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A Data sets

2D-gesture and Power demand [3] can be downloaded from the link https://www.cs.ucr.edu/
~eamonn/discords/.

KDD-Cup99 dataset can be obtained from http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html.

SWaT is from https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/.

MSL (Mars Science Laboratory rover) [2] and SMAP A [2] (Soil Moisture Active Passive satellite)
are downloaded from https://s3-us-west-2.amazonaws.com/telemanom/data.zip .

B Experimental Setting

For LOF [1], the number of neighbors is selected from {1, 3, 5, 12}. For one-class SVM [8], the RBF
kernel is used. Its inverse length γ is selected from the {0.0001, 0.001, 0.01, 0.1, 0.5}. ν is another
hyperparameter in the OC-SVM, which is selected from {0.1, 0.2, 0.6}. For the isolation forest [6]),
the number of tree is selected from {25, 100}. For DAGMM [10], we use its default hyperparameters.
For GAN-based baselines (AnoGAN [7], MAD-GAN [5], BeatGAN [9]), we use a sliding window
to extract recent history information for prediction. The window length is 80 on 2D-gesture and
power-demand, and 100 on the other data sets. For samples tested at multiple windows, we use its
average anomaly score over the windows as the final evaluation score.

LOF, OC-SVM and isolation forest are implemented with the Scikit-learn library. The other baselines
are downloaded from the following:

• DAGMM: https://github.com/danieltan07/dagmm

• EncDec-AD: https://github.com/KDD-OpenSource/DeepADoTS
• LSTM-VAE: https://github.com/SchindlerLiang/
VAE-for-Anomaly-Detection

• AnoGAN: https://github.com/LeeDoYup/AnoGAN-tf
• BeatGAN: https://github.com/Vniex/BeatGAN
• MadGAN: https://github.com/LiDan456/MAD-GANs
• OmniAnomaly: https://github.com/NetManAIOps/OmniAnomaly
• MSCRED: https://github.com/wxdang/MSCRED
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• CVDD: https://github.com/lukasruff/CVDD-PyTorch
• Deep SVDD: https://github.com/lukasruff/Deep-SVDD

In the proposed model, we use a three-layer dilated RNN with `2-regularization (with regularization
parameter 10−6). The number of hidden units is chosen from {32, 64, 84}. For the number
of centers in each layer {Kl}, empirically we found that simply using a constant or decreasing
sequence (K1 ≥ · · · ≥ KL) achieve good performance. Specifically, we select {Kl} from {{6,6,6},
{12, 6, 1}, {12, 6, 4}, {18, 6, 1},{18, 12, 4},{18, 12, 6},{32, 12, 6}}, and {s(1), . . . , s(L)} from
{{1,2,4},{1,4,8},{1,4,12},{1,4,16}}. Centers in each layer are initialized by k-means clustering on the
hidden states. λorth and λTSS are selected from {0.01, 0.1, 1, 10, 100}. We use the Adam optimizer
[4]. The initial learning rate is 0.01 for 2D-gesture, Power demand and KDD-Cup99; and 0.001 for
the other datasets. This is decayed by a factor of 0.65 after every 20 epochs. The initial value of the
1/τ in Eq.(5) is selected from {0.01, 1, 10, 20}, and is increased by a factor of 1.5 every 5 epochs,
until a maximum of 300 is reached. The batch-size is selected from {32, 64, 128}. The experiments
are run on the PyTorch platform using a GeForce GTX1080-Ti11G GPU.
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