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Abstract

Submodular maximization has become established as the method of choice for
the task of selecting representative and diverse summaries of data. However, if
datapoints have sensitive attributes such as gender or age, such machine learning
algorithms, left unchecked, are known to exhibit bias: under- or over-representation
of particular groups. This has made the design of fair machine learning algorithms
increasingly important. In this work we address the question: Is it possible to
create fair summaries for massive datasets? To this end, we develop the first
streaming approximation algorithms for submodular maximization under fairness
constraints, for both monotone and non-monotone functions. We validate our
findings empirically on exemplar-based clustering, movie recommendation, DPP-
based summarization, and maximum coverage in social networks, showing that
fairness constraints do not significantly impact utility.

1 Introduction

Machine learning algorithms are increasingly being used to assist human decision making. This
led to concerns about the potential for bias and discrimination in automated decisions, especially
in sensitive domains such as voting, hiring, criminal justice, access to credit, and higher-education
[50, 20, 54, 27]. To mitigate such issues, there has been a growing effort towards developing fair
algorithms for several fundamental problems, such as classification [59], ranking [13], clustering
[16, 2, 33, 1], bandit learning [34, 46], voting [12], matching [17], influence maximization [58], and
diverse data summarization [11].

In this work, we address fairness in another important class of problems, that of streaming submodular
maximization subject to a cardinality constraint. Submodular functions are set functions that satisfy
a diminishing returns property, which naturally occurs in a variety of machine learning problems.
In particular, streaming submodular maximization is a natural model for data summarization: the
task of extracting a representative subset of moderate size from a large-scale dataset. Being able to
generate summaries efficiently and on-the-fly is critical to cope with the massive volume of modern
datasets, which is often produced so rapidly that it cannot even be stored in memory. In many
applications, such as exemplar-based clustering [23], document [44, 21] and corpus summarization
[55], and recommender systems [25, 26], this challenge can be formulated as a streaming submodular
maximization problem subject to a cardinality constraint. An extensive line of research focused on
developing efficient algorithms in this context [14, 15, 8, 3, 51, 28].
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For monotone objectives, a one pass streaming algorithm achieving (1/2− ε)-approximation was
proposed in [3] and shown to be tight in [29]. For non-monotone objectives, the state-of-the-art
approximation is 1/5.82, achieved by a randomized algorithm proposed in [28]. To the best of our
knowledge, submodular maximization under fairness constraints has only been considered, in the
offline setting, for monotone objectives. Celis et al. [12] provide a (1− 1/e)-approximation based on
the continuous greedy algorithm [9]. In this paper, we provide the first approximation algorithms for
submodular maximization under fairness constraints, in the streaming setting, for both monotone and
non-monotone objectives.

Characterizing what it means for an algorithm to be fair is an active area of research. Several notions
of fairness have been proposed in the literature, but no universal metric of fairness exists. We adopt
here the common notion used in various previous works [11, 12, 13, 17, 16], where we ask that the
solution obtained is balanced with respect to some sensitive attribute (e.g., race, gender). Formally,
we are given a set V of n items (e.g., people), where each item is assigned a color c encoding a
sensitive attribute. Let V1, · · · , VC be the corresponding C disjoint groups of items sharing the same
color. We say that a selection of items S ⊆ V is fair if it satisfies `c ≤ |S ∩ Vc| ≤ uc for a given
choice of lower and upper bounds `c, uc ∈ Z≥0, often set to be proportional to the fraction of items
of color c, i.e., |Vc|/n. This definition captures several other existing notions of fairness such as
statistical parity [24], diversity rules (e.g., 80%-rule) [19, 4], and proportional representation rules
[48, 6] (see [12, Sect. 4]).

1.1 Our contribution

In this work, we develop a new approach for fair submodular maximization. We show how to reduce
this problem to submodular maximization subject to a matroid constraint. In the case of monotone
functions, our reduction preserves the approximation ratio and the number of oracle calls of the
corresponding algorithm for the matroid constraint. In the non-monotone case, this reduction does
not hold anymore, but it still plays an important role in our approach.

The monotone case Here we achieve two results, with respect to the memory requirement. First, a
1/2-approximate algorithm that uses an exponential in k memory. This result is known to be tight
due to [29]. Second, we design a low-memory efficient algorithm, matching the state-of-the-art result
of the partition matroid, a special case of our problem. Namely, our proposed algorithm achieves a
1/4-approximation using only O(k) memory, and processes each element of the stream in O(log k)
time and 2 oracle calls. These results are discussed in Section 4.

The non-monotone case In this context, we introduce the notion of excess ratio, denoted by q
and defined as 1−maxc∈C `c/|Vc|. This refers to the “freedom” that an algorithm has in omitting
elements from the solution. If the excess ratio is close to 0, then for at least one of the colors, the
total number of elements in the stream is close to the lower bound. In this case, an algorithm has
little flexibility in terms of which elements it chooses from this color. Conversely, if the excess
ratio is close to 1, then the total number of elements for every color is significantly higher than the
corresponding lower bound.

We show that the excess ratio is closely tied to the hardness of fair non-monotone submodular
maximization in the streaming setting. Indeed, we propose a q/5.82-approximation algorithm using
O(k) memory, and then show that any algorithm that achieves a better than q-approximation requires
Ω(n) memory. These results are discussed in Section 5. Note that in practice, the size of the summary
is expected to be significantly smaller than the size of the input. Hence, it is natural to expect that the
excess ratio will be close to 1, and thus our algorithm will perform well on real-world applications.

Empirical evaluation We study the empirical performance of our algorithms on various real-life
tasks where being fair is important. We observe that our algorithms allow us to enforce fairness
constraints at the cost of a small loss in utility, while also matching the efficiency and number of
oracle calls of “unfair” state-of-the-art algorithms.

1.2 Additional related work

Submodular maximization has been extensively studied. The setting most similar to ours is that of
streaming submodular maximization under a matroid constraint. The first result in this setting, for
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monotone functions, is by [14] which proposed a 1/4p-approximation algorithm under p-matroid
constraints using O(k) memory, which was later extended to p-matchoid constraints in [15]. For
a single matroid constraint, the best known approximation is achieved by [32], who proposed a
1/2-approximation algorithm using kO(k) memory. This is essentially tight, as [29] shows that
a (1/2 + ε)-approximation of monotone submodular maximization requires Ω(n) space, even for
cardinality constraint, for any positive ε. For non-monotone functions, the first streaming algorithm
for this problem appears in [15], which achieves an approximation ratio of (1− ε)(2−o(1))/(8+e)p

with O(k log k) memory. This was improved in [28] to a 1/(2p+ 2
√
p(p+ 1) + 1)-approximation

using O(k) memory. The latter implies the best known result for non-monotone functions under a
single matroid constraint, with 1/(3 + 2

√
2) ≈ 1/5.82-approximation.

In the sequential setting, [12] studied the fair multiwinner voting problem, which they cast as a fair
submodular maximization problem, and presented a (1− 1/e)-approximation algorithm for it. They
also considered the setting in which color groups can overlap. In this setup, even checking feasibility
is NP-hard, when elements can belong to 3 or more colors. Nevertheless, if fairness constraints are
allowed to be nearly satisfied, [12] gives a (1− 1/e− o(1))-approximation algorithm. [36] studied
data summarization with privacy and fairness constraints, but adopted a different notion of fairness,
where part of the data is deleted or masked due to fairness criteria.

2 Preliminaries

We consider a (potentially large) collection V of n items, also called the ground set. We study
the problem of maximizing a non-negative submodular function f : 2V → R≥0. Given two sets
X,Y ⊆ V , the marginal gain of X with respect to Y is defined as

f (X | Y ) = f(X ∪ Y )− f(Y ) ,

which quantifies the change in value when adding X to Y . The function f is submodular if for any
two sets X and Y such that X ⊆ Y ⊆ V and any element e ∈ V \ Y we have

f (e | X) ≥ f (e | Y ) .

We say that f is monotone if for any element e ∈ V and any set Y ⊆ V it holds that f (e | Y ) ≥ 0;
otherwise, if f (e | Y ) < 0 for some e ∈ V and Y ⊆ V , we say that f is non-monotone. Throughout
the paper, we assume that f is given in terms of a value oracle that computes f(S) for given S ⊆ V .
We also assume that f is normalized, i.e., f(∅) = 0.

Fair submodular maximization We assume that the ground set V is colored so that each element
has exactly one color. We index the colors c = 1, 2, ..., C and denote by Vc the set of elements of
color c. Thus V = V1 ∪ ... ∪ VC is a partition. For each color c we assume that we are given a
lower and an upper bound on the number of elements of color c that a feasible solution must contain.
These represent fairness constraints and are denoted by `c and uc, respectively. Let k ∈ Z≥0 be a
global cardinality constraint. We denote by F the set of solutions feasible under these fairness and
cardinality constraints, i.e.,

F = {S ⊆ V : |S| ≤ k, |S ∩ Vc| ∈ [`c, uc] for all c = 1, ..., C} .
The problem of maximizing a function f under cardinality and fairness constraints is defined as
selecting a set S ⊆ V with S ∈ F so as to maximize f(S). We use OPT to refer to a set maximizing
f . We assume that there exists a feasible solution, i.e., F 6= ∅. In particular, this implies that∑C

c=1 `c ≤ k.

Matroids In our algorithms we often reduce to submodular maximization under a matroid con-
straint: the problem of selecting a set S ⊆ V with S ∈ M so as to maximize f(S), whereM is a
matroid. We call a family of setsM⊆ 2V a matroid if it satisfies the following properties:M 6= ∅;
downward-closedness: if A ⊆ B and B ∈ M, then A ∈ M; augmentation: if A,B ∈ M with
|A| < |B|, then there exists e ∈ B such that A+ e ∈M.

3 Warm-up: Monotone Sequential Algorithm

In this section, we consider the classic sequential setting and assume that the submodular function
f is monotone. We present a natural greedy algorithm FAIR-GREEDY, and show that it achieves
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a 1/2-approximate solution. The advantage of this algorithm compared to the algorithm provided
in [12] based on continuous greedy, is its simplicity and faster running time of O(|V |k). Moreover,
the algorithm and ideas introduced in this section serve as a warm-up for the streaming setting.

The greedy algorithm picks at each step the element that has the largest marginal gain while satisfying
some constraint. We start by observing that if this element was only required to satisfy the upper-
bound and cardinality constraints, the greedy algorithm might not return a feasible solution. It might
reach the global cardinality constraint without satisfying the lower bounds. Therefore, a more careful
selection of the elements is needed. To that end, we define the following concept.

Definition 3.1 We call a set S ⊆ V extendable if it is a subset S ⊆ S′ of some feasible solution
S′ ∈ F .

For a set S to be extendable, it must satisfy the upper bounds: |S| ≤ k and |S ∩ Vc| ≤ uc for all
c = 1, ..., C. If S also satisfies the lower bounds (|S ∩ Vc| ≥ `c for all c), then S is already feasible.
Otherwise, it is necessary to add at least `c − |S ∩ Vc| elements of every color c for which S does not
yet satisfy the lower bound. This yields a feasible extension as long as it does not violate the global
cardinality constraint k. In short, we have the following simple characterization:

Observation 3.2 A set S ⊆ V is extendable if and only if

|S ∩ Vc| ≤ uc for all c = 1, ..., C and
C∑

c=1

max(|S ∩ Vc|, `c) ≤ k .

Algorithm 1 FAIR-GREEDY

1: S ← ∅
2: while |S| < k do
3: U ← {e ∈ V | S + e is extendable}
4: S ← S + argmaxe∈U f(e | S)

5: return S

The FAIR-GREEDY algorithm starts with S = ∅
and in each step takes the element with highest
marginal gain that keeps the solution extendable.

Fact 3.3 FAIR-GREEDY is a 1/2-approximate
algorithm with O(|V |k) running time for fair
monotone submodular maximization.

The analysis of FAIR-GREEDY is deferred to
Appendix A.

4 Monotone Streaming Algorithm

In this section, we present our algorithm for fair monotone submodular maximization in the streaming
setting, and we prove its approximation guarantee. We begin by explaining the intuition behind
our algorithm. If we removed the lower-bound constraints |S ∩ Vc| ≥ `c in F , then the remaining
constraints would give rise to a matroid (a so-called laminar matroid). There exist efficient streaming
algorithms for submodular maximization under matroid constraint (e.g. [14, 28]), which we could
use in a black-box manner. A solution obtained from such an algorithm A may of course violate the
lower-bound constraints. We could hope to augment our solution to a feasible one using “backup”
elements gathered from the stream in parallel to A. As we are dealing with a monotone submodular
function, adding such elements would not hurt the approximation guarantee inherited from A.

However, doing so might violate the global cardinality constraint |S| ≤ k. Indeed, as we remarked in
Section 3, not every set satisfying the upper-bound constraints can be extended to a feasible solution.
Recall that the right constraint to place was for the solution to be extendable (Definition 3.1) to a
feasible set. Crucially, we show that such a solution can be efficiently found, as extendable subsets of
V form a matroid.

Lemma 4.1 Let F̃ ⊆ 2V be the family of all extendable subsets of V . Then F̃ is a matroid.

The proof of Lemma 4.1 can be found in Appendix B.1. Algorithms for submodular maximization
under a matroid constraint require access to a membership oracle for the matroid. For F̃ , membership
is easy to verify, as follows from Observation 3.2.
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Algorithm 2 FAIR-STREAMING

1: SA ← ∅, Bc ← ∅ for all c = 1, ..., C
2: for every arriving element e of color c do
3: process e with algorithm A
4: if |Bc| < `c then
5: Bc ← Bc + e
6: SA ← solution of algorithm A
7: S ← SA augmented with elements in sets Bc

8: return S

Now we are ready to present our algorithm
FAIR-STREAMING for fair monotone submod-
ular maximization. Let A be a streaming algo-
rithm for monotone submodular maximization
under a matroid constraint. FAIR-STREAMING
runs A to construct an extendable set SA that
approximately maximizes f . In parallel, for ev-
ery color c we collect a backup set Bc of size
|Bc| = `c. At the end, the solution SA is aug-
mented to a feasible solution S using a simple
procedure: for every color such that |SA ∩ Vc| < `c, add any `c − |SA ∩ Vc| elements from Bc to
satisfy the lower bound. The pseudocode of FAIR-STREAMING is given as Algorithm 2. Thus we get
the following black-box reduction, proved in Appendix B.2.

Theorem 4.2 Suppose A is a streaming algorithm for monotone submodular maximization un-
der a matroid constraint. Then there exists a streaming algorithm for fair monotone submodular
maximization with the same approximation ratio and memory usage as A.

Applying Theorem 4.2 to the algorithm of [32] we get the following result.

Theorem 4.3 (Streaming monotone) There exists a streaming algorithm for fair monotone submod-
ular maximization that attains 1/2-approximation and uses kO(k) memory.

We remark that the 1/2 approximation ratio is tight even in the simpler setting of monotone streaming
submodular maximization subject to a cardinality constraint [29].
A more practical algorithm to use as A in FAIR-STREAMING is the 1/4-approximation algorithm of
Chakrabarti and Kale [14]. It turns out that we can further adapt and optimize our implementation to
make our algorithm extremely efficient and use only 2 oracle calls and O(log k) time per element.
We prove Theorem 4.4 in Appendix C, where we also state the algorithm of [14] for completeness.

Theorem 4.4 (Streaming monotone) There exists a streaming algorithm for fair monotone submod-
ular maximization that attains 1/4-approximation, using O(k) memory. This algorithm usesO(log k)
time and 2 oracle calls per element.

5 Non-monotone Streaming Case

We now focus on non-monotone functions. One might consider applying the approach from the
previous section, i.e., use a known algorithm for non-monotone submodular maximization under a
matroid constraint to find a high quality extendable solution, and then add backup elements to satisfy
the lower-bound constraints. However, this approach is more challenging now, as adding backup
elements to a solution could drastically decrease its value.

For example, consider the following instance with two colors. Let V = A ∪ B ∪ {x} where
A = {ai|i ∈ [m1]}, B = {bi|i ∈ [m2]}, each e ∈ A ∪ B is blue, and x is red. Let f(S) = |S| for
each S ⊆ A ∪B, and let x “nullify” the contributions of B but not the contributions of A. Formally,

f(S) =

{
|S| if x 6∈ S,
|S ∩A| if x ∈ S.

It is easy to verify that f is submodular (a formal proof is given in the Appendix). Suppose that we
have to pick exactly one red element, i.e., `red = ured = 1. This renders all elements in B useless,
and the optimal solution takes only elements in A. However, before x appears, elements in A and B
are indistinguishable, since f(S) = |S| for any S ⊆ A ∪B. Therefore, if m1 � m2, and x is last in
the stream, any algorithm that does not store the entirety of V will pick only a few elements from A,
thus achieving almost zero objective value once x is included in the solution.

The core difficulty here, and in general, is that `c is nearly as large as nc = |Vc| for some color c, like
for red in our example. To quantify this we introduce the excess ratio

q = 1− max
c∈[C]

`c/nc.
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We show that this quantity is inherent to the difficulty of the problem. Indeed, it is impossible to
achieve an approximation ratio better that q with sublinear space.

Theorem 5.1 (Hardness non-monotone) For any constant ε > 0 and q ∈ [0, 1], any algorithm for
fair non-monotone submodular maximization that outputs a (q + ε)-approximation for inputs with
excess ratio above q, with probability at least 2/3, requires Ω(n) memory.

The proof of Theorem 5.1 is deferred to Appendix D.2. Note that in practice q is nearly always large,
as the size of the data is significantly larger than the size of the summary. In what follows, we present
a streaming algorithm for fair non-monotone submodular maximization, that nearly matches the
above approximation lower-bound, using only O(k) memory.

5.1 Non-monotone algorithm

Algorithm 3 FAIR-SAMPLE-STREAMING

1: SA ← ∅, Bc ← ∅ for all c = 1, ..., C
2: for every arriving element e do
3: process e with algorithm A
4: if e ∈ Vc then
5: Bc ← Reservoir-Sample(Bc, e)

6: S ← SA augmented with elements in sets Bc

7: return S

Our non-monotone algorithm FAIR-SAMPLE-
STREAMING is a variant of FAIR-STREAMING,
where we modify the way backup elements are
collected. Let A be an α-approximation al-
gorithm for non-monotone submodular max-
imization under a matroid constraint. FAIR-
SAMPLE-STREAMING runs algorithm A to con-
struct an extendable set SA that approximately
maximizes f . In parallel, our algorithm col-
lects for every color c a backup set Bc of size
|Bc| = `c, by sampling without replacement `c elements in Vc using reservoir sampling [43]. Note
that we do not need to know the value of nc to execute reservoir sampling. At the end, the solution
SA is augmented to a feasible solution S using the same simple procedure as in Section 4. The
pseudocode of FAIR-SAMPLE-STREAMING is given as Algorithm 3. We show that adding elements
from the back-up set reduces the objective value by a factor of at most q.

Theorem 5.2 Suppose A is a streaming α-approximate algorithm for non-monotone submodular
maximization under a matroid constraint. Then, there exists a streaming algorithm for fair non-
monotone submodular maximization with expected qα approximation ratio, and the same memory
usage, oracle calls, and running time as A.

The proof is provided in Appendix D.1. Combining this with the state of the art 1/5.82-approximation
algorithm of Feldman, et al. [28] (restated in Appendix C for completeness) yields the following.

Theorem 5.3 (Streaming non-monotone) There exists a streaming algorithm for fair non-
monotone submodular maximization that achieves q/5.82-approximation in expectation, using O(k)
memory. This algorithm uses O(k) time and O(k) oracle calls per element.

6 Empirical Evaluation

In this section, we empirically validate our results and address the question: What is the price of
fairness? To this end, we compare our approach against several baselines on four datasets. We
measure: (1) Objective values. (2) Violation of fairness constraints: Given a set S, we define
err(S) =

∑
c∈[C] max{|S ∩ Vc| − uc, `c − |S ∩ Vc|, 0}. A single term in this sum quantifies by

how many elements S violates the lower or upper bound. Note that err(S) is in the range [0, 2k].
(3) Number of oracle calls, as is standard in the field to measure the efficiency of algorithms.

We compare the following algorithms:

• FAIR-STREAMING-CK: monotone, A = Chakrabarti-Kale [14] (Theorem 4.4 and Ap-
pendix C.1),

• FAIR-STREAMING-FKK: monotone, A = Feldman et al. [28] (Appendix C.2),

• FAIR-SAMPLE-STREAMING-FKK: non-monotone, A = Feldman et al. [28] (Theo-
rem 5.3),
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• UPPERBOUNDS: [28] (Appendix C.2) applied to matroid defining upper bounds only (uc
and k),

• FAIR-GREEDY: monotone; where data size allows; see Section 3,
• GREEDY: monotone; when data size allows; no fairness constraints, only k,
• SIEVESTREAMING: Badanidiyuru et al. [3]; monotone; no fairness constraints, only k,
• RANDOM: maintain random sample of k elements; no fairness constraints,
• FAIR-RANDOM: maintain random feasible (fair) solution.

We now describe our experiments. We report the results in Fig. 1, and discuss them in Section 6.5.
The code is available at https://github.com/google-research/google-research/tree/
master/fair_submodular_maximization_2020.

6.1 Maximum coverage

Social influence maximization [37] and network marketing [42] are some of the prominent appli-
cations of the maximum coverage problem. The goal of this problem is to select a fixed num-
ber of nodes that maximize the coverage of a given network. Given a graph G = (V,E), let
N(v) = {u : (v, u) ∈ E} denote the neighbors of v. Then the coverage of S ⊆ V , denoted by f(S),
is defined as the monotone submodular function f(S) =

∣∣⋃
v∈S N(v)

∣∣ . We perform experiments
on the Pokec social network [41]. This network consists of 1 632 803 nodes, representing users, and
30 622 564 edges, representing friendships. Each user profile contains attributes such as age, height
and weight; these can take value “null”. We impose fairness constraints with respect to (i) age and
(ii) body mass index (BMI).

(i) We split ages into ranges [1, 10], [11, 17], [18, 25], [26, 35], [36, 45], [46+] and consider each range
as one color. We create another color for records with “null” age (around 30%). Then for every
color c we set `c = max{0, |Vc|/n− 0.05} · k and uc = min{1, |Vc|/n+ 0.05} · k, except for the
null color, where we set `c = 0. The results are shown in Fig. 1a, 1b, and 1c.

(ii) BMI is computed as the ratio between weight (in kg) and height (in m) squared. Around 60% of
profiles do not have set height or weight. We discard all such profiles, as well as profiles with clearly
fake data (less than 2% of profiles). The resulting graph consists of 582 319 nodes and 5 834 695
edges. The profiles are colored with respect to four standard BMI categories (underweight, normal
weight, overweight and obese). Lower- and upper-bound fairness constraints are set again to be
within 5% of their respective frequencies. The results are shown in Fig. 1d, 1e, and 1f.

6.2 Movie recommendation

We use the Movielens 1M dataset [31], which contains ∼1M ratings for 3 900 movies by 6 040 users,
to develop a movie recommendation system. We follow the experimental setup of prior work [47, 51]:
we compute a low-rank completion of the user-movie rating matrix [57], which gives rise to feature
vectors wu ∈ R20 for each user u and vm ∈ R20 for each movie m. Then w>u vm approximates
the rating of m by u. The (monotone submodular) utility function for a collection S of movies
personalized for user u is defined as

fu(S) = α ·
∑

m′∈M
max

(
max
m∈S

(
v>mvm′

)
, 0

)
+ (1− α) ·

∑
m∈S

w>u vm.

The first term optimizes coverage of the space of all movies (enhancing diversity) [45], and the
second term sums up user-dependent movie scores; α controls the trade-off between the two terms.
In our experiment we recommend a collection of movies for α = 0.85 and k-values up to 100.
Each movie in the database is assigned to one of 18 genres c; our fairness constraints mandate
a representation of genres in S similar to that in the entire dataset. More precisely, we set `c =⌊
0.8 |Vc|
|V | k

⌋
and uc =

⌈
1.4 |Vc|
|V | k

⌉
. The results are shown in Fig. 1g, 1h, and 1i.

6.3 Census DPP-based summarization

A common reliable method for data summarization is to use a Determinantal Point Process (DPP) to
assign a diversity score to each subset, and choose the subset that maximizes this score. A DPP is
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a probability measure over subsets, defined for every S ⊆ V , as P (S) = det(LS)
det(I+L) , where L is an

n× n positive semi-definite kernel matrix, LS is the |S| × |S| principal submatrix of L indexed by
S, and I is the identity matrix. To find the most diverse representative subset, we need to maximize
the non-montone submodular function f(S) = log det(LS) [40]. To ensure non-negativity (on
non-empty sets), we normalize f by a constant.
We use the Census Income dataset [22] which consists of 45 222 records extracted from the 1994
Census database, with 14 attributes such as age, race, gender, education, and whether the income is
above or below 50K USD.We follow the experimental setup of [11] to generate feature vectors of
dimension 992 for 5000 randomly chosen records.2 We select fair representative summaries with
respect to race, requiring that each of the race categories provided in the dataset (White, Black,
Asian-Pac-Islander, Amer-Indian-Eskimo, and Other) have a similar representation in S as in the
entire dataset. Accordingly, we set `c =

⌊
0.9T

n k
⌋

and uc =
⌈
1.1T

n k
⌉
, and vary k between 50− 600.

The results are shown in Fig. 1j, 1k, and 1l.

6.4 Exemplar-based clustering

We consider a dataset containing one record for each phone call in a marketing campaign ran by a
Portuguese banking institution [49]. We aim to find a representative subset of calls in order to assess
the quality of service. We choose numeric attributes such as client age, gender, account balance,
call date, and duration, to represent each record in the Euclidean space. We require the chosen
subset to have clients in a wide range of ages. We divide the records into six groups according
to age: [0, 29], [30, 39], [40, 49], [50, 59], [60, 69], [70+]; the numbers of records in each range are
respectively: 5 273, 18 089, 11 655, 8 410, 1 230, 554. We set our bounds so as to ensure that each
group comprises 10− 20% of the subset. Then we maximize the following monotone submodular
function [38], where R denotes all records:

f(S) = C −
∑
r∈R

min
e∈S

d(r, e) where d(x, y) = ‖x− y‖22 .

We let f(∅) = 0 and C be |V | times the maximum distance.3 The results are shown in Fig. 1m, 1n,
and 1o, where the clustering cost refers to C − f(S).

6.5 Results

We observe that in all the experiments our algorithms make smaller or similar number of oracle
calls compared to the baselines in corresponding settings (streaming or sequential). Moreover, the
objective value of the fair solutions obtained by our algorithms is similar to the unfair baseline
solutions, with less than 15% difference.

We also observe that the algorithms that do not impose fairness constraints introduce significant
bias. For example, SIEVESTREAMING makes 150 errors in the maximum coverage experiment for
k = 200 (see Fig. 1b), and 30 errors for k = 70 in the exemplar-based clustering experiment (see
Fig. 1n). Moreover, even though UPPERBOUNDS satisfies the upper-bounds constraints, it still makes
a noticeable amount of errors. For instance, it makes 20 errors in the maximum coverage experiment
for k = 200 (see Fig. 1b), and 100 errors in the DPP-based summarization experiment for k = 600
(see Fig. 1k).

7 Conclusion

We presented the first streaming approximation algorithms for fair submodular maximization, for both
monotone and non-monotone objectives. Our algorithms efficiently generate balanced solutions with
respect to a sensitive attribute, while using asymptotically optimal memory. We empirically demon-
strate that fair solutions are often nearly optimal, and that explicitly imposing fairness constraints is
necessary to ensure balanced solutions.

2Code available at: https://github.com/DamianStraszak/FairDiverseDPPSampling.
3Note that C is added to ensure that all values are non-negative. Any C with this property would be suitable.
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Figure 1: Performance of FAIR-STREAMING-CK, FAIR-STREAMING-FKK and FAIR-SAMPLE-
STREAMING-FKK compared to other baselines, in terms of objective value, violation of fairness
constraints, and running time, on Movielens, Pokec, Census, and Bank-Marketing datasets.
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Broader Impact

Several recent studies have shown that automated data-driven methods can unintentionally lead to
bias and discrimination [35, 56, 5, 10, 52]. Our proposed algorithms will help guard against these
issues in data summarization tasks arising in various settings – from electing a parliament, over
selecting individuals to influence for an outreach program, to selecting content in search engines and
news feeds. As expected, fairness does come at the cost of a small loss in utility value, as observed in
Section 6. It is worth noting that this “price of fairness” (i.e., the decrease in optimal objective value
when fairness constraints are added) should not be interpreted as fairness leading to a less desirable
outcome, but rather as a trade-off between two valuable metrics: the original application-dependent
utility, and the fairness utility. Our algorithms ensure solutions achieving a close to optimal trade-off.

Finally, despite the generality of the fairness notion we consider, it does not capture certain other
notions of fairness considered in the literature (see e.g., [18, 58]). No universal metric of fairness
exists. The question of which fairness notion to employ is an active area of research, and will be
application dependent.
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A Details of FAIR-GREEDY

A.1 Proof of Fact 3.3

We remark that, once we know that extendable sets form a matroid (Lemma 4.1), the approximation
ratio of FAIR-GREEDY can be seen to follow from the fact that the greedy algorithm for submod-
ular maximization under matroid constraints achieves a 1/2-approximation guarantee [30]. For
completeness, below we also give a self-contained proof.

Proof. Let an optimal solution be O ⊆ V and let the output of greedy be G = {g1, . . . , gk}, where
the elements where chosen in the order g1, . . . gk by the algorithm. To prove the lemma, we will
show that f(G) ≥ 1

2 · f(G ∪O).

Let us order the elements of O as o1, . . . , ok in a way that the colors of gj and oj coincide as much
as possible. Specifically, we want an ordering such that for all j

• either gj and oj are the same color
• or, if c(gj) = c1 and c(oj) = c2 are different, then |G ∩ Vc1 | > |O ∩ Vc1 | and |G ∩ Vc2 | <
|O ∩ Vc2 |,

where c(v) denotes the color of element v ∈ V . Such a matching between elements of G and O
can be easily constructed recursively. Indeed, as long as there remain elements of G and O that are
the same color match them together; once all remaining elements are of different color match them
arbitrarily.

Claim A.1 For any j, G\{gj} ∪ {oj} is a feasible solution.

Indeed, if gj and oj are the same color, exchanging them does not change the color profile of
G and it remains feasible. On the other hand, if c(gj) = c1 and c(oj) = c2 are different, then
|G ∩ Vc1 | > |O ∩ Vc1 | ≥ `c1 , and removing gj from G does not violate any conditions. Similarly,
|G ∩ Vc2 | < |O ∩ Vc2 | ≥ uc2 and adding oj to G does not violate any conditions either.

From Claim A.1 it follows that g1, . . . , gj−1, oj is a feasible partial solution (see Definition 3.1).
Therefore, by the definition of FAIRGREEDY, f(gj |g1, . . . , gj−1) ≥ f(oj |g1, . . . , gj−1).

Therefore,

f(G) =

k∑
j=1

f(gj |g1, . . . , gj−1)

≥
k∑

j=1

f(oj |g1, . . . , gj−1)

≥
k∑

j=1

f(oj |g1, . . . , gk, o1, . . . , oj−1)

= f(O|G),

and so
2f(G) ≥ f(O ∪G) ≥ f(O).

2
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A.2 Checking extendability

In order for Algorithm 1 to run in time O(|V |k) we must solve the problem of generating the set
U = {e ∈ V | S + e is extendable} in O(|V |) time. That is, we must be able to check if adding a
single element e to our set S would maintain extendability in O(1) time.

This can be done by simply maintaining the counts tc = |S ∩ Vc| of elements of each color in S, as
well as the sum Q =

∑C
c=1 max(tc, `c). Recall Observation 3.2 which states that S is extendable if

tc ≤ uc for each c and Q ≤ k.

At the beginning of our algorithm we initialize these variables. Then, whenever a potential extension
e of color c is considered, we call CANDIDATE(c) to determine whether adding it would maintain
extendability. Once we augment S with an element e of color c, we update the stored variables using
UPDATE(c).

Algorithm 4 Checking extendability

procedure INITIALIZE
for c ∈ [C] do

tc ← 0
Q←

∑C
c=1 `c

procedure UPDATE(c)
tc ← tc + 1
if tc > `c then

Q← Q+ 1

procedure CANDIDATE(c)
if tc = uc then

return false
if tc < `c then

return true
if `c ≤ tc < uc then

return Q < k

To implement the non-monotone submodular maximization algorithm of [28] which we use in
Section 5.1, it is also useful to be able to verify whether a pair of elements can be swapped in the
current solution. Suppose we are trying to add element e1 of color c1 to S, while removing element
e2 of color c2. To verify if this is legal, we call SWAP(c1, c2).

Algorithm 5 Checking extendability

procedure SWAP(c1, c2)
if c1 = c2 then

return true
if tc1 = uc1 then

return false
if Q = k and tc1 ≥ `c1 and tc2 ≤ `c2 then

return false
else

return true

B Monotone Streaming – Proofs

B.1 Proof of Lemma 4.1

Proof. Let B consist of all maximal sets in F . We will show that B satisfies the following two axioms.

(B1) B 6= ∅.
(B2) If B1, B2 ∈ B and x ∈ B1 \B2, then there exists y ∈ B2 \B1 such that B1 − x+ y ∈ B.
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These axioms imply (see e.g. [53, Theorem 1.2.3]) that the downward closure (collection of all
subsets) of B is a matroid (having B as its set of bases). However, the downward closure of B is
equal to F̃ , as any subset of V that can be extended to a feasible solution can also be extended to
a maximal feasible solution. Therefore we are left with proving (B1-B2). As we had assumed that
F 6= ∅, we also have B 6= ∅, which establishes (B1).

For (B2), let B1, B2 ∈ B and x ∈ B1 \B2. Let c be the color of x. A simple case is when B2 \B1

contains some element y ∈ Vc. Then B1 − x+ y has the same number of elements of each color as
B1, thus it is also in B. Now consider the other case, i.e., that Vc ∩B2 ⊆ B1 − x. Then we have

uc − 1 ≥ |Vc ∩ (B1 − x)| ≥ |Vc ∩B2| ≥ `c . (1)

There must be another color d where B2 has more elements than B1, for otherwise B2 + x would be
feasible, contradicting the maximality of B2. We claim that picking any element y ∈ Vd ∩ (B2 \B1)
yields a maximal feasible solution B1 − x+ y ∈ B. The lower bounds are clearly satisfied already
for B1 − x (for color c, this follows by (1)). The upper bound for color c is satisfied by (1), and for
color d since |Vd ∩ (B1 − x+ y)| = |Vd ∩B1|+ 1 ≤ |Vd ∩B2| ≤ ud. The global upper bound is
satisfied as |B1 − x+ y| = |B1| ≤ k. To show maximality of B1 − x+ y, we note that any maximal
set in F has the same size, namely min(k,

∑
c min(uc, |Vc|)), and that B1 − x+ y is already of the

same size as B1, which is maximal. 2

B.2 Proof of Theorem 4.2

Proof. The feasibility of S follows as SA is extendable and by Observation 3.2. If A is an α-
approximation algorithm, then it returns a solution SA of value at least α times that of the best
extendable set, and every feasible set is extendable. Adding elements does not decrease the value, as
f is monotone.

Our extra memory usage is |
⋃

cBc| =
∑

c `c ≤ k. 2

C Algorithms for Matroid-Constrained Submodular Maximization

In this section we describe the streaming algorithms for submodular maximization under a matroid
constraint of Chakrabarti and Kale [14] (monotone 1/4-approximation) and Feldman, Karbasi and
Kazemi [28] (non-monotone 1/5.82-approximation). We also describe how to implement FAIR-
STREAMING, together with the former algorithm, so as to obtain nearly-linear runtime and oracle
complexity.

Both algorithms are given access to a matroidM⊆ 2V in the form of an independence oracle. To
differentiate between querying f andM, we refer to the former as oracle calls and to the latter as
matroid queries.

C.1 The monotone case

Algorithm 6 Chakrabarti-Kale [14] (monotone)

1: S ← ∅
2: for every arriving element e do
3: w(e)← f(e | S)
4: if S + e ∈M then
5: S ← S + e
6: else
7: U ← {e′ ∈ S : S + e− e′ ∈M}
8: e′ ← argmine′∈U w(e′)
9: if w(e) ≥ 2w(e′) then

10: S ← S + e− e′
11: return S
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Let us look at the per-element oracle complexity and runtime. Algorithm 6 clearly makes only two
oracle calls (to compute f(e | S)). As for the runtime, it is dominated by Lines 4, 7 and 8. Clearly,
these can be implemented naively using O(k) time and matroid queries, where k is the rank of
matroidM (we have |S| ≤ k). The runtimes of these queries would further depend on the matroid in
question.

However, for special matroidsM the implementation can be optimized. Let us first consider the
special case ofM being the k-uniform matroid (S ∈M⇔ |S| ≤ k): in other words, the setting of
cardinality-constrained submodular maximization. In that case, Line 4 takes O(1) time, and Line 7
becomes just U ← S. The runtime then becomes dominated by finding the element e′ ∈ S with the
lowest w-weight. If we maintain a priority queue P containing S sorted by w, then this can be done
in O(log k) time.

Now we can extend this idea toM being the extendability matroid (see Definition 3.1 and Lemma 4.1)
used by FAIR-STREAMING. That is, we prove Theorem 4.4. Let us restate it again for convenience.

Theorem 4.4 (Streaming monotone) There exists a streaming algorithm for fair monotone submod-
ular maximization that attains 1/4-approximation, using O(k) memory. This algorithm usesO(log k)
time and 2 oracle calls per element.

Proof. Recall that FAIR-STREAMING (Algorithm 2) uses Algorithm 6 as A. By Theorem 4.2,
FAIR-STREAMING returns a feasible solution that is 1/4-approximate. It makes 2 oracle calls per
element (these are made by Algorithm 6, see above). We are left with the runtime.

We maintain the extendability data structure from Appendix A.2. This allows us to implement Line 4
in constant time. Now let us consider the problem of finding the minimal w(e′) among e′ ∈ U , i.e.,
among those elements e′ ∈ S that have S + e− e′ ∈M. Clearly, whether an element e′ ∈ S is in U
or not depends only on its color c′. We will say that color c′ is good if elements e′ ∈ S of color c′ are
in U . Let c be the color of e. Following Algorithm 5, we have the following logic:

• if tc = uc, then only c is good,
• otherwise, if Q < k or tc < `c, then every color is good,
• otherwise, the good colors are c and those colors c′ that have tc′ > `c′ .

To be able to quickly find the minimum-weight good-colored element in S, we will maintain a number
of priority queues:

• (as before) P containing S sorted by w,
• Pc for each color c, where we keep elements in S ∩ Vc sorted by w,
• P ′, containing colors rather than elements: in P ′ we keep those colors c′ for which tc′ > `c′ ,

sorted by mine′∈S∩Vc′ w(e′).

It is not hard to see that this data structure can be maintained in O(log k) time per element, and that
using it we can implement the logic above in the same time. 2

Our implementation In the experimental evaluations, we use a variant of FAIR-STREAMING
where the condition in Line 9 of Algorithm 6 is replaced by the more direct f(S + e− e′) ≥ f(S).
We find that this yields better solutions in practice. We still make only two oracle calls per element;
this is made possible by storing the value f(S) between calls. For simplicity, we also do not use the
priority-queue-based data structure from the above proof of Theorem 4.4. This has no bearing on the
reported experimental results, as we measure oracle calls rather than runtime.

C.2 The non-monotone case

The non-monotone algorithm of Feldman, Karbasi and Kazemi [28], which is used by FAIR-SAMPLE-
STREAMING, is similar to Algorithm 6. The main differences are that the algorithm subsamples
incoming elements, and that instead of caching the marginal contribution of every element at the time
it is added (as w(e)), it always uses the contribution of an element e to the part of the current solution
that arrived before e. For completeness, we give it as Algorithm 7.
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Algorithm 7 Feldman, Karbasi and Kazemi [28] (non-monotone)

1: S ← ∅
2: for every arriving element e do
3: with probability 2/3 return
4: if S + e ∈M then
5: S ← S + e
6: else
7: U ← {e′ ∈ S : S + e− e′ ∈M}
8: e′ ← argmine′∈U f(e′ : S)
9: if f(e | S) ≥ 2f(e′ : S) then

10: S ← S + e− e′
11: return S

Here we use the notation f(e′ : S) to denote f(e′ | S′), where S′ consists of those elements of S
that had arrived on the stream before e′. Note that this is different from w(e′) from Algorithm 6.

Algorithm 7 uses O(k) oracle calls and O(k) matroid queries per element.

Our implementation As previously, in the experimental evaluations, in FAIR-SAMPLE-
STREAMING we use a variant of Algorithm 7 where the condition in Line 9 is replaced by the
more direct f(S + e− e′) ≥ f(S). We also use f(e′ | S) in lieu of f(e′ : S). Finally, whenever we
apply Algorithm 7 in a monotone setting, we omit Line 3.

D Non-monotone Streaming

D.1 Non-monotone algorithm

We make use of the following known lemma to bound the loss in value resulting from the addition of
backup elements.

Lemma D.1 ( [7, Lemma 2.2] ) Let g : 2V → R≥0 be a non-negative submodular function, and let
B be a random subset of V containing every element of V with probability at most p (not necessarily
independently). Then E[g(B)] ≥ (1− p)g(∅).

Theorem 5.2 Suppose A is a streaming α-approximate algorithm for non-monotone submodular
maximization under a matroid constraint. Then, there exists a streaming algorithm for fair non-
monotone submodular maximization with expected qα approximation ratio, and the same memory
usage, oracle calls, and running time as A.

Proof. By assumption, we have E[f(SA)] ≥ αmaxS∈F̃ f(S), and since F ⊆ F̃ , we have
E[f(SA)] ≥ αf(OPT). We define g : 2V → R≥0 to be the function g(S) = f(S ∪ SA), and
B = S \ SA the set of backup elements added to SA. Since B contains every element in V with
probability at most 1− q = maxc

`c
nc

, then by Lemma D.1 E[g(B)] ≥ q · g(∅). It follows then that

E[f(S)] ≥ q E[f(SA)] ≥ qαf(OPT).

2

D.2 Non-monotone hardness

In this section we will show that our assumption that the dependence of our approximation ratio on
q = 1 −maxc∈[C] `c/nc is necessary. Indeed, to get an approximation ratio better than q for fair
non-monotone submodular maximization requires nearly linear space. We prove this by reduction to
the INDEX problem which we define below.

Definition D.2 The INDEX problem is a two party communication problem. In it we have two parties,
Alice and Bob. Alice receives x, a bit string of length n, and Bob receives a single index i∗ between 1
and n. The aim of problem is for bob to output xi∗ .
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Theorem D.3 [39] The one way communication complexity of index, Rpub
2/3 ≥ n/100. That is any

one way communication protocol that solves INDEX on any input with probability at least 2/3
requires at least n/100 bits of communication.

We use this to prove hardness of the approximate maximization of non-monotone submodular
functions under fairness constraints. Specifically we will show a reduction from INDEX to this
problem.

Theorem 5.1 (Hardness non-monotone) For any constant ε > 0 and q ∈ [0, 1], any algorithm for
fair non-monotone submodular maximization that outputs a (q + ε)-approximation for inputs with
excess ratio above q, with probability at least 2/3, requires Ω(n) memory.

Proof. Suppose such an algorithm exists. We will produce an instance of such submodular maximiza-
tion that allows us to solve INDEX with the same space complexity and success probability.

The submodular function we define will be a cut function. That is, we define some directed graph
D = (V,A) on the universe V . The function evaluated at S ⊆ V will be the size of the (S, S) cut.
That is

f(S) = |{(v, w) ∈ A : v ∈ S ∧ w 6∈ S}|.

It is easy to see that this is indeed a non-negative submodular function.

It remains to define V and D. Suppose Alice and Bob receive an input for INDEX for length n. Let
the input of Alice be x and the input of Bob be i∗. We define V and A based on this input

Let a/b be a rational approximation of q in the sense that a, b ∈ N and q ≤ a/b < q + ε. Such a and
b can always be chosen such that b = O(1/ε). Let V consist of three colors V1, V2, and V3 where
V1 = {vi : i ∈ [n], xi = 1} ∪ {wi : i ∈ [n], xi = 0}, V2 = {yji∗ : j ∈ [b]} and V3 = {zj : j ∈ [b]}.
Let the color-wise constraints be `1 = u1 = 1, `2 = u2 = b− a, and `3 = u3 = 0, which satisfies
1−maxc∈[3] `c/nc = a/b ≥ q. If the element ui∗ appears (that is if xi∗ = 1), it is connected to V3,
that is A contains all edges in {vi∗} × V3. All other elements of V1 are connected to all elements of
V2, that is A contains all edges in V1\{vi∗} × V2.

Alice first runs the algorithm for submodular maximization on a stream consisting of V1. Since f |V1

is simply cardinality times b, Alice can answer all oracle queries without knowing Bob’s input. Alice
then passes the state of the algorithm to Bob, who inputs the rest of the stream: V2 and V3. As we
show below, if xi∗ = 1, the optimal solution is b, while if xi∗ = 0, the optimal solution is only a.
Therefore, Bob can correctly solve INDEX by reading off the output of the (q + ε)-approximation
algorithm, since q + ε > a/b.

Indeed, if xi∗ = 0 and vi∗ 6∈ V , then

f(S) = |S ∩ V1| · (b− |S ∩ V2|).

Given the strict color-wise constraints this is always equal to b− a. On the other hand, if xi∗ = 1
and vi∗ ∈ V then we have the optimal solution

S = {vi∗} ∪ {yji∗ : j ∈ [a]}

which has value b.

Since INDEX needs Ω(n) memory to solve, the algorithm for fair submodular maximization must
have Ω(n) memory as well. 2
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