever |R“) (u, k)| > maq, k =0, ..., F — 1. For random
features, the average cost for this push operation is d, the average degree of the graph. We also
observe that for a given level £ and a given feature dimension k, there are at most 1/7,,,,, nodes with
residues larger than r,,,,. Consequently, the cost of Reverse Push for a given level ¢ and a given
feature dimension k is d_ Summingup ¢ =0,...,L —1land k =0,...,F — 1, and the Lemma
follows. "

A.2 Proof of Lemma 2

Let RHS denote the right hand side of equation (3)); We prove the Lemma by induction. Recall
that in Algorithm [1] we initialize Q® = 0 and R®) = 0 fort = 0,...,4, and R©® = DX .
Consequently, we have

RHS =D’ (D'A)' RO =D" (D'A)'D "X = (D" 'AD ") X = T®),
which is true by definition. Assuming Equation (5) holds at some stage, we will show that the
invariant still holds after a push operation on node u. More specifically, let I,;, € R™*¥" denote the

matrix with entry at (u, k) setting to 1 and the rest setting to zero. Consider a push operation on
weVandk€O0,...,F —1with [ R® (u, k)| > rpmas. We have two cases:

() Ift < ¢ —1, we have R(") is decremented by R(*)(u, k) - I, and R**1 is incremented by

on
R d((v)’k) - I, for each v € N (u). Consequently, we have

_ R® (u, k
RHUS =T® + D" - (DA ™" (“RO(u, k) - Ly) + D (DAY > RTGwk) Lok
d(v)
veN (u)
1
— T(l) (t) . D’l“ DflA —t—1 . i _ DflAI
+R (u7 k) ( ) Z d('l}) vk uk
vEN (u)

T 4 RO(u, k) - D' (DAY 10 = T,

For the second last equation, we use the fact that 35, \(,,) ﬁ I, = D1TAL,.

(2) If t = £, we have R(¥) is decremented by R (u, k) - 1., and Q'®) is incremented by R (u, k) -
I,%x. Consequently, we have

RHS =T® + D (_R@ (u, k) - Iuk) +D"- (R<f> (u, k) - Ik> —T® D" .g=T®.

Therefore, the induciton holds, and the Lemma follows.
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A.3 Proof of Theorem 1

To show that Algorithm [T] achieves the desired accuracy, recall that equation @) is an unbiased
estimator for the ¢-th propagation matrix T(©). We also observe each entry in residue matrix R(®)
derived by the reserve push propagation is bounded by 7,,,4., and we multiply D" to the estimator
QY + Ee L SU=DR® it follows the random variable of each random walk from node s € V is
bounded by d( )"+ T'maz- By Chernoff Bound (Lemma' we have

A ~d(s)" - g2 ny - €
T s, k) —T® s,k‘>dsrs}<ex SN /A O (P L —
([T (s, k) = T (s, k)| > d(s)"e]| < exp e ) <o\ e
Where ;1 = T (s, k). By setting n,, = O (%Qlog") , we have

H[TW@JA—TW@$WZd@V4gem<—;%m)zO(i).

gf‘: + 2/14
By Lemmal|l] the time complexity of the Monte-Carlo Propagation is O(L|V;|n, F) , and the time
complexity of the Reserve Push Propagation is O(L%F). By setting n, = O(”’"‘ﬁ%) , the
time complexity of Algorithm [I]can be express as

maa:l d
O<L|Vt|F+L|VtT€OgnF YL F)

Tmam

We observe that the above complexity is minimized when L|Vt|%§°g"F = L—2F, which

implies that
Tmaz = || €2 4 € _d
"N Villogn T\ Vil log

Therefore, the number of random walks per node n,. can be expressed as

logn _ 1 /dlogn
\Vt|logn € Vi

Finally, the total time complexity of Algorithm[I]is bounded

1
Tneelogn d F) 0 <L|W|F+L\/|thj ognF>

F+L

Tma:r

)

(L|Vt |F + L|V;]
and the Theorem follows.

B Additional experimental results

B.1 Comparison of inference time

Figure@] shows the inference time of each method. We observe that in terms of the inference time, the
three linear models, SGC, PPRGo and GBP, have a significant advantage over the two sampling-based
models, LADIES and GraphSAINT.

B.2 Additional details in experimental setup

Table [7] summarizes URLs and commit numbers of baseline codes.
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Figure 2: Inference time of 6-layers models on the entire test graph.

Table 7: URLs of baseline codes.

Methods URL Commit
GCN https://github.com/rustyls/pytorch_geometric  5692a8
GAT https://github.com/rustyls/pytorch_geometric, 5692a8

APPNP https://github.com/rustyls/pytorch_geometric  5692a8
GDC https://github.com/klicperajo/gdc 14333f
SGC https://github.com/Tiiiger/SGC 6c450f

LADIES https://github.com/acbull/LADIES c7f987

PPRGo https://github.com/TUM-DAML/pprgo_pytorch dofo91

GraphSAINT https://github.com/GraphSAINT/GraphSAINT cd31c3
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