
Appendix for

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based
on Nonlinear ICA

We divide the Appendix into 5 main sections:

• Section A: we give extensive details on the experimental setup, as well as additional
experiments;

• Section B: we discuss the estimation algorithms we used with ICE-BeeM and how they can
be extended to the conditional setting;

• Section C: we prove the identifiability of ICE-BeeM and its universal approximation capa-
bility;

• Section D: we show how ICE-BeeM estimates IMCA;

• Section E: we provide a thorough theoretical analysis of the IMCA framework and draw
parallels to the identifiability results in nonlinear ICA.

A Experimental protocol

A.1 Model architecture details

In this section, we describe the neural network architectures used for the experiments of Section 5.1,
on the image datasets (MNIST, FashionMNIST, CIFAR10 and CIFAR100). Code to reproduce these
experiments can be found in the supplementary material.

We can distinguish three different types of configurations:

1. A series of fully connected layers — denoted MLP. This configuration satisfies the assump-
tions of Section 2.3.

2. A mix of convolutional and fully connected layers — denoted ConvMLP. We expect this
configuration to work better than an MLP for images.

3. A variant of a RefineNet (Lin et al., 2017), following Song and Ermon (2019), which
implements skip connections to help low level information reach the top layers — denoted for
simplicity Unet (RefineNets are modern variants of U-net architectures). This configuration
is very advanced and complicated, and serves to test if identifiable representations can be
learnt for modern architectures.

The detailed architectures are in Table [2].

After choosing one of the configurations, we can further chose to reduce the dimensionality of the
features (dz < dx), to use it in conjunction with positive features (condition 3 of Theorem 2) or with
augmented features (condition 4 of Theorem 2). This results in the following nomenclature, where
we will take as an example a ConvMLP network:

• If we reduce the dimension of the latent space (dz < dx)—for example dz = 50, we denote
the configuration by ConvMLP-50.

• If we used positive features, we denote the configuration by ConvMLP-p.

• If we used augmented features, we denote the configuration by ConvMLP-a.

• We can also have a mix of the above, for examples ConvMLP-50p.

• We can also have non of the above, in which case we simply write ConvMLP—implying
that dz = dx.

We summarize the configurations used for the different experiments of Section 5.1 in Table [3].

For all the experiments, we used the Adam optimizer (Kingma and Ba, 2014) to update the parameters
of the networks. We used a learning rate of 0.001, and (β1, β2) = (0.9, 0.999); amsgrad was
turned off, as well as weight decay. Data was fed to the networks in mini-batches of size 63, and the

12

Table 2: Architecture detail
Configuration Architecture Comment

Input: dx = w × w × nc nc: channels, w: width/height
MNIST: nc = 1, w = 28

FashionMNIST: nc = 1, w = 28
CIFAR10: nc = 3, w = 32

CIFAR100: nc = 3, w = 32
Output: dz

MLP Input: dx
FC 512, LeakyReLU(0.1)
FC 384, LeakyReLU(0.1)
Dropout(0.1)
FC 256, LeakyReLU(0.1)
FC 256, LeakyReLU(0.1)
FC dz

ConvMLP Input: dx = w × w × c stride 1 for all conv. layers
Conv w × w × 32, BatchNorm, ReLU padding 1, filter size 3
Conv w × w × 64, BatchNorm, ReLU padding 1, filter size 3
MaxPool w2 ×

w
2 × 64

Conv w
2 ×

w
2 × 128, BatchNorm, ReLU padding 1, filter size 3

Conv w
2 ×

w
2 × 256, BatchNorm, ReLU padding 1, filter size 3

MaxPool w4 ×
w
4 × 256

Conv 1× 1× 256 padding 0, filter size w
4

Dropout(0.1)
FC 256, LeakyReLU(0.1)
FC dz

Unet Input: dx = w × w × nc stride 1 for all conv. layers
Conv w × w × 64 padding 1, filter size 3
4-cascaded RefinNet see Song and Ermon (2019)
| activation: ELU exponential LU
| normalization: InstanceNorm+ see Song and Ermon (2019)
InstanceNorm+, ELU
Conv w × w × nc padding 1, filter size 3
FC dz only if dz < dx

Table 3: Architectures used in the experiments
Fig./Tab. Dataset Description Configuration

Fig. [1a] MNIST Quantifying quality of representations Unet-a
Fig. [1b] CIFAR10 Quantifying quality of representations Unet
Fig. [1b] CIFAR100 Quantifying quality of representations Unet
Fig. [1c] MNIST Transfer learning ConvMLP-50
Fig. [1d] CIFAR10 Transfer learning ConvMLP-90
Tab. [1a] MNIST Transfer learning ConvMLP-50
Tab. [1a] CIFAR10 Transfer learning ConvMLP-90
Tab. [1b] FashionMNIST Semi-supervised learning ConvMLP-50
Tab. [1b] CIFAR10 Semi-supervised learning ConvMLP-50p

13

training was done for 5000 iterations (no visible improvements in the results were observed after this
many iterations). For CIFAR10 and CIFAR100 experiments, we introduced a random horizontal flip
to the data, with probability 0.5.

We used conditional denoising score matching (CDSM, Appendix B.1) to train the energy models.
The noise parameter used is σ = 0.01.

A.2 The MCC metric

To quantify identifiability, we use the mean correlation coefficient (MCC) metric, which computes
the maximum linear correlations up to permutation of components. To obtain the value of this metric
between two vectors x and y, we first calculate all pairs of correlation coefficients between the
components xi of x, and the components yj of y. Since the order of the components in each vector
can be arbitrary, we have to account for possible permutations between the indices i and j. This is
done by solving a linear sum assignment problem (for instance, using the auction algorithm). We
finally average over all correlation coefficients (after finding the right permutation). This makes the
MCC metric invariant by permutation and component-wise transformations (as a consequence of the
transformation invariance of the correlation coefficient).

To better understand this metric, let’s consider the following example. Let x ∈ R2 be a bivariate
random variable such that x1 ⊥⊥ x2, and let y = (x2

2, x
2
1). If we don’t account for any permutations,

then the average correlation is equal to 1
2

∑
i corr(xi, yi) = 0 because x1 ⊥⊥ x2. In reality, though, y

and x are perfectly correlated, since the value of x completely determines that of y. Thus, we have to
find the optimal permutation of the elements of y in order to maximize the average correlation. The
MCC does this by computing all pair-wise correlations, and finding the assignment that maximizes
the average correlation.

When the latent ground truth is known (Section 5.2—IMCA and nonlinear ICA simulations, for
instance), we can test for identifiability of the components by comparing the recovered latents to this
ground truth. A high MCC means that we recovered the true latents.

When the ground truth is unknown (Section 5.1—real image datasets), we compare pairs of learnt
representations, each from a different random initialization. A consistently high MCC means that
changing the random state of the model doesn’t drastically change the learnt representations.

A.3 Quality of representations

We argued that conditioning enables EBMs to learn identifiable representations. The results in
Section 5.1 validate this. The plots presented in Figures [1a] and [1b] were produced using the Unet
configuration, described in Table [3]. This architecture is complex and deep, and involves multiple
layers for which a thorough theoretical analysis is very difficult, unlike MLPs for instance. In addition,
the dimension of the latent space was chosen to be equal to that of the input space. Intuitively, we
would expect that the chance of learning arbitrary representations increases as we increase the number
of features because this increases the entropy of the system.

This allows us to challenge the capabilities of ICE-BeeM, and test its limits. We concluded from
the results that the theory presented here does benefit modern deep learning architectures. This
experiment serves to empirically validate our theoretical result, and is the first of its kind in recent
identifiability literature, which focused on validating the theory on simulated data with well know
ground truth.

The matrix A in equation (2) and the permutation σ in equation (3) were learnt from the first half of
the test partition for each dataset. The evaluation of the MCCs was done on the remaining half of the
test dataset.

We present further plots detailing the quality of the learnt representations on MNIST, FashionMNIST,
CIFAR10 and CIFAR100 for a variety of different configurations in Figures [2] and [3].

14

ICE-BeeM
50

Baseline
50

ICE-BeeM
50p

Baseline
50p

0.75

0.80

0.85

0.90

0.95
M

CC
 o

ut
 o

f s
am

pl
e

Identifiability of representations

(a) MNIST - ConvMLP-50/50p

ICE-BeeM
90

Baseline
90

ICE-BeeM
90p

Baseline
90p

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(b) MNIST - ConvMLP-90/90p

ICE-BeeM
200

Baseline
200

ICE-BeeM
200p

Baseline
200p

0.4

0.5

0.6

0.7

0.8

0.9

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(c) MNIST - ConvMLP-200/200p

ICE-BeeM
50

Baseline
50

ICE-BeeM
50p

Baseline
50p

0.3

0.4

0.5

0.6

0.7

0.8

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(d) FMNIST - ConvMLP-50/50p

ICE-BeeM
90

Baseline
90

ICE-BeeM
90p

Baseline
90p

0.3

0.4

0.5

0.6

0.7

M
CC

 o
ut

 o
f s

am
pl

e
Identifiability of representations

(e) FMNIST - ConvMLP-90/90p

ICE-BeeM
200

Baseline
200

ICE-BeeM
200p

Baseline
200p

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(f) FMNIST - ConvMLP-200/200p

ICE-BeeM
50

Baseline
50

ICE-BeeM
50p

Baseline
50p

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(g) C10 - ConvMLP-50/50p

ICE-BeeM
90

Baseline
90

ICE-BeeM
90p

Baseline
90p

0.5

0.6

0.7

0.8

0.9

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(h) C10 - ConvMLP-90/90p

ICE-BeeM
200

Baseline
200

ICE-BeeM
200p

Baseline
200p

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(i) C10 - ConvMLP-200/200p

ICE-BeeM
50

Baseline
50

ICE-BeeM
50p

Baseline
50p

0.70

0.75

0.80

0.85

0.90

0.95

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(j) C100 - ConvMLP-50/50p

ICE-BeeM
90

Baseline
90

ICE-BeeM
90p

Baseline
90p

0.65

0.70

0.75

0.80

0.85

0.90

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(k) C100 - ConvMLP-90/90p

ICE-BeeM
200

Baseline
200

ICE-BeeM
200p

Baseline
200p

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(l) C100 - ConvMLP-200/200p

Figure 2: Further experiments on the strong identifiability of learnt representations using the Con-
vMLP architecture on image datasets — C10/100 stands for CIFAR10 and CIFAR100, respectively.

15

ICE-BeeM
Weak

Baseline
Weak

ICE-BeeM
Strong

Baseline
Strong

0.5

0.6

0.7

0.8

0.9

1.0

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(a) MNIST - Unet

ICE-BeeM
Weak

Baseline
Weak

ICE-BeeM
Strong

Baseline
Strong

0.2

0.4

0.6

0.8

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(b) CIFAR10 - Unet

ICE-BeeM
Weak

Baseline
Weak

ICE-BeeM
Strong

Baseline
Strong

0.2

0.4

0.6

0.8

1.0

M
CC

 o
ut

 o
f s

am
pl

e

Identifiability of representations

(c) CIFAR100 - Unet

Figure 3: Further experiments on the identifiability of representations using the Unet architecture on
image datasets.

A.4 Transfer learning experiments

A.4.1 Intuition

As a practical application of our framework where identifiability is important, we consider meta-
learning, in particular multi-task and transfer learning. Assume we have N datasets, which could
be, e.g., different subjects in biomedical settings, or different image datasets. This fits well with our
framework, where y = 1, . . . , N is now the index of the dataset, or "task". The key question in such a
setting is how we can leverage all the observations to better model each single dataset, and especially
transfer knowledge of existing models to a new dataset.

To this end, we propose an intuitively appealing approach, where we approximate the unnormalized
log-pdf in y-th dataset p(x; y) by a linear combination of a learned "basis" functions fi,θ as

log p(x; y) + logZ(θ) ≈
k∑
i=1

gi(y)fi,θ(x) (6)

where the gi(y) are scalar parameters as a function of y, which act as coefficients in the basis (fi,θ).
This linear approximation is nothing else than a special case of ICE-BeeM, but here, we interpret
such an approximation as a linear approximation in log-pdf space. In fact, what we are doing is a
kind of PCA in the set of probability distributions p(x; y). Such "probability space" PCA allows the
models for the different datasets to learn from each other, as in the classical idea of denoising by
projection onto the PCA subspace.

In transfer learning, we observe a new dataset, with distribution p(x; ynew) for ynew = N + 1. Based
on our decomposition, we approximate p(x; ynew) as in (6). This leads to a drastic simplification:
we can learn the basis functions fi,θ from the first N datasets, then we only need to estimate the k
scalar parameters gi(ynew) for the new dataset. The coefficients are likely to be sparse as well, which
provides an additional penalty.

Reducing the transfer learning to estimation of the gi(ynew) clearly requires that we have estimated
the true fi up to a linear transformation, which is the weaker form of identifiability in Theorem 1.
Moreover, using a sparsity penalty is only meaningful if we have the true fi without any linear mixing,
which requires the stronger identifiability in Theorem 2.

Training can be done by any method for EBM estimation. In particular, it is very easy by score
matching because equation (6) is an exponential family for fixed fi (Hyvärinen, 2007).

A.4.2 Further experiments

The pre-training was done on labels 0-7 from the train partition for MNIST, FashionMNIST and
CIFAR10, and on labels 0-84 from the train partition for CIFAR100. The second (transfer) step was
done on labels 8-9 from the train partition for MNIST, FashionMNIST and CIFAR10, and on and
labels 85-99 the train partition for CIFAR100.

16

(a) Transfer learning, fθ fixed (b) Baseline, both fθ and gθ estimated

Figure 4: Further results for transfer learning experiments on MNIST. In the case of transfer learning
99 out of a hundred returned digits are class 8 compared to only 58 in the baseline.

We considered a subset of size 6000 to produce the values in Table [1a]. This table should be read in
conjunction with Figures [1c]-[1d] for a proper evaluation of performance.

We present further plots and results of transfer learning experiments in Figures [5]-[6] and Table [4]
ran on MNIST, FashionMNIST, CIFAR10 and CIFAR100 for a variety of different configurations. for
different configurations and datasets. We considered a subset of size 6000 to produce the values in
Table 4. We expect the baseline where we don’t perform transfer learning to perform comparatively
for such a subset size: transfer learning is mostly important when data is scarce. For the complete
picture, this table should be read in conjunction with Figures [5]-[6].

As an additional way to visualize the results, Figure [4a] shows unseen MNIST samples (taken across
all possible classes) which are assigned high confidence of belonging to the "new" class 8 after
transfer learning, indicating that the ICE-BeeM model has learnt a reasonable distribution over unseen
classes. By comparison the case where no transfer learning is employed (Figure [4b]), incorrectly
assigns high confidences to other digits.

A.5 Semi-supervised learning

In this experiment, we train both an identifiable ICE-BeeM model and an unconditional (non-
identifiable) EBM on classes 0-7. The purpose of this step is to learn a feature extractor fθ that is able
of learning meaningful features from the images. To test the quality of the features learnt by both
models (the ICE-BeeM, and the unconditional EBM), we use the feature map fθ to classify unseen
samples from classes 8-9. Results show that ICE-BeeM outperforms the unconditional baseline in
this classification task. We attribute this to the identifiability of ICE-BeeM: our model seems to be
performing a principled form of disentanglement by learning features that are faithful to the unknown
factors of variation in the data.

Training was done on labels 0-7, using the train partition for MNIST, FashionMNIST and CIFAR10.
Evaluation was done on labels 8-9, using the test partition for all three datasets. This data was in turn
partitioned for the classification into a train and test split. The split proportion is 15% for MNIST
and FashionMNIST, and 33% for CIFAR10 and CIFAR100.

We present further results for the semi-supervised learning experiments in Table [5], ran on MNIST,
FashionMNIST, CIFAR10 for a variety of different configurations.

A.6 IMCA and nonlinear ICA simulations

We give here more detail on the data generation process for the simulations in Section 5.2, as well as
the architectures used.

17

1000 2000 3000 4000 5000 6000
Train dataset size

2

0

2

4

6

8

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(a) MNIST - ConvMLP-50

1000 2000 3000 4000 5000 6000
Train dataset size

0

1

2

3

4

5

6

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(b) MNIST - ConvMLP-200

1000 2000 3000 4000 5000 6000
Train dataset size

7

8

9

10

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(c) FMNIST - ConvMLP-90

1000 2000 3000 4000 5000 6000
Train dataset size

7.8

8.0

8.2

8.4

8.6

8.8

9.0

9.2

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(d) FMNIST - ConvMLP-90p

1000 2000 3000 4000 5000 6000
Train dataset size

5

6

7

8

9

10

11

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(e) CIFAR10 - ConvMLP-200

1000 2000 3000 4000 5000 6000
Train dataset size

7.5

8.0

8.5

9.0

9.5

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(f) CIFAR10 - ConvMLP-200p

1000 2000 3000 4000 5000 6000
Train dataset size

8.0

8.5

9.0

9.5

10.0

10.5

11.0

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(g) CIFAR100 - ConvMLP-50

1000 2000 3000 4000 5000 6000
Train dataset size

8.0

8.5

9.0

9.5

10.0

10.5

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(h) CIFAR100 - ConvMLP-50p

Figure 5: Further transfer learning — the dataset/configuration combo are reported in the captions.

18

1000 2000 3000 4000 5000 6000
Train dataset size

2

4

6

8

10

12

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(a) MNIST - Unet

1000 2000 3000 4000 5000 6000
Train dataset size

10

5

0

5

10

15

20

25

30

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(b) MNIST - Unet-a

1000 2000 3000 4000 5000 6000
Train dataset size

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(c) FMNIST - Unet

1000 2000 3000 4000 5000 6000
Train dataset size

0

5

10

15

20

25

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(d) FMNIST - Unet-a

1000 2000 3000 4000 5000 6000
Train dataset size

7.2

7.4

7.6

7.8

8.0

8.2

8.4

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(e) CIFAR10 - Unet

1000 2000 3000 4000 5000 6000
Train dataset size

0

10

20

30

40

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(f) CIFAR10 - Unet-a

1000 2000 3000 4000 5000 6000
Train dataset size

7.2

7.4

7.6

7.8

8.0

8.2

8.4

8.6

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(g) CIFAR100 - Unet

1000 2000 3000 4000 5000 6000
Train dataset size

6

7

8

9

10

11

12

CD
SM

 O
bj

ec
tiv

e
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(h) CIFAR100 - Unet-a

Figure 6: Further transfer learning — the dataset/configuration combo are reported in the captions.

19

Table 4: Transfer learning — CDSM score (lower is better)
Dataset Configuration f · gθ f · 1 fθ · gθ fθ · 1
MNIST ConvMLP-50 2.95± 0.02 23.43± 0.04 4.22± 0.15 3.64± 0.10

ConvMLP-50p 2.79± 0.00 796.99± 0.86 10.13± 4.74 3.63± 0.09
ConvMLP-90 2.94± 0.01 12.18± 0.03 4.29± 0.13 3.67± 0.12
ConvMLP-90p 3.03± 0.01 694.94± 1.03 10.22± 4.63 3.70± 0.12
ConvMLP-200 2.91± 0.01 27.70± 0.02 4.29± 0.12 3.74± 0.09
ConvMLP-200p 2.95± 0.01 805.45± 3.56 12.08± 3.79 3.71± 0.13
Unet 2.23± 0.01 10.04± 0.01 3.44± 0.03 2.97± 0.25
Unet-a 2.29± 0.01 6.18± 0.00 3.44± 0.02 6.27± 4.21
Unet-p 14.00± 0.01 14.08± 0.00 11.97± 4.01 6.14± 4.17
Unet-50a 2.61± 0.02 14.24± 0.01 3.79± 0.56 2.92± 0.20
MLP-50 13.99± 0.01 13.99± 0.01 14.00± 0.01 14.00± 0.01
MLP-50p 13.99± 0.01 14.00± 0.01 14.00± 0.01 14.00± 0.01
MLP-90 14.00± 0.01 14.00± 0.01 14.00± 0.01 13.99± 0.01
MLP-90p 13.99± 0.01 14.00± 0.01 14.00± 0.01 14.00± 0.01
MLP-200 13.99± 0.01 14.00± 0.01 14.00± 0.01 14.00± 0.01
MLP-200p 13.99± 0.01 13.99± 0.01 14.00± 0.01 14.00± 0.01

FMNIST ConvMLP-50 7.88± 0.01 9.82± 0.03 7.88± 0.07 7.18± 0.25
ConvMLP-50p 8.00± 0.02 197.84± 2.27 7.92± 0.18 7.10± 0.24
ConvMLP-90 8.09± 0.02 10.86± 0.04 7.88± 0.05 7.14± 0.24
ConvMLP-90p 7.94± 0.01 197.93± 2.33 7.87± 0.13 7.13± 0.20
ConvMLP-200 7.98± 0.00 15.86± 0.01 7.91± 0.16 7.17± 0.21
ConvMLP-200p 7.86± 0.01 196.14± 2.07 7.81± 0.15 7.11± 0.15
Unet 6.47± 0.02 277.56± 1.06 6.52± 0.03 6.46± 0.07
Unet-a 6.60± 0.02 24.62± 0.02 6.52± 0.02 6.41± 0.01
MLP-50 13.99± 0.01 14.00± 0.01 13.99± 0.01 14.00± 0.01
MLP-200 13.99± 0.01 14.00± 0.01 13.99± 0.01 14.00± 0.01

CIFAR10 ConvMLP-50 8.02± 0.01 32.09± 0.07 8.36± 0.03 8.15± 0.03
ConvMLP-50p 8.04± 0.02 412.15± 2.54 8.35± 0.04 8.17± 0.01
ConvMLP-90 8.03± 0.01 23.08± 0.04 8.37± 0.02 8.16± 0.05
ConvMLP-90p 8.05± 0.01 408.51± 2.30 8.37± 0.04 8.16± 0.01
ConvMLP-200 8.02± 0.02 13.35± 0.01 8.41± 0.07 8.13± 0.03
ConvMLP-200p 8.06± 0.01 509.09± 2.31 8.35± 0.02 8.11± 0.03
Unet 7.29± 0.01 118.93± 0.34 7.51± 0.05 9.21± 3.43
Unet-a 7.18± 0.01 18.73± 0.01 7.48± 0.09 7.47± 0.13
Unet-50a 7.30± 0.05 16.41± 0.00 7.64± 0.26 7.27± 0.03
MLP-50 16.00± 0.00 16.00± 0.00 16.00± 0.00 16.00± 0.00
MLP-200 16.00± 0.01 16.00± 0.00 16.00± 0.01 16.00± 0.00

CIFAR100 ConvMLP-50 8.25± 0.01 45.19± 0.15 8.69± 0.04 8.59± 0.02
ConvMLP-50p 8.24± 0.01 2560.77± 7.15 8.68± 0.04 8.61± 0.04
ConvMLP-90 8.23± 0.01 8.74± 0.01 8.68± 0.05 8.61± 0.03
ConvMLP-90p 8.25± 0.01 3018.50± 7.27 8.65± 0.02 8.58± 0.03
ConvMLP-200 8.26± 0.01 42.80± 0.09 8.69± 0.06 8.59± 0.03
ConvMLP-200p 8.18± 0.01 3827.36± 16.14 8.65± 0.07 8.63± 0.05
Unet 7.41± 0.02 106.28± 0.75 7.77± 0.05 8.38± 0.55
Unet-a 7.39± 0.02 11.15± 0.01 7.82± 0.42 9.35± 3.33
Unet-50a 7.54± 0.01 15.95± 0.00 7.97± 0.13 7.60± 0.05
MLP-50p 16.00± 0.01 16.00± 0.00 16.00± 0.00 16.00± 0.00
MLP-200p 16.00± 0.01 16.00± 0.00 16.00± 0.00 16.00± 0.00

20

Table 5: Semi-supervised learning — classification accuracy (higher is better)
Dataset Configuration ICE-BeeM Unconditional EBM

MNIST ConvMLP-50 76.98± 1.61 62.82± 1.48
ConvMLP-50p 88.46± 1.14 66.58± 2.64
ConvMLP-90 78.93± 1.51 71.61± 1.71
ConvMLP-90p 78.66± 1.91 69.13± 1.49
ConvMLP-200 81.21± 2.6 71.48± 2.23
ConvMLP-200p 77.38± 1.32 68.99± 1.68
MLP-50 91.74± 1.72 85.77± 1.14
MLP-50p 92.21± 1.74 84.56± 1.1
MLP-90 95.17± 0.46 85.91± 2.07
MLP-90p 94.97± 0.7 85.97± 1.61
MLP-200 94.36± 1.28 89.26± 1.7
MLP-200p 91.81± 2.33 90.87± 1.05
Unet 97.79± 0.34 98.39± 0.68
Unet-a 97.18± 0.5 97.79± 0.78
Unet-50a 97.52± 0.4 97.92± 0.49
Unet-20a 95.64± 0.7 92.08± 1.71

FMNIST ConvMLP-50 77.07± 1.39 56.33± 3.18
ConvMLP-50p 71.67± 1.85 57.6± 2.24
ConvMLP-90 74.13± 1.86 57.73± 3.12
ConvMLP-90p 70.87± 1.13 60.07± 2.9
ConvMLP-200 81.4± 1.93 68.27± 2.78
ConvMLP-200p 78.47± 0.96 57.47± 2.62
MLP-50 98.07± 1.06 90.47± 1.56
MLP-50p 97.6± 0.53 90.47± 1.56
MLP-90 97.8± 0.34 94.4± 0.53
MLP-90p 97.8± 0.34 94.4± 0.53
MLP-200 98.6± 0.49 94.87± 0.96
MLP-200p 98.6± 0.65 95.33± 1.05
Unet 99.67± 0.3 99.93± 0.13
Unet-a 99.53± 0.16 99.87± 0.16

CIFAR10 ConvMLP-50 69.36± 2.23 56.39± 1.0
ConvMLP-50p 64.42± 1.09 51.88± 1.33
ConvMLP-90 68.24± 2.0 52.82± 0.95
ConvMLP-90p 66.18± 1.01 52.33± 1.73
ConvMLP-200 64.73± 1.36 54.18± 1.09
ConvMLP-200p 66.3± 0.99 54.48± 1.28
MLP-50 68.73± 1.35 70.27± 2.67
MLP-50p 69.82± 1.78 69.36± 2.3
MLP-90 71.58± 1.21 72.85± 1.16
MLP-90p 71.12± 1.64 72.85± 1.16
MLP-200 72.39± 1.92 72.97± 1.75
MLP-200p 70.94± 1.25 71.97± 2.29
Unet 80.27± 4.0 80.58± 0.9
Unet-a 80.48± 1.45 80.48± 1.45
Unet-50a 77.64± 1.02 73.79± 0.81
Unet-20a 74.21± 0.73 68.82± 0.67

21

Data generation We generate 5-dimensional synthetic datasets following the nonlinear ICA model
which is a special case of equation (4) where the base measure, µ(z), is factorial. In particular, we
set it to µ(z) = 1. As such, latent variables are conditionally independent given segment labels.
The sources are divided into M = 8 segments, and the conditioning variable y is defined to be the
segment index, uniformly drawn from the integer set [[1,M]]. Following Hyvärinen and Morioka
(2016), the z are generated according to isotropic Gaussian distributions with distinct precisions λ(y)
determined by the segment index. Second, we perform the same experiment but on data generated
from an IMCA model where the base measure µ(z) is not factorial. More specifically, we randomly
generate an invertible and symmetric matrix Σ0 ∈ Rd×d, such that µ(z) ∝ e−0.5zTΣ−1

0 z. As before,
we define λ(y) to be the distinct conditional precisions. The precision matrix of each segment is now
equal to Σ(y)−1 = Σ−1

0 + diag(λ(y))−1, meaning the latent variables are no longer conditionally
independent.

For both nonlinear ICA and IMCA data, a randomly initialized neural network with varying number
of layers, L ∈ {2, 4}, was employed to generate the nonlinear mixing function h. Leaky ReLU with
negative slope equal to 0.1 was employed as the activation function in order to ensure the network
was invertible. The hidden dimensions of the mixing network are equal to the latent dimension dx,
and the output dimension is dx = dz .

Baseline methods The first baseline we compare to is TCL (Hyvärinen and Morioka, 2016), which
is a self-supervised method for nonlinear ICA based on the nonstationarity of the sources. TCL
learns to invert the mixing function h, by performing a surrogate classification task, where the goal is
to classify original observations against their segment indices in a multinomial classification task.
Its theory is premised on the fact that the feature extractor used for the classification has to extract
meaningful latents in order to perform well in the classification task.

The second baseline is iVAE (Khemakhem et al., 2020), a nonlinear ICA method which uses an
identifiable VAE to recover the independent sources. Its theory is premised on the consistency of
maximum likelihood training, and on the flexibility of VAEs in approximating densities. They show
that given enough data, the variational posterior learns to approximate the true posterior distribution,
and can thus be used to invert the mixing function. The iVAE, like a regular VAE, is trained by
maximizing the ELBO (Kingma and Welling, 2013).

Training of ICE-BeeM via flow contrastive estimation To demonstrate that ICE-BeeM can be
trained by any method for training EBMs, we switched from denoising score matching to flow
contrastive estimation (FCE, Appendix B.2). As a contrastive flow, we used a normalizing flow
model (Rezende and Mohamed, 2015), with an isotropic and tractable base distribution. It is then
transformed by a 10-layer flow, where each layer is made of a succession of a neural spline flow
(Durkan et al., 2019), an invertible 1× 1 convolution (Kingma and Dhariwal, 2018), and an ActNorm
layer (Kingma and Dhariwal, 2018). The flow parameters are updated by and Adam optimizer, with a
learning rate of 10−5.

Used architectures The architectures used to produce Figures [1e] and [1f] are summarized by
Table [6].

B Estimation algorithms

It is important to note that the identifiability results presented above apply to conditional EBMs in
general. As such, we may employ any of the wide variety of methods which have been proposed for
the estimation of unnormalized EBMs. In this work we used two different options with good results
for both: flow contrastive estimation (Gao et al., 2019) and denoising score matching (Vincent, 2011).
Both methods can also be extended to the conditional case in a straightforward fashion.

Flow-contrastive estimation (FCE) can be seen as an extension of noise-contrastive estimation
(Gutmann and Hyvärinen, 2012, NCE), which seeks to learn unnormalized EBMs by solving a
surrogate classification task. The proposed classification task seeks to discriminate between the true
data and some synthetic noise data based on the log-odds ratio of the EBM and the noise distribution.
However, a limitation of NCE is the need to specify a noise distribution which can be sampled
from and whose log-density can be evaluated pointwise but which also shares some of the empirical

22

Table 6: Architectures used in the simulations
Model Optimizer Architecture

Input dx = 5
Condition one hot encoded dy = M = 8
Latent dz = dx = 5
Num. layers L ∈ {2, 4}

ICE-BeeM Adam fθ (L+ 1)-layer MLP
lr 3.10−4 batch norm after each FC layer

hidden dim 32, LeakyReLU(0.1) act
gθ (dz × dy) learnable matrix

iVAE Adam Encoder p(z|x) Normal
lr 10−3 3-layer MLP

hidden dim 2dx, LeakyReLU(0.1) act
Decoder p(x|z,y) Normal

3-layer MLP
hidden dim 2dx, LeakyReLU(0.1) act

Prior p(z|y) Normal
3-layer MLP
hidden dim 2dx, LeakyReLU(0.1) act

TCL Momentum 0.9 L-layer MLP
lr 0.01 FC 2dx, maxout(2)
exp decay 0.1 (L− 2)× [FC dx, maxout(2)]

FC dx, absolute value

properties of the observed data. To address this concern Gao et al. (2019) propose to employ a flow
model as the contrast noise distribution. FCE seeks to simultaneously learn both an unnormalized
EBM as well as a flow model for the contrast noise in an alternating fashion. We naturally get a
conditional version for FCE by learning a conditional EBM (Gao et al., 2019, eq. 12).

Score matching is another well-known method for learning unnormalized models (Hyvärinen, 2005).
However, its computational implementation in deep networks is problematic, which is why Vincent
(2011) proposed a stochastic approximation which can be interpreted as denoising the data, and
which works efficiently in deep networks (Saremi et al., 2018; Song and Ermon, 2019).

B.1 Conditional denoising score matching

We extend the original score matching objective to the conditional setting in a natural
way: for a fixed y, we compute the unconditional score matching objective: J(θ,y) =

Ep(x|y) ‖∇x log pθ(x|y)−∇x log p(x|y)‖2, and then average over all values of y. The expres-
sion of the conditional score matching objective is then:

JCSM(θ) = Ep(x,y) ‖∇x log pθ(x|y)−∇x log p(x|y)‖2 (7)

We build on the recent developments by Vincent (2011), and introduce a conditional denoising score
matching objective by replacing the unknown density by a kernel density estimator. Formally, given
observations D =

{(
x(1),y(1)

)
, . . . ,

(
x(N),y(N)

)}
, we first derive nonparamteric kernel density

estimates of p(x,y) and p(y), which we then use to derive the estimate for p(x|y) using the product
rule. These estimates have the forms:

qb(y) = Ey′∼qD [lb(y|y′)] (8)

qab(x,y) = E(x′,y′)∼qD [ka(x|x′)lb(y|y′)] (9)

qab(x|y) =
qab(x,y)

qb(y)
(10)

23

where ka and lb are bounded kernel functions defined on X and Y and with bandwidths5 a and b,
respectively. In the following, we assume that the bandwidth sequences are equal (a = b = σ).

We replace p(x,y) and p(x|y) in (7) by their estimates qσ(x,y) and qσ(x|y), to arrive at the new
objective

JCSMσ (θ) = Eqσ(x,y) ‖∇x log pθ(x|y)−∇x log qσ(x|y)‖2 (11)
which is the conditional score matching objective when applied to the nonparametric estimates of the
unknown target density. We will show below that it is equivalent to a simpler objective, in which we
only need to compute gradients of the conditioning kernel kσ(x|y):

JCDSMσ (θ) = E‖∇x log pθ(x|y)−∇x log kσ(x|x′)‖2 (12)

where the expectation is taken with respect to pD(x′,y′)kσ(x|x′)lσ(y|y′). We call this objective
conditional denoising score matching. Its extrema landscape is the same as JCSMσ , but it has the
advantage of being simpler to evaluate and interpret.

Above, we presented this objective when kσ is the Gaussian kernel, and lσ is simply the identity
kernel.

From CSM to CDSM We will show here that the stochastic approximation used in denoising score
matching can also be used for the conditional case to get to the CDSM objective (12) from the CSM
objective (11):

JCSMσ (θ) = Eqσ(x,y)

∥∥∥∥∇x log
pθ(x|y)

qσ(x|y)

∥∥∥∥2

= Eqσ(x,y) ‖∇x log pθ(x|y)‖2 − S(θ) + C1 (13)

where C1 is a constant term that only depends on qσ(x|y), and

S(θ) = Eqσ(x,y)〈∇x log pθ(x|y),∇x log qσ(x|y) 〉

=

∫
qσ(x,y)〈∇x log pθ(x|y),

∇xqσ(x|y)

qσ(x|y)
〉dxdy

=

∫
qσ(y)〈∇x log pθ(x|y),∇xqσ(x|y) 〉dxdy

=

∫
qσ(y)〈∇x log pθ(x|y),∇x

∫
pD(x′,y′)kσ(x|x′)lσ(y|y′)dx′dy′

qσ(y)
〉dxdy

=

∫ ∫
pD(x′,y′)lσ(y|y′)kσ(x|x′)〈∇x log pθ(x|y),∇x log kσ(x|x′) 〉dx′dy′dxdy

= EpD(x′,y′)kσ(x|x′)lσ(y|y′)〈∇x log pθ(x|y),∇x log kσ(x|x′) 〉
Plugging this back into equation (13), we find that

JCSMσ (θ) = E‖∇x log pθ(x|y)−∇x log kσ(x|x′)‖2 + C1 − C2

= JCDSMσ (θ) + C1 − C2

where the expectation is with respect to pD(x′,y′)kσ(x|x′)lσ(y|y′) and C2 is another constant that
is only a function of kσ(x|x′). �

B.2 Conditional flow contrastive estimation

As described above, FCE learns the parameter for the density pθ of an EBM by performing a surrogate
classification task: noise is generated from a noise distribution qα which is parameterized as a flow
model, and a logistic regression is performed to classify observation into real data samples or noise
samples. The objective function is simply the log-odds:

JFCE(θ,α) = Epdata(x)
log

pθ(x)

qα(x) + pθ(x)
+ Eqα(x) log

qα(x)

qα(x) + pθ(x)
(14)

This objective is minimized with respect to θ and maximized with respect to α: the EBM and the
flow model are playing a min-max game. This objective can be extended to the conditional case

5the bandwidths satisfy a = aN and b = bN , and are positive bandwidth sequences which decay to 0 as
N → +∞, where N is the size of the dataset D.

24

naturally: we replace the model density by the conditional density pθ(x|y). In the conditional case,
it follows that noise samples should also be associated with a conditioning variable, y. One way this
can be achieved is by also considering a conditional flow. This also has the additional benefit that an
improved flow should lead to better estimation of EBM. Alternatively, a standard (non-conditional)
flow could be employed. This would require marginalizing over the conditioning variable, y. The
objective simply becomes:

JCFCE(θ,α) = Epdata(x,y)
log

pθ(x|y)

qα(x,y) + pθ(x|y)
+ Eqα(x,y) log

qα(x,y)

qα(x,y) + pθ(x|y)
(15)

We can write the flow density as qα(x,y) = p(y)qα(x|y). This is particularly useful when the
conditioning variable y is discrete, like for instance the index of a dataset or a segment, as we
can sample draw a index from a uniform distribution, and use the conditional flow to sample an
observation.

C Identifiability of the conditional energy-based model

Recall the form of our conditional energy model

pθ(x|y) = Z(y;θ)−1 exp
(
−fθ(x)Tgθ(y)

)
(16)

We present in this section the proofs for the different forms of identifiability that is guaranteed for
the feature extractors f and g. We will focus on the proofs for the feature extractor f , as the proofs
for the feature extractor g are very similar. For the rest of the Appendix, we will denote by d = dx,
m = dy and n = dz .

C.1 More on the equivalence relations

The relation ∼f
w in equation (2) is an equivalence relation in the strict term only if A is full rank. If

A is not full rank (which is only possible if dz > dx, given the rest of assumptions), then it is not
necessarily symmetric. This is not a real problem, and can be fixed by changing the definition to:
there exists A1,A2 such that fθ = A1fθ′ + c1 and fθ′ = A2fθ + c2. We present the simpler version
in the paper for clarity.

C.2 Proof of Theorem 1

We start by proving the main theoretical result of this paper, which applies to all dimensions of the
feature extractor. Alternative and weaker assumptions are discussed after the proof.
Theorem 1 (Identifiable conditional EBMs). Assume:

1. The feature extractor f is differentiable, and its Jacobian Jf is full rank.

2. There exist n+ 1 points y0, . . . ,yn such that the matrix

R =
(
g(y1)− g(y0), . . . ,g(yn)− g(y0)

)
(17)

of size n× n is invertible.

then
pθ(x|y) = pθ′(x|y) =⇒ θ ∼f

w θ′

where ∼f
w is defined as follows:

θ ∼f
w θ′ ⇔ fθ(y) = Afθ′(y) + c (18)

A is a (dz × dz)-matrix of rank at least min(dz, dx).

If, instead or in addition, we assume that:

3. The feature extractor g is differentiable, and its Jacobian Jg is full rank.

4. There exist n+ 1 points x0, . . . ,xn such that the matrix

Q =
(
f(x1)− f(x0), . . . , f(xn)− f(x0)

)
of size n× n is invertible.

25

then
pθ(x|y) = pθ′(x|y) =⇒ θ ∼g

w θ′

where ∼g
w is defined as follows:

θ ∼g
w θ′ ⇔ gθ(y) = Bgθ′(y) + e (19)

B is a (dz × dz)-matrix of rank at least min(dz, dx).

Finally, if dz ≥ max(dx, dy) and all assumptions 1- 4 hold, then the matrices A and B have full
rank (equal to dz).

Proof. We will only prove this theorem for the feature extractor f . The proof for g is very similar.
Suppose assumptions 1 and 2 hold.

Consider two parameters θ and θ̃ such that

pθ(x|y) = pθ̃(x|y) (20)

Then, by applying the logarithm to both sides, we get:

logZ(y;θ)− fθ(x)Tgθ(y) = logZ(y; θ̃)− fθ̃(x)Tgθ̃(y) (21)

Consider the points y0, . . . ,yn provided by assumption 2 for gθ. We plug each of these points in
(21) to obtain n + 1 such equations. We subtract the first equation for y0 from the remaining n
equations, and write the resulting equations in matrix form:

Rfθ(x) = R̃fθ̃(x) + b (22)

where R = (. . . ,gθ(yl) − gθ(y0), . . .), R̃ = (. . . ,gθ̃(yl) − gθ̃(y0), . . .), and b =

(. . . , log Z(yl;θ)

Z(yl;θ̃)
− log Z(y0;θ)

Z(y0;θ̃)
, . . .). Since R is invertible (by assumption 2), we multiply by its

inverse from the left to get:
fθ(x) = Afθ̃(x) + c (23)

where A = R−1R̃ and c = R−1b. Now since fθ is differentiable and its Jacobian is full rank
(assumption 1), by differentiating the last equation we deduce that rank(A) ≥ min(n, d), which in
turn proves that θ ∼f

w θ̃.

Finally, suppose that in addition, assumptions 4 holds. Then there exists x0, . . .xn such that
Q := (. . . , fθ(xi)− fθ(x0), . . .). Plugging these n + 1 points into equation (23), and subtracting
the first equation for x0 from the remaining n equations, we get

Q = A(. . . , fθ̃(xi)− fθ̃(x0), . . .) (24)

Since Q is an n× n invertible matrix, we conclude that A is also invertible, which concludes the
proof. �

Intuition behind assumption 2 Assumption 2 requires that the conditioning feature extractor g
has an image that is rich enough. Intuitively, this relaxes the amount of flexibility the main feature
extractor f would need to have if g were to be very simple. It implies that the search for f will be
naturally restricted to a smaller space, for which we can prove identifiability.

Proof under weaker assumptions Assumption 1 of full rank Jacobian can be weakened without
changing the conclusion of Theorem 1. In fact, this assumption is only used right after equation (23)
to prove that the matrix A has a rank that is at least equal to min(n, d). Suppose instead that

1.’ There exists a point x0 ∈ Rd where the Jacobian Jfθ of fθ exists and is invertible

Then by computing the differential of equation (23) at x0 (assuming that Jfθ̃
(x0) exists), we can

make the same conclusion on the rank of A.

In fact, this condition can be scrapped altogether if we relax the definition of the equivalence class in
Appendix C.1 to have no conditions on the ranks of matrices A1 and A2. This however comes at the
expense of a relatively weak, and potentially meaningless, equivalence class.

Finally, assumption 2 of Theorem 1 can be replaced by requiring the Jacobian of gθ to be differentiable
and full rank in at least one point, but this requires the conditioning variable to be continuous.

26

C.3 Proof of Proposition 1

Proposition 1. Consider an MLP with L layers, where each layer consists of a linear mapping with
weight matrix Wl ∈ Rdl×dl−1 and bias bl, followed by an activation function. Assume

a. All activation functions are LeakyReLUs.

b. All weight matrices Wl are full rank.

c. The row dimension of the weight matrices are either monotonically increasing or decreasing:
dl ≥ dl+1,∀l ∈ [[0, L− 1]] or dl ≤ dl+1,∀l ∈ [[0, L− 1]].

Then the MLP has a full rank Jacobian almost everywhere. If in addition, dL ≤ d0, then the MLP is
surjective.

Proof. Denote by x the input to the MLP, and by xl the output of layer l,

x0 = x (25)

xl = Wlx
l−1 + bl (26)

xl = h(Wlx
l−1 + bl) = h(xl) (27)

h(y) = αy1y<0 + y1y>0 (28)

with h in equation (27) is applied to each element of its input, and α ∈ (0, 1).

Denote by vl ∈ Rdl the vector whose elements are

vlk = h′(xlk) =

{
1 if xlk > 0

α if xlk < 0
(29)

which is undefined if xlk = 0, and by Vl = diag(vl). Note that Vl is a function of its input, and thus
of x, but we keep this implicit for simplicity. Using these notations, and the fact that h is piece-wise
linear, we can write,

xL = h(xL) = VLxL = VLWLxL−1 + VLbL−1 = · · · = V
L
x + b

L
(30)

where V
l

= VlWlVl−1Wl−1 . . .V1W1, b
0

= 0 and b
l

= Vlbl + VlWlb
l−1

. This is of course
only possible if xlk 6= 0 for all l ∈ [[1, L]] and all k ∈ [[1, dl]]. As such, define the set

N =

L⋃
l=1

dl⋃
k=1

{
x ∈ Rd|xlk = 0

}
=

L⋃
l=1

dl⋃
k=1

{
x ∈ Rd|(vlk)Tx + b

l

k = 0
}

(31)

where vlk is the k-th row of V
l
. For each x /∈ N , we have that Vl is full rank, and, using Lemma 2,

V
l

is also a full rank matrix.

While it is true that b
l

k and vlk are functions of x, yet they only take a finite number of values. Thus,
the set

{
x ∈ Rd|(vlk)Tx + b

l

k = 0
}

is included in the union over all the values taken by b
j

k and vjk

up to layer l. For each of these values, the set becomes a dot product between a row of V
j

which is
independent of the input x, and is nonzero because V

j
is full rank; such set has measure zero in Rd.

Thus, N is included in a finite union of sets of measure zero, which implies that it also has measure
zero.

Now, for all x /∈ N , ∂x
L

∂x exists, and can be computed using the chain rule:

∂xL

∂x
=

1∏
l=L

∂xl

∂xl−1
=

1∏
l=L

∂xl

∂xl
∂xl

∂xl−1
=

1∏
l=L

VlWl = V
L

(32)

which is full rank. Thus, the MLP has a full rank Jacobian almost everywhere.

The surjectivity is easy to prove since h is surjective and so is xl as a function of xl−1 if dl−1 ≥ dl
and rank(Wl) = dl. �

27

Lemma 1. Denote by σmin(A) the smallest singular value of a matrix A. Let M be an m × n
matrix, and N be an n × p matrix, such that m ≤ n ≤ p or m ≥ n ≥ p. Then σmin(MN) ≥
σmin(M)σmin(N).

Proof. The proof in the case m ≥ n ≥ p can be found in (Arbel et al., 2018, Lemma 10), but we
provide a proof here for completeness, and for the other case m ≤ n ≤ p.

Let Rn∗ := Rn \ {0}, and λmin(A) the smallest eigenvalue of A. Recall that for a matrix A ∈ Rn×m,
with m ≥ n,

σmin(A) =
√
λmin(ATA) =

√
inf

x∈Rn∗

xTATAx

xTx
= inf

x∈Rn∗

‖Ax‖
‖x‖

(33)

Thus, if the null space of N is non trivial, then σmin(N) = 0, and the inequality is satisfied. Otherwise,
we have Nx 6= 0, ∀x ∈ Rn∗ ,

σmin(MN) = inf
x∈Rp∗

‖MNx‖
‖x‖

= inf
x∈Rp∗

‖MNx‖ ‖Nx‖
‖Nx‖ ‖x‖

≥
(

inf
x∈Rp∗

‖MNx‖
‖Nx‖

)(
inf

x∈Rp∗

‖Nx‖
‖x‖

)
≥
(

inf
x∈Rn∗

‖Mx‖
‖x‖

)(
inf

x∈Rp∗

‖Nx‖
‖x‖

)
= σmin(M)σmin(N)

If, instead, A ∈ Rm×n with m ≤ n, then

σmin(A) =
√
λmin(AAT) =

√
inf

x∈Rm∗

xTAATx

xTx
= inf

x∈Rm∗

∥∥ATx
∥∥

‖x‖
(34)

Similarly, if the null space of MT is non trivial, then σmin(MT) = σmin(M) = 0, and the inequality
holds. Otherwise, we have MTx 6= 0, ∀x ∈ Rm∗ ,

σmin(MN) = inf
x∈Rm∗

∥∥NTMTx
∥∥

‖x‖

= inf
x∈Rm∗

∥∥NTMTx
∥∥∥∥MTx

∥∥
‖MTx‖ ‖x‖

≥

(
inf

x∈Rm∗

∥∥NTMTx
∥∥

‖MTx‖

)(
inf

x∈Rm∗

∥∥MTx
∥∥

‖x‖

)

≥

(
inf

x∈Rn∗

∥∥NTx
∥∥

‖x‖

)(
inf

x∈Rm∗

∥∥MTx
∥∥

‖x‖

)
= σmin(N)σmin(M)

which concludes the proof. �

Lemma 2. Consider a finite sequence of matrices (Mi)1≤i≤p, with Mi ∈ Rni−1×ni . If Mi is full
rank for all i ∈ [[1, p]], and either n0 ≤ n1 ≤ . . . ≤ np or n0 ≥ n1 ≥ . . . ≥ np, then the product
M1M2 . . .Mp is also full rank.

Proof. If two matrices M1 and M2 with ordered dimensions are full rank, then σmin(M1) > 0 and
σmin(M2) > 0. According to Lemma 1, this implies that σmin(M1M2) > 0, and that M1M2 is full
rank. The proof for p ≥ 3 is done by induction on p. �

C.4 Proof of Proposition 2

Linear MLPs The particular case of linear feature extractors is quite interesting. If dz ≤ dy and the
feature extractor g satisfies the assumptions of Proposition 1, then assumption 2 is trivially satisfied.

28

On the other hand, if dz > dy , then assumption 2 can’t hold when the network is linear. This signals
that it is important to use deep nonlinear networks to parameterize the feature extractors, at least in
the overcomplete case.

Proposition 2. Consider an MLP g with L layers, where each layer consists of a linear mapping
with weight matrix Wl ∈ Rdl×dl−1 and bias bl, followed by an activation function. Assume

a. All activation functions are LeakyReLUs.

b. All weight matrices Wl are full rank.

c. All submatrices of Wl of size dl × dl are invertible if dl < dl+1.

Then there exist dL + 1 points y0, . . . ,ydL such that the matrix R =(
g(y1)− g(y0), . . . ,g(ydL)− g(y0)

)
is invertible.

Proof. Let y0 be an arbitrary point in Rd0 . Without loss of generality, suppose that g(y0) = 0. This
is because y 7→ g(y) − g(y0) is still an MLP that satisfies all the assumptions above. If for any
choice of points y1 to ydL , the matrix R defined above isn’t invertible, then this means that g(Rd0)
is necessarily included in a subspace of RdL of dimension at most dL − 1. In other words, this would
imply that the functions g1, . . . , gdL are not linearly independent. However, this is in contradiction
with the result of Lemma 8, which stipulates that g1, . . . , gdL are linearly independent, provided all
weight matrices satisfy the assumptions of the lemma (which are the same as the assumptions made
in this proposition).

Thus, we can conclude that there exist dL + 1 points y0, . . . ,ydL such that the matrix R =(
g(y1)− g(y0), . . . ,g(ydL)− g(y0)

)
is invertible. �

Proof under weaker conditions Note that the proof argument used for the overcomplete case
can be used for the undercomplete as well. This same argument can be proved for ReLU as the
nonlinearity instead of LeakyReLU. We chose to give the proof for, and suggest to use the latter
because it is needed for Proposition 1.

Lemma 3. Let A be an n× n invertible matrix. Denote by an the n-th row of A. Then the matrix
B ∈ Rn+1,n+1 such that

B =


γ1

A
...

γn−1

λ
an 1

 (35)

is invertible for any choice of γ1, . . . , γn−1, and for λ 6= 1.

Proof. Denote by bi the i-th row of B. Let α1, . . . , αn+1 such that

n+1∑
i=1

αibi = 0 (36)

Then in particular, by looking at the first n lines of this vectorial equation, we have that
∑n−1
i=1 αiai +

(αn + αn+1)an = 0. Since A is invertible, its rows are linearly independent, and thus αn = −αn+1

and αi = 0, ∀i < n. Plugging this back into equation (36), and looking closely at the last equation,
we have that (1− λ)αn = 0, and we conclude that αn+1 = αn = 0 (because λ 6= 1), and that B is
invertible. �

Lemma 4. Consider n affine functions fi : x ∈ Rd 7→ aTi x + bi, such that the matrix A ∈ Rn×d
whose rows are the ai is full column rank, and all its submatrices of size d × d are invertible if
d < n. Then there exist n non-empty regionsH1, . . . ,Hn of Rd defined by the signs of the functions
fi (for instance, H = {x ∈ Rn|∀i, fi(x) > 0}) such that the matrix Sn ∈ Rn×n defined as
Sni,j = signx∈Hi(fj(x)) is invertible.

Proof. We will prove this Lemma by induction on n the number of functions fi. Denote by
Vi = {x ∈ Rd|fi(x) = 0}. The sign of fi changes if we cross the hyperplan Vi.

29

First, suppose that n = 2. By assumption, we now that a1 6∝ a2, and thus the hyperplans V1 and V2

are not parallel and divide Rd into 4 regions. This implies that the regionsH1 = {x ∈ Rd|aT1 x+b1 >
0,aT2 x + b2 > 0} andH2 = {x ∈ Rd|aT1 x + b1 > 0,aT2 x + b2 < 0} are not empty.

Second, suppose that there exists n regions H1, . . .Hn such that the the matrix Sn is invertible.
Consider the affine function fn+1 = aTn+1x+ bn+1. The hyperplan Vn+1 = {x ∈ Rd|fn+1(x) = 0}
intersects at least one of the regions H1, . . .Hn. This is because (. . . ,ai, . . .)i∈J) are linearly
independent for any J of size min(d, n+ 1) such that n+ 1 ∈ J , and thus there exists i0 such that
an+1 6∝ ai0 . Suppose without loss of generality that this region is Hn. Denote by H̃n = {x ∈
Rn|x ∈ Hn, fn+1(x) < 0} ⊂ Hn. Now consider the matrix S̃n such that S̃nn,j = signx∈H̃n(fj(x))

and S̃ni,j = Sni,j . Because H̃n ⊂ Hn, we have that signx∈Hn(fj(x)) = signx∈H̃n(fj(x)) and
thus S̃n = Sn, which implies that S̃n is also invertible. Now define Hn+1 = {x ∈ Rn|x ∈
Hn, fn+1(x) > 0} ⊂ Hn. Again, the inclusion implies that signx∈Hn(fj(x)) = signx∈H̃n(fj(x)).
Finally, consider the regions H1, . . . ,Hn−1, H̃n,Hn+1, and the matrix Sn+1 defined on those
regions. Then

Sn+1 =


u1

Sn
...

un−1

−1
snn 1

 (37)

where ui = signx∈Hi fn+1(x) and snn is the n-th line of Sn. According to Lemma 3, Sn+1 is
invertible, which achieves the proof. �

Lemma 5. Let h denote a LeakyReLU activation function with slope λ ∈ [0, 1) (if λ = 0, then h is
simply a ReLU). Consider n piece-wise affine functions gi : x ∈ Rd 7→ h(aTi x + bi), such that the
matrix A ∈ Rn×d whose rows are the ai is full column rank, and all its submatrices of size d× d are
invertible if d < n. Then the functions g1, . . . , gn are linearly independent, and their generalized
slopes (as piece-wise affine functions) are also linearly independent.

Proof. Let fi = aTi x + bi such that gi = h(fi) = 1fi≥0fi + 1fi<0λfi.

The assumptions of Lemma 4 are met for the function f1, . . . , fn, and we conclude that there exists n
regionsH1, . . . ,Hn such that Sn =

(
signx∈Hi(fj(x))

)
i,j

is invertible. Define the matrix S̃ where

we replace all entries of Sn by λ if they are equal to −1. Then S̃ is invertible (in fact, to see this,
consider the proof of the previous lemma with the slightly unconventional choice of sign function
sign(x) = λ if x < 0).

Now consider α1, . . . , αn such that
n∑
i=1

αigi = 0 (38)

Let k ∈ [[1, n]], and evaluate this equation at x ∈ Hk. After taking the gradient with respect to x, we
get ∑

i

(1x∈Hk,fi(x)≥0 + λ1x∈Hk,fi(x)<0)αiai = 0 (39)

Denote by s̃k the k-th line of the matrix S̃, and define el = (α1a1,l, . . . , αnan,l) ∈ Rn. We can write
the l-th line of equation (39) as:

s̃Tk el = 0 (40)

Collating these equations for a fixed l and k ∈ [[1, n]], we get

S̃el = 0 (41)

which implies that el = 0 because S is invertible. In particular, αiai,l = 0 for all i ∈ [[1, n]] and l ∈
[[1, d]]. This implies that AT

JαJ = 0, where J ⊂ [[1, n]] of size min(n, d), AJ = (ai,l)i∈J,l∈[[1,d]] ∈
Rd×d is a submatrix of A and αJ = (αi)i∈J ∈ Rd. Since we know, by assumption, that AJ is
invertible for any choice of set of indices J (relevant when n > d), we conclude that α = 0 and that
the functions g1, . . . , gn are linearly independent.

30

Each function gi is a piece-wise affine function, with a "generalized slope" equal to ãi(x) =
(1fi≥0(x) + λ1fi<0(x))ai. As a corollary of the independence of g1, . . . gn, we can conclude that
the slopes ã1(x), . . . , ãn(x) are also independent. �

Lemma 6. Let f = (f1, . . . , fn) be a vector-valued function defined on Rd. We suppose that
f1, . . . , fn are linearly independent piece-wise affine functions, and that their generalized slopes
a1(x), . . . ,an(x) are also linearly independent. Consider m piece-wise affine functions gi : x ∈
Rd 7→ cTi f(x) + di, such that the matrix C ∈ Rm×n whose rows are the ci is full column rank,
and all its submatrices of size n× n are invertible if n < m. Then there exist m non-empty regions
K1, . . . ,Km of Rd defined by the signs of the functions gi such that the matrix Tm ∈ Rm×m defined
as Tmi,j = signx∈Ki(gj(x)) is invertible.

Proof. Denote by c̃i(x) the generalized slope of the p.w. affine function gi: c̃i(x) =
∑
j ci,jaj(x).

The key is to show than under the assumptions made here, the slopes (. . . , c̃i(x), . . .)i∈J are linearly
independent for any choice of subset J ⊂ [[1,m]] of size min(m,n).

If m > n, chose a subset J ∈ [[1,m]] of size n, and let (αi)i∈J such that
∑
i∈J αic̃i(x) = 0. By

replacing c̃i by its expression, we get:
∑
j(
∑
i αici,j)aj(x) = 0. Since a1, . . . ,an are linearly

independent, we conclude that
∑
i∈J αici,j = 0 for all j ∈ [[1, n]]. This, along with the full rank

assumption on C prove that (αi)i∈J = 0 and that (. . . , c̃i(x), . . .)i∈J are linearly independent. We
can use the same argument if, instead, m ≤ n, where J = [[1,m]], and conclude.

The rest of the proof follows the same argument of the proof of Lemma 4: we proceed by induction
on m. For m = 2, we know that c̃1 6∝ c̃2, and so the "generalized hyperplans" defined by these two
vectors divide Rd into at least 3 different regions, 2 of which yield a matrix T2 that is invertible.
Then, if the result hold for m, then the hyperplan defined by the generalized slope of the (m+ 1)-th
p.w. affine function gm+1 necessarily intersects one of the regions K1, . . . ,Km since for any subset
J of size min(m + 1, n) s.t. (m + 1) ∈ J , the generalized slopes (. . . , c̃i(x), . . .)i∈J are linearly
independent. The rest is identical to Lemma 4. �

Lemma 7. Let h denote a LeakyReLU activation function with slope λ ∈ [0, 1) (if λ = 0, then h
is simply a ReLU), and f = (f1, . . . , fn) be a vector-valued function defined on Rd. We suppose
that f1, . . . , fn are linearly independent piece-wise affine functions, and that their generalized
slopes a1(x), . . . ,an(x) are also linearly independent. Consider m piece-wise affine functions
gi : x ∈ Rd 7→ h(cTi f(x)+di), such that the matrix C ∈ Rm×n whose rows are the ci is full column
rank, and all its submatrices of size n× n are invertible if n < m. Then the functions g1, . . . , gm are
linearly independent, and their generalized slopes are also linearly independent.

Proof. Let g̃i = cTi f + di such that gi = h(g̃i). The assumptions of Lemma 6 are met for the
functions g̃1, . . . , g̃m, and we conclude that there exists m regions K1, . . . ,Km such that Tm =(
signx∈Ki(g̃j(x))

)
i,j

is invertible. Let T̃ the invertible matrix equal to Tm after substituting −1 for
λ.

Now consider α1, . . . , αm such that
∑m
i=1 αigi = 0 After taking the gradient with respect to x, we

get: ∑
j

(
∑
i

αi(1g̃i≥0(x) + λ1g̃i<0(x))ci,j)αj(x) = 0 (42)

Since a1, . . . ,an are independent, we conclude that
∑
i αi(1g̃i≥0(x) + λ1g̃i<0(x))ci,j for all j ∈

[[1,m]]. This in turn implies that∑
i

αi(1g̃i≥0(x) + λ1g̃i<0(x))ci = 0 (43)

Let k ∈ [[1,m]], and evaluate the last equation at x ∈ Kk:∑
i

(1x∈Hk,fi(x)≥0 + λ1x∈Hk,fi(x)<0)αici = 0 (44)

This last equation is similar to equation (39), and we can use the same argument used for the proof of
Lemma 5 here (using T̃ instead of S̃) and deduce that αi = 0 for all i.

We conclude that g1, . . . , gm are linearly independent, and so are their generalized slopes as a
consequence. �

31

Lemma 8. Let fL = (fL1 , . . . , f
L
dL

) be the output of an L-layer MLP (we assume that L ≥ 2: there
is at least one nonlinearity) that satisfies:

(a.) All activation functions are LeakyReLUs with slope λ ∈ [0, 1) (if λ = 0, then the activation
function is simply a ReLU).

(b.) All weight matrices Wl ∈ Rdl+1×dl are full rank, and all submatrices of Wl of size dl × dl
are invertible if dl < dl+1.

Then fL1 , . . . , f
L
dL

are linearly independent. In addition, all the intermediate features (f l1, . . . , f
l
dl

)
are also linearly independent.

Proof. We prove the Lemma by induction on the number of layers L ≥ 2. If L = 2, then by Lemma
5, we conclude that f1, . . . , fn are independent. If we suppose the result hold for L ≥ 2, we can use
Lemma 7 to prove that it also holds for L+ 1. Finally, since all layers satisfy the same conditions,
the conclusion also applies to intermediate layers. �

C.5 Proof of Theorem 2

We will decompose Theorem 2 into two sub-theorems, which will make the proof easier to understand,
but also more adaptable into future work. Each of these sub-theorems corresponds to one of the
assumptions.

C.5.1 Positive features

We will prove here a more general version where we assume that each component fi of the feature
extractor f has a global minimum that is reached, instead of being necessarily non-negative.
Theorem 2a. Assume the assumptions of Theorem 1 hold. Further assume that n ≤ d, and that each
fi has a global minimum that is reached at least in the limit, and the feature extractor f = (f1, . . . , fn)
is surjective onto the set that is defined by the lower bounds of the fi. Then

pθ(x|y) = pθ′(x|y) =⇒ θ ∼s θ′

where ∼s is defined as follows:

θ ∼s θ′ ⇔ ∀i, fi,θ(x) = aifσ(i),θ′(x) + bi (45)

where σ is a permutation of [[1, n]], ai is a non zero scalar and bi is a scalar.

Proof. Consider two different parameters θ and θ̃ such that:

pθ(x|y) = pθ̃(x|y) (46)

To simplify notations, denote by f = fθ and f̃ = fθ̃. We start the proof from the conclusion of
Theorem 1, since its assumptions hold:

f(x) = Af̃(x) + c (47)

where A is an invertible n × n matrix and c a constant vector. Without loss of generality, we can
suppose that fi has an infimum equal to zero, simply by subtracting inf fi, and including in c, and
similarly for f̃ . We will also suppose that the infima are reached, as the next argument would hold if
we change exact minima by limits.

Now since f ≥ 0 and is surjective, then there exists x0 ∈ Rd such that f(x0) = 0. This implies
that c = −Af̃(x0), and that f(x) = A(f̃(x)− f̃(x0)). Define h(x) = f̃(x)− f̃(x0). We know that
f̃ ≥ 0 and is surjective, and so h is also surjective, and its image includes Rn+. Let I = (e1, . . . , en)
be the matrix of canonical basis vectors, or positive scalar multiples of the canonical basis vectors ei.
These must be mapped to the non-negative quadrant, so AI must be non-negative, which implies that
A must be non-negative.

Denote by B = A−1. B is also non-negative for the same reasons described above. Denote the rows
of A by ai and the columns of B by bj . We have by definition of inverse:

aTi bj = δij (48)

32

where if i = j then δij = 1, else δij = 0. Now, assume there is a row ak which has at least two
non-zero entries. By the property above, d− 1 of the vectors bj must have zero dot-product with
that vector. By non-negativity of B and A, those d− 1 vectors must have zeros in the at least two
indices corresponding to the non-zeros of ak. But that means they can only span a d− 2-dimensional
subspace, and all the bj together can only span a d−1-dimensional subspace. This is in contradiction
of the invertibility of B. Thus, each ai can have only one non-zero entry, which, together with the
invertibility of A, proves it is a scaled permutation matrix.

Thus, there exists a permutation σ of [[1, n]], such that fi(x) = ai,σ(i)f̃σ(i)(x) + ci, which concludes
the proof. �

C.5.2 Augmented features

Theorem 2b. Assume that n ≤ d, and that:

1. The feature extractor f is differentiable and surjective, and its Jacobian Jf is full rank.

2. There exist 2n+ 1 points y0, . . . ,y2n such that the matrix

R̃ =
(
g̃(y1)− g̃(y0), . . . , g̃(y2n)− g̃(y0)

)
(49)

of size 2n× 2n is invertible.

Then
pθ(x|y) = pθ′(x|y) =⇒ θ ∼s θ′

where ∼s is defined in (45).

Proof. Similarly to the proof of Theorem 2a, we pass the features fi through the nonlinear function
Hi(fi) = (fi, f

2
i) which produces the augmented features f̃ introduced in section 2.2.2.

Consider two different parameters θ and θ̃ such that:
pθ(x|y) = pθ̃(x|y) (50)

Since we have similar assumptions to Theorem 1, we will skip the first part of the proof and make the
same conclusion, where the equivalence up to linear transformation here applies to H(fθ) and H(fθ̃):

H(fθ(x)) = AH(fθ̃(x)) + c (51)
where A is a 2n× 2n matrix of rank at least n because Jf and JH are full rank (A is not necessarily
invertible yet, but this will be proven later) and c a constant vector. By replacing H by its expression,
we get: (

fθ(x)
f2
θ (x)

)
=

(
A(1) A(2)

A(3) A(4)

)(
fθ̃(x)
f2
θ̃

(x)

)
+

(
α
β

)
(52)

where each A(i) is an n× n matrix, and c = (α,β). To simplify notations, denote by h = fθ̃. We
will also drop reference to θ and θ̃. The first n lines in the previous equation are:

fi(x) =

n∑
j=1

A
(1)
ij hj(x) +A

(2)
ij h

2
j (x) + αi (53)

and the last n lines are:

f2
i (x) =

n∑
j=1

A
(3)
ij hj(x) +A

(4)
ij h

2
j (x) + βi (54)

Fix an index i in equations (53) and (54). To alleviate notations and reduce the number of subscripts
and superscripts, we introduce aj = A

(1)
ij , bj = A

(2)
ij , cj = A

(3)
ij , dj = A

(4)
ij , α = αi and β = βi.

This proof is done in 5 steps. Note that the surjectivity assumption is key for the rest of the proof, and
it requires that we set the dimension of the feature extractor to be lower than the dimension of the
observations.

By equating equations (54) and (53) after squaring, we get, using our new notations:∑
j

ajhj(x) + bjh
2
j (x) + α

2

=
∑
j

cjhj(x) + djh
2
j (x) + β (55)

33

Step 1 First, since h is surjective, there exists a point where it is equal to zero. Evaluating
equation (55) at this point shows that β = α2.

Step 2 Second, the left hand side of equation (55) has terms raised to the power 4. These terms
grow to infinity much faster than the rest of the terms of the rhs and the lhs. It is thus equal to zero.
More rigorously, consider the vectors el(y) = (0, . . . , y, . . . , 0) ∈ Rn where the only non zero entry
is y at the l-th position. Each of these vectors has a preimage by h (since it is surjective), which we
denote by xl(y). By evaluating equation (55) at each of these points, we get

(aly + bly
2 + α)2 = cly + dly

2 + β (56)
Divide both sides of this equation by y4, then take the limit y →∞. The right hand side will converge
to 0, while the left hand side will converge to bl, which shows that bl = 0. By doing this process for
all l ∈ [[1, n]], we can show that b = 0.

Step 3 So far, we’ve shown that (55) becomes, after expanding the square in the lhs, and writing∑
j ajhj(x) = aTh(x):

(aTh(x))2 + 2αaTh(x) + α2 =
∑
j

cjhj(x) + djh
2
j (x) + α2 (57)

Let’s again consider the vectors el(y) from earlier, and their preimages xl(y). By evaluating (57) at
the points xl(y), we get

a2
l y

2 + 2αaly + α2 = cly + dly
2 + α2 (58)

Divide both sides by y, and take the limit y → 0. The lhs converges to 2αal, while the rhs converges
to cl. Since this is valid for all l ∈ [[1, n]], we conclude that c = 2αa. It also follows that d = a2.

Step 4 Injecting this back into equation (57), and writing
∑
j djh

2
j (x) = h(x)T diag(d)h(x), we

are left with:
(aTh(x))2 = h(x)T diag(d)h(x) (59)

By applying the trace operator to both sides of this equation, and rearranging terms, we get
trace

((
aaT − diag(d)

)
h(x)h(x)T

)
= 0 (60)

which is of the form trace(CTB(x)) = 0. This is a dot product on the space Sn of n× n symmetric
matrices (both C and B(x) are symmetric!), which is a vector space of dimension n(n+1)

2 . If we can
show that the matrix C is orthogonal to a basis of Sn, then we can conclude that C = 0.

For this, let (ej)1≤j≤n be the Euclidean basis of Rn, where each vector ej has one non-zero entry
equal to 1 at index j, and let (Eij)1≤i≤n,1≤j≤n be the Euclidean basis of Rn×n, where each matrix
Eij has only one non-zero entry equal to 1 at row i and column j.
Now since h is surjective, there exists xj such that h(xj) = ej , and h(xj)h(xj)

T = eje
T
j = Ejj .

The n different xj give us our first n matrices we will use to construct a basis of Sn. We now
need to find n(n−1)

2 remaining basis matrices. For this, consider the sums (ej + el)1≤j<l≤n, of
which there is exactly n(n−1)

2 . Each of these sums of vectors have a preimage xj,l by h, and
h(xj,l)h(xj,l)

T = (ej + el)(ej + el)
T = Ejj + Ell + (Eil + Eli), which is a matrix in Sn that is

linearly independent of all Ejj , and all other (es + et)(es + et)
T where (s, t) 6= (j, l) because they

have non-zero entries at different rows and columns.

We have then found a total of n(n+1)
2 different vectors (x1, . . . ,xn,x1,2, . . . ,xn−1,n) such that their

images by hhT form a basis of Sn. If we now evaluate equation (60) at each of these points, we
find that the matrix aaT − diag(d) is orthogonal to a basis of Sn, which implies that it is necessarily
equal to 0. This in turn implies that aaT is a diagonal matrix, and that ajal = 0 for all j 6= l, which
implies that at most one aj is non-zero.

Step 5 So far, we have proven that, among other things, A(2)
i,j = 0 for all i, j. We now go back to

equation (53), which we can write as:

f(x) = A(1)h(x) + α (61)
Both f and h are differentiable, and according to assumption 2, Jf has rank n (it is full rank and
n ≤ d). Thus, by differentiating the last equation, we conclude that A(1) has rank n, and is thus
invertible.

34

Conclusion We’ve shown that fi(x) = ajhj(x) + αi, where aj = A
(1)
ij . This is valid for all

i ∈ [[1, n]]. Now since A(1) is invertible, the non-zero entry A(1)
ij has to be in a different column for

each row, otherwise some rows will be linearly dependent. Thus, there exists a permutation σ of
[[1, n]], such that A(1)

iσ(i) 6= 0, and we deduce that

fi(x) = aσ(i)hσ(i)(x) + αi (62)

which concludes the proof.

From the second conclusion of step 3, we have that d = a2. Combined with the fact that exactly one
element of a is nonzero such that A(1) is full rank, this implies that A(4) is also full rank, which in
turn means that A is full rank. �

C.6 Proof of Theorem 3

Theorem 3. Let p(x|y) be a conditional probability density. Assume that X and Y are com-
pact Hausdorff spaces, and that p(x|y) > 0 almost surely ∀(x,y) ∈ X × Y . Then for each
ε > 0, there exists (θ, n) ∈ Θ × N, where n is the dimension of the feature extractor, such that
supx,y |pθ(x|y)− p(x|y)| < ε.

Proof. We consider here two cases.

Continuous auxiliary variable Recall the form of our model:

log pθ(x|y) = − logZ(y)− f(x)Tg(y) (63)

By parameterizing each of fi, gi as neural networks, these functions can approximate continuous
function on their respective domains arbitrarily well. According to Lemma 9, this implies that
any continuous function on X × Y can be approximated arbitrarily well by a term of the form
−f(x)Tg(y).

Thus, any continuous function can be approximated by log pθ(x|y) + logZ(y) for some θ, where
Z(y) captures the difference in scale between the function in question and the normalized density
pθ(x|y). We apply this result to log p(x|y): for any ε > 0, there exists (θ, n) ∈ Θ× N such that:

sup
x,y

∣∣∣∣∣log p(x|y) +

n∑
i=1

fi(x;θ)gi(y;θ)

∣∣∣∣∣ < ε (64)

Since p(x|y) > 0 a.s. on X × Y , log p(x|y) is finite and bounded. So is the term
−
∑n
i=1 fi(x;θ)gi(y;θ). We can then use the fact that exp is Lipschitz on compacts to conclude for

p(x|y), to conclude that:
sup
x,y
|p(x|y)− pθ(x|y)| < Kε (65)

where K is the Lipschitz constant of exp, which concludes the proof.

Discrete auxiliary variable If y is discrete and Y is compact, then y only takes finitely many
values. In this case, we do not need Lemma 9 for the proof. g(y) can simply be a lookup table, and
we learn different approximations for each fixed value of y, since f has the universal approximation
capability, which concludes the proof. �

Denote by C(X) (respectively C(Y) and C(X ×Y)) the Banach algebra of continuous functions from
X (respectively Y and X × Y) to R. For any subsets of functions FX ⊂ C(X) and FY ⊂ C(Y),
let FX ⊗ FY := {

∑n
i=1 figi|n ∈ N, fi ∈ FX , gi ∈ FY} be the set of all linear combinations of

products of functions from FX and FY to R. The energy function defining our model belongs to this
last set. Finally, universal approximation is expressed in terms of density: for instance, the set of
functions FX have universal approximation of C(X) if it is dense in it, i.e. for any function in C(X),
we can always find a limit of a sequence of functions of FX that converges to it. We mathematically
express density by writing FX = C(X).

Let FX (respectively FY) be the set of deep neural networks with input in X (respectively in Y). The
universal approximation capability is summarised in the following Lemma.

35

Lemma 9 (Universal approximation capability). Suppose the following:

(i) X and Y are compact Hausdorff spaces.

(ii) FX = C(X) and FY = C(Y)

then FX ⊗FY = C(X × Y). All completions here are with respect to the infinity norm.

Proof. We prove this theorem in two steps:

1. We first prove that FX ⊗FY is dense in C(X)⊗ C(Y) using the hypotheses of Theorem 3.
2. we prove that C(X)⊗ C(Y) is dense in C(X × Y) using Theorem 5.

Step 1 Let ε > 0. Let h ∈ C(X)⊗ C(Y). Then there exists k ∈ N and functions fi ∈ C(X) and
gi ∈ C(Y) such that h =

∑k
i=1 figi. For each i, since FY dense in C(Y), there exists g̃i ∈ FY

such that ‖gi − g̃i‖∞ < ε
2k‖fi‖∞

. From FX dense in C(X), there exists f̃i ∈ FX such that

‖fi − f̃i‖∞ < ε
2k‖g̃i‖∞

. We then have

‖figi−f̃ig̃i‖∞ = ‖figi−fig̃i+fig̃i−f̃ig̃i‖∞ ≤ ‖fi‖∞ ‖gi − g̃i‖∞+‖g̃i‖∞ ‖fi−f̃i‖∞ <
ε

k
(66)

Using this, we conclude that

‖h−
k∑
i=1

f̃ig̃i‖∞ ≤
k∑
i=1

‖figi − f̃ig̃i‖∞ < ε (67)

which proves that FX ⊗FY is dense in C(X)⊗ C(Y).

Step 2 We will use the Stone-Weirstrass theorem for this step. It is enough to show that:

(i) X × Y is a compact Hausdorff space.
(ii) C(X)⊗ C(Y) ⊂ C(X × Y).

(iii) C(X)⊗ C(Y) is a unital sub-algebra of C(X × Y) (see Definition 3).
(iv) C(X)⊗ C(Y) separates points in X × Y (see Definition 3).

To prove (i), we use the fact that every finite product of compact spaces is a compact space, and
every finite product of Hausdorff spaces is a Hausdorff space. Points (ii) and (iii) are easy to verify.
To prove (iv), let (x,y) and (x′,y′) be distinct points in X × Y . Assume that x 6= x′ (we proceed
similarly if y 6= y′). Define the continuous function f ∈ C(X) such that f(x) 6= 0 and f(x′) = 0.
Then for g = 1 ∈ C(Y), we have f(x)g(y) = f(x) 6= 0 = f(x′)g(y′).

All the conditions required to use the Stone-Weirestrass Theorem are verified, and we can conclude
that C(X)⊗ C(Y) is dense in C(X × Y)

Conclusion Combining the results of steps 1 and 2, we conclude thatFX⊗FY is dense in C(X×Y).
�

Definition 3. Let K be a compact Hausdorff space. Consider the Banach algebra C(K) equipped
with the supremum norm ‖f‖∞ = supt∈K |f(t)|. Then:

1. A ∈ C(K) is a unital sub-algebra if:

(i) 1 ⊂ A.
(ii) for all f, g ∈ A and α, β ∈ R, we have αf + βg ∈ A and fg ∈ A.

2. A ⊂ C(K) separates points of K if ∀s, t ∈ K such that s 6= t, ∃f ∈ A s.t. f(s) 6= f(t).
Theorem 5 (Stone-Weirstrass). Let K be a compact Hausdorff space, and A a unital sub-algebra of
C(K) which separates points of K. Then A is dense in C(K).

Proof. A proof to this theorem can be found in many references, for instance Brosowski and Deutsch
(1981). �

36

D Latent variable estimation in generative models

Recall the generative model of IMCA: we observe a random variable x ∈ Rd as a result of a nonlinear
transformation h of a latent variable z ∈ Rd whose distribution is conditioned on an auxiliary variable
y that is also observed:

z ∼ p(z|y) (68)
x = h(z) (69)

We assume the latent variable in the IMCA model has a density of the form

p(z|y) = µ(z)e
∑
iTi(zi)

Tλi(y)−Γ(y) (70)

where µ is not necessarily factorial.

Further, we will suppose that the density p(z|y) belongs to the following subclass of the exponential
families, introduced by Khemakhem et al. (2020):
Definition 4 (Strongly exponential). We say that an exponential family distribution is strongly
exponential if for any subset X of R the following is true:(

∃θ ∈ Rk | ∀x ∈ X , 〈T(x),θ 〉 = const
)

=⇒ (Λ(X) = 0 or θ = 0) (71)

where Λ is the Lebesgue measure.

If we suppose that only n out of d components of the latent variable are modulated by the auxiliary
variable y (equivalently, if we suppose that the parameters λn+1:d(y) are constant), then we can
write its density as

p(z|y) = µ(z)e
∑n
i=1 Ti(zi)

Tλi(y)−Γ(y) (72)

The term e
∑d
i=n+1 Ti(zi)

Tλi is absorbed into µ(z). This last expression will be useful for dimension-
ality reduction.

To estimate the latent variables of the IMCA model, we fit an augmented version of our energy model

pθ(x|y) = Z(y;θ)−1 exp
(
−H(fθ(x))Tgθ(y)

)
(73)

where H(f(x)) = (H1(f1(x)), . . . ,Hd(fd(x))), and each Hl is a (nonlinear) output activation. An
example of such map is Hl(x) = (x, x2).

In this section, we present the proofs for the estimation of the Independently Modulated Component
Analysis by an identifiable energy model. These proofs are based on similar ideas and techniques to
previous proofs, but are different enough that we can’t forgo them.

D.1 Assumptions

We prove dimensionality reduction capability in Theorem 6. We will decompose Theorem 4 into two
sub-theorems, which will make the proof easier to understand, but also more adaptable into future
work. For the sake of clarity, we will separate its assumptions into smaller assumptions, and refer to
them when needed in the proofs.

(i) The observed data follows the exponential IMCA model of equations (68)-(70).
(ii) The mixing function h : Rd → Rd in (69) is invertible.

(iii) The sufficient statistics Ti in (70) are differentiable, and the functions Tij ∈ Ti are linearly
independent on any subset of X of measure greater than zero.

(iv) There exist k + 1 distinct points y0, . . . ,yk such that the matrix

L = (λ(y1)− λ(y0), . . . ,λ(yk)− λ(y0))

of size k × k is invertible, where k =
∑d
i=1 dim(Ti).

(v) We fit the model (73) to the conditional density p(x|y), where we assume the feature
extractor f(x) to be differentiable, d-dimensional, and the pointwise nonlinearitiy H to be
differentiable and k-dimensional, and the dimension of its vector-valued components Hl to
be chosen from (dim(T1), . . . ,dim(Td)) without replacement.

37

(vi) The sufficient statistic in (70) is twice differentiable and dim(Tl) ≥ 2, ∀l.
(vii) The mixing function h is a D2-diffeomorphisms.

(viii) The feature extractor f in (73) is a D2-diffeomorphism.

(vi') dim(Tl) = 1 and Tl is non-monotonic ∀l.
(vii') The mixing function h is a C1-diffeomorphism.

(viii') The feature extractor f in (73) is a C1-diffeomorphism, and the nonlinearities Hl have a
unique extremum.

(ix) Only n ≤ d components of the latent variable are modulated, and its density has the
form (72).

(x) The feature extractor f has the form f(x) = (f1(x), f2(x)) where f1(x) ∈ Rn, and the
auxiliary feature extractor g has the form g(y) = (g1(y),g2) where g1(y) ∈ Rn and g2 is
constant.

D.2 Lemmas

We rely on the following Lemmas from Khemakhem et al. (2020), which we state below in the
interest of completeness.

Lemma 10. Consider an exponential family distribution with k ≥ 2 components. Then the compo-
nents of the sufficient statistic T are linearly independent.

Lemma 11. Consider a strongly exponential family distribution such that its sufficient statistic T is
differentiable almost surely. Then T ′i 6= 0 almost everywhere on R for all 1 ≤ i ≤ k.

Lemma 12. Consider a strongly exponential distribution of size k ≥ 2 with sufficient statistic
T(x) = (T1(x), . . . , Tk(x)). Further assume that T is differentiable almost everywhere. Then there
exist k distinct values x1 to xk such that (T′(x1), . . . ,T′(xk)) are linearly independent in Rk.

Lemma 13. Consider a strongly exponential distribution of size k ≥ 2 with sufficient statistic T.
Further assume that T is twice differentiable almost everywhere. Then

dim
(

span
(

(T ′i (x), T ′′i (x))
T
, 1 ≤ i ≤ k

))
≥ 2 (74)

almost everywhere on R.

Lemma 14. Consider n strongly exponential distributions of size k ≥ 2 with respective sufficient
statistics Tj = (Tj,1, . . . Tj,k), 1 ≤ j ≤ n. Further consider that the sufficient statistics are twice
differentiable. Define the vectors e(j,i) ∈ R2n, such that e(j,i) =

(
0, . . . , 0, T ′j,i, T

′′
j,i, 0, . . . , 0

)
,

where the non-zero entries are at indices (2j, 2j + 1). Let x := (x1, . . . , xn) ∈ Rn. Then the matrix
e(x) := (e(1,1)(x1), . . . , e(1,k)(x1), . . . e(n,1)(xn), . . . , e(n,k)(xn)) of size (2n × nk) has rank 2n
almost everywhere on Rn.

D.3 Proofs

As mentioned above, we decompose Theorem 4 into two smaller results, summarized in what follows
by Theorems 4a and 4b.

Theorem 4a. Assume assumptions (i)-(v) hold. Then, after convergence of our model pθ(x|y) to the
true density p(x|y), we can recover the latent variables up to an invertible linear transformation and
point-wise nonlinearities, i.e.

H(f(x)) = AT(z) + b (75)

where A is an invertible matrix.

Proof. We fit our density model (73) to the conditional density p(x|y), setting the dimension of the
feature extractor f to be equal to d, and the dimensions of the output nonlinearities Hl chosen from
(dim(T1), . . . ,dim(Td)), as per assumption (v):

Z(y)−1 exp H(f(x))Tg(y) = p(x|y) (76)

by doing the change of variable x = h(z), taking the log on both sides, we get:

38

− logZ(y) + H(f(x))Tg(y) = log p(z|y)− log |det Jh−1(x)| (77)

= logµ(h−1(x)) + T(z)Tλ(y)− Γ(y)− log |det Jh−1(x)| (78)

Let y0, . . . ,yk be the points provided by assumption (iv) of the theorem, where k =
∑
i ki, and

ki = dim(Ti). Define λ(y) = λ(y) − λ(y0), Γ(y) = Γ(y) − Γ(y0), g(y) = g(y) − g(y0) and
Z(y) = logZ(y)− logZ(y0). We plug each of those yl in (78) to obtain k + 1 such equations. We
subtract the first equation for y0 from the remaining k equations to get for l = 1, . . . , k:

−Z(yl) + H(f(x))Tg(yl) = T(z)Tλ(yl)− Γ(yl) (79)

The crucial point here is that the non factorial terms µ(g(x)) and µ̃(g̃(x)) cancel out when we take
these differences. This is what allows us to generalize the identifiability results of nonlinear ICA to
the context of IMCA.

Let L bet the matrix defined in assumption (iv), and L̃ := (. . . ,g(yl), . . .). Define b = (. . . , Z(yl)−
Γ(yl), . . .). Expressing (79) for all points yl in matrix form, we get:

L̃TH(f(x)) = LTT(z) + b (80)

By assumption (iv), L is invertible, and thus we can write

T(z) = AH(f(x)) + c (81)

where c = L−Tb and A = L−T L̃T .

To prove that A is invertible, we first take the gradient of equation (81) with respect to z. The
Jacobian JT of T is a matrix of size k × d. Its columns are independent because each Ti is only a
function of zi, and thus the non-zero entries of each column are in different rows. This means that
its rank is d (since k =

∑d
i=1 ki ≥ d). This is not enough to prove that A is invertible though. For

that, we consider the functions Ti for which ki > 1: for each of these functions, using Lemma 12,
there exists points z(1)

i , . . . , z
(ki)
i such that (T′i(z

(1)
i), . . . ,T′i(z

(ki)
i)) are independent. Collate these

point into kmax := maxi ki vectors z(j) := (z
(j)
1 , . . . z

(j)
d), where for each i, z(j)

i = z
(1)
i if j > ki,

and z(1)
i is a point such that Ti(z

(1)
i) 6= 0 if ki = 1. We plug these vectors into equation (81) after

differentiating it, and collate the dkmax equations in vector form:

M = AM̃ (82)

where M := (. . . ,JT(z(j)), . . .) and M̃ := (. . . ,JH◦f◦h(z(j)), . . .). Now the matrix M is of size
k × dkmax, and it has exactly k independent columns by definition of the points z(j). This means that
M is of rank k, which in turn implies that rank(A) ≥ k. Since A is a k× k matrix, we conclude that
A is invertible. �

The theorem above shows a first step in identifiability which holds up to a linear transformation. This
is similar to Hyvärinen et al. (2019), but here we allow for dependencies between components. We
can further sharpen the result, in line with Khemakhem et al. (2020) even in this non-independent
case as follows:
Theorem 4b. Assume assumptions (i)-(v) hold. Further assume that either assumptions (vi)-(viii) or
assumptions (vi')-(viii') hold. Then equation (75) can be reduced to the component level, i.e. for each
i ∈ [[1, d]]:

Hi(fi(x)) = AiTγ(i)(zγ(i)) + bi (83)

where γ is a permutation of [[1, d]] such that dim(Hi) = dim(Tγ(i)) and Ai a square invertible
matrix.

Proof. We prove this theorem separately for both sets of assumptions.

Multi-dimensional sufficient statistics: assumptions (vi)-(viii) We suppose that ki ≥ 2, ∀i.
The assumptions of Theorem 4a hold, and so we have

H(f(h(z))) = AT(z) + c (84)

39

for an invertible A ∈ Rk×k. We will index A by four indices (i, l, a, b), where 1 ≤ i ≤ d, 1 ≤ l ≤ ki
refer to the rows and 1 ≤ a ≤ d, 1 ≤ b ≤ ka to the columns.

Let y = f ◦h(z). Since both f and h areD2-diffeomorphisms (assumptions (vii), (viii)), we can invert
this relation and write z = v(y). We introduce the notations vsi (y) := ∂vi

∂ys
(y), vsti (y) := ∂2vi

∂ys∂yt
(y),

T ′a,b(z) =
dTa,b

dz (z), T ′′a,b(z) =
d2Ta,b

dz (z) and H ′a,b(y) =
dHa,b

dy (y). Each line of equation (84) can
be written as:

Hi,l(yi) =

d∑
a=1

ki∑
b=1

Ai,l,a,bTa,b(va(y)) + ca,b (85)

for i ≤ d, l ≤ ki. The first step is to show that vi(y) is a function of only one yji , for all i ≤ d. by
differentiating (85) with respect to ys, s ≤ d:

δisH
′
i,l(yi) =

d∑
a=1

ki∑
b=1

Ai,l,a,bT
′
a,b(va(y))vsa(y) (86)

and by differentiating (86) with respect to yt, s < t ≤ d:

0 =
∑
a,b

Ai,l,a,b
(
T ′a,b(va(y))vs,ta (y) + T ′′a,b(va(y))vsa(y)vta(y)

)
(87)

This equation is valid for all pairs (s, t), t > s. Define Ba(y) :=
(
v1,2
a (y), . . . , vd−1,d

a (y)
)
∈

R
d(d−1)

2 , Ca(y) :=
(
v1
a(y)v2

a(y), . . . , vd−1
a (y)vda(y)

)
∈ R

d(d−1)
2 , M(y) :=

(B1(y),C1(y), . . . ,Bd(y),Cd(y)), e(a,b) := (0, . . . , 0, T ′a,b, T
′′
a,b, 0, . . . , 0) ∈

R2d, such that the non-zero entries are at indices (2a, 2a + 1) and e(y) :=
(e(1,1)(y1), . . . , e(1,k1)(y1), . . . , e(d,1)(yd), . . . , e

(d,kd)(yd)) ∈ R2d×k. Then by grouping
equation (87) for all valid pairs (s, t) and pairs (i, l) and writing it in matrix form, we get:

M(y)e(y)A = 0 (88)

Now by Lemma 14, we know that e(y) has rank 2d almost surely on Z . Since A is invertible, it
is full rank, and thus rank(e (y)A) = 2d almost surely on Z . It suffices then to multiply by its
pseudo-inverse from the right to get

M(y) = 0 (89)
In particular, Ca(y) = 0 for all 1 ≤ a ≤ d. This means that the Jacobian of v at each y has at most
one non-zero entry in each row. By invertibility and continuity of Jv, we deduce that the location of
the non-zero entries are fixed and do not change as a function of y. We deduce that there exists a
permutation σ of [[1, d]] such that each of the vi(y) = vi(yσ(i)), and the same would apply to v−1.
Without any loss of generality, we assume that σ is the identity.

Now let H(z) = H ◦v−1(y)− c. This function is a pointwise function because H and v−1 are such
functions. Plugging this back into equation (84) yields:

H(z) = AT(z) (90)
The last equation is valid for every component:

Hi,l(zi) =
∑
a,b

Ai,l,a,bTa,b(za) (91)

By differentiating both sides with respect to zs where s 6= i we get

0 =
∑
b

Ai,l,s,bT
′
s,b(zs) (92)

By Lemma 10, we get Ai,l,s,b = 0 for all 1 ≤ b ≤ k. Since (92) is valid for all l and all s 6= i, we
deduce that the matrix A has a block diagonal form:

A =

A1

. . .
An

 (93)

which achieves the proof.

40

One-dimensional sufficient statistics: assumptions (vi')-(viii') We now suppose that ki = 1, ∀i.
The proof of Khemakhem et al. (2020, Theorem 3) can be used here, where we define v = (f ◦ h)−1

and hi,a = Di,aHa(ya) −Di,aca, where D = A−1. We can then rewrite equation (85) for every
component as:

Ti(vi(z)) =

d∑
a=1

hi,a(za) (94)

which is the same as equation (45) of Khemakhem et al. (2020). All the assumptions required to
prove their theorem are met in our case, and the rest of their proof would simply apply here to prove
that A is a permutation matrix. �

In practice, it is a natural desire to have the feature extractor reduce the dimension of the data, as
it is usually very large. This has been achieved in nonlinear ICA before (Khemakhem et al., 2020;
Hyvärinen and Morioka, 2016). It turns out that we can also incorporate dimensionality reduction in
IMCA and its estimation by ICE-BeeM, under some assumptions.

Theorem 6. Assume either of the following hold:

• Assumptions (i)-(x).

• Assumptions (i)- (v), (vi')- (viii'), and (ix)- (x).

Then f1 recovers only the modulated latent components as per Theorem 4b.

Proof. The proof of Theorem 4a in this case is unchanged. Simply, we update the total dimension of
matrix L here to k =

∑n
i=1 dim(Ti). when we evaluate equation (78) on these points y0, . . . ,yk,

the constant term g2 and the non-modulated components cancel out, and we are left with the equation

L̃TH1:n(f1(x)) = LTT1:n(z) + b (95)

We then use similar arguments to the proof of Theorem 4a to conclude that

H1:n(f(x)) = AT1:n(z) + c (96)

where A ∈ Rn a square invertible matrix. At this point, we can make the same conclusion as
Theorem 4a, while reducing the dimension of the latent space.

We now explain how we can extend Theorem 4b to the lower dimensional latent space case. Note
that we still assume that f = (f1, f2) is a diffeomorphism per assumptions (viii) and (viii'). We can
then still define v = (f ◦ h)−1.

We consider now two cases like in the proof of Theorem 4b.

One-dimensional sufficient statistics Let D = A−1 and hi,a = Di,aHa(ya) −Di,aca. We can
still write equation (96) like equation (94) as

Ti(vi(z)) =

n∑
a=1

hi,a(za) (97)

for all i ≤ n. The assumptions required for the proof are still met, despite reducing the dimension
from d to n. This interesting fact is also used for the proof of Theorem 2b as well, which achieves
this part of the proof.

Multi-dimensional sufficient statistics We rewrite equation (96)

Hi,l(yi) =

n∑
a=1

ki∑
b=1

Ai,l,a,bTa,b(va(y)) + ca,b (98)

for all i ≤ n, l ≤ ki. We proceed similarly to the proof of Theorem 4b, replacing all mentions of
d by n and keeping all differentiations to indices t, s ≤ n, up to equation (89), after which we can
conclude that vsi v

t
i = 0 for all i ≤ n, and all s, t ≤ n. This is not enough to conclude that each of the

vi is only function of one yji .

41

For that, we go back to equation (98) and differentiate it with respect to ys, s > n:

0 =

d∑
a=1

ki∑
b=1

Ai,l,a,bT
′
a,b(va(y))vsa(y) (99)

which is valid for all i ≤ n, l ≤ ki. Since A is invertible, we can conclude that T ′a,b(va(y))vsa(y) = 0
for all a ≤ n and s > n. Since we only consider strongly exponential distributions (assumption (iii)),
and using proposition 11, we conclude that T ′a,b(va(y)) 6= 0 almost everywhere, and that vsa(y) = 0,
for all s > n. This, in addition to the fact that vsi v

t
i = 0 for all i ≤ n, and all s, t ≤ n allows us to

conclude that the first n components of v are each only a function of one different yj because v is a
diffeomorphism and its Jacobian is continuous. Finally, we can use this fact to deduce that A is a
block permutation matrix, which achieves the proof. �

E Independently modulated component analysis

As mentioned in section 3, linear latent variable models (Hyvärinen and Oja, 2000) and more recently
nonlinear latent variable models may be identifiable provided some additional auxiliary variables
(Khemakhem et al., 2020; Hyvärinen et al., 2019). The purpose of this auxiliary variable serves
to introduce additional constraints over the distribution over latent variables, which are typically
required to be conditionally independent given the auxiliary variable. This avenue of research has
thus formalized the trade-off between expressivity of the mapping between latents to observations
(from linear to nonlinear) and distributional assumptions over latent variables (from independent to
conditionally independent given auxiliary variables).

We would like to relax the assumption of independence while maintaining identifiability, resulting in
the framework of Independently Modulated Component Analysis (IMCA). In this section of the Ap-
pendix, we will give a detailed analysis of the IMCA model independently of any estimation method,
drawing parallels to the identifiability results of the nonlinear ICA model presented in Khemakhem
et al. (2020).

E.1 Definition of the generative model

Assume we observe a random variable x ∈ Rd as a result of a nonlinear transformation h of a latent
variable z ∈ Rd whose distribution is conditioned on an auxiliary variable y that is also observed:

z ∼ p(z|y)

x = h(z)
(100)

The main modelisation assumption we make is on the latent variable distribution, given by the
following definition, where u is a dummy variable.

Definition 5 (Exponentially factorial distributions). We say that a multivariate exponential family
distribution is exponentially factorial if its density p(u) has the form

p(y) = µ(y)
∏
i

eTi(yi)
Tλi−Γ(λ)

We assume that the latent variable in the IMCA model has a conditional exponentially factorial
distribution, where the parameters of the exponential family are a function of the auxiliary variable y:

p(z|y) = µ(z)e
∑
iTi(zi)

Tλi(y)−Γ(y) (101)

Equations (100) and (101) together define the nonparametric IMCA model with parameters
(h,T,λ, µ). Most importantly, we allow for an arbitrary base measure µ(z), i.e. the compo-
nents of the latent variable must no longer be independent, as µ doesn’t necessarily factorize across
dimensions. The crucial assumption is that the components of the latent variables are independently
modulated given the auxiliary variable y, and that through the term exp(

∑
i Ti(zi)

Tλi(y)).

42

E.2 Identifiability

The concept of identifiability is core to this work. As such, it is important to understand the different
views one can have of this concept.

According to the conventional definition, a probabilistic model P = {Pθ : θ ∈ Θ} is identifiable iif
the mapping θ 7→ Pθ is bijective, i.e. Pθ1

= Pθ2
=⇒ θ1 = θ2. However, this definition is very

restrictive and impractical.

Often, the identifiability form we can prove for a model is equality of the parameters up to some
indeterminacies. This can be understood as an equivalence relation between parameters. Identifiability
in this context implies that the equivalence class of the ground truth parameter can be uniquely
recovered from observations. This is relevant only if the definition of the equivalence class is
sufficiently narrow and specific to be able to make meaningful conclusions. One example of such
equivalence relations can be found in linear ICA: the mixing matrix is uniquely recovered up to a
scaled permutation. The permutation is irrelevant, and the scaling is circumvented by whitening the
data. This is a good example of an equivalence class that doesn’t restrict the practical utility of the
ICA model.

An example of indeterminacy which is relevant to us here can be found in variational inference of
latent variable models: two parameters are equivalent if they map to the same inference distribution
(Khemakhem et al., 2020). This is the definition we will be using in this work. We will say that
a generative model is identifiable if we can uniquely recover the latent variables, as given by the
following definition.

Definition 6. Consider two different sets of parameters (h,T,λ, µ) and (h̃, T̃, λ̃, µ̃), defining two
densities p and p′. We say that the IMCA model is strongly identifiable if

p(x|y) = p̃(x|y) =⇒ ∀i,Ti(zi) = AiT̃γ(i)(z̃γ(i)) + bi (102)

where γ is a permutation, Ai is an invertible matrix, and bi a vector, ∀i ∈ [[1, d]].
We say that it is weakly identifiable if

p(x|y) = p̃(x|y) =⇒ T(z) = AT̃(z̃) + b (103)

where A is an invertible matrix, and b a vector.

E.3 Theoretical analysis

In this section, we develop the theory of IMCA. We will give sufficient conditions that guarantee a
strong identifiability of the latent components, and discuss a degenerate case where we only obtain a
weaker form of identifiability.

E.3.1 Definitions

We will first define some sets of distributions which are subsets of the exponential family distribution.
We will use u as a dummy variable, and introduce the definitions for the unconditional case. Note
that all these definitions apply to the conditional case, when the parameters of the exponential family
are a function of an auxiliary variable y. For completeness, we restate here Definition 4.

Definition 7 (Strongly exponential distributions). We say that a univariate exponential family distri-
bution with density p(u) = µ(u)eT(u)T θ−Γ(θ) is strongly exponential if for any subset U of R the
following is true:(

∃θ ∈ Rk | ∀u ∈ U , 〈T(u),θ 〉 = const
)

=⇒ (Λ(U) = 0 or θ = 0) (104)

where Λ is the Lebesgue measure.

We say that that a multivariate distribution is strongly exponential if all its univariate marginals are.

In other words, the density of a strongly exponential distribution has almost surely the exponential
component in its expression and can only be reduced to the base measure on a set of measure zero.
This definition is very general, and is satisfied by all the usual exponential family distributions like
the Gaussian, Laplace, Pareto, Chi-squared, Gamma, Beta, etc. We will only prove identifiability

43

results for strongly exponential families. The non-strongly exponential case will be explored in future
work.

There is a certain class of exponential families for which we can only prove a weak form of identifia-
bility. Loosely speaking, this is because this class doesn’t constrain the latent space enough.
Definition 8 (Quasi-location exponential distributions). We say that a univariate exponential family
distribution with density p(u) = µ(u)eT(u)T θ−Γ(θ) is in the quasi-location family if:

(i) dim(T) = 1

(ii) T is monotonic (either non-decreasing or non-increasing)

We say that that a multivariate distribution is quasi-location exponential if all its univariate marginals
are.

As a simple illustration, the Gaussian family with fixed variance is a quasi-location family, but with
fixed mean it is not. This is because in the first case, the sufficient statistic is T (u) = u which is a
monotonic scalar function, while in the second case it is T (u) = u2, a non-monotonic scalar function.

E.3.2 Identifiability of the general case

As mentioned in section 3, the IMCA model described by equations (100) and (101) generalizes
previous nonlinear ICA models by relaxing the independence assumption required for the latent
variables. We propose here to extend the identifiability theory of nonlinear ICA developed in
Hyvärinen et al. (2019); Khemakhem et al. (2020) to this new framework.

We start by providing a weaker form of identifiability guarantee that applies to the general case,
including quasi-location families.
Theorem 7. Assume the following:

(I) The observed data follows the exponential IMCA model of equations (100)-(101).

(II) The mixing function h : Rd → Rd is invertible.

(III) The conditional latent distribution p(z|y) is strongly exponential (definition 7), and its
sufficient statistic is differentiable.

(IV) There exist k + 1 distinct points y0, . . . ,yk such that the matrix

L = (λ(y1)− λ(y0), . . . ,λ(yk)− λ(y0))

of size k × k is invertible, where k =
∑d
i=1 dim(Ti).

Then the IMCA model is weakly identifiable.

This theorem extends the basic identifiability result of Khemakhem et al. (2020, Theorem 1). It is
fundamental as it proves a general identifiability results without the restriction of having independent
latent variables. This was previously not considered to be possible and could only be demonstrated
in very specific circumstances and under very restrictive additional assumptions (e.g., Monti and
Hyvärinen (2018) require both non-negativity and orthonormality of a mixing matrix in the linear
case). In the nonlinear case, to prove Theorem 7, we still require that the latent variables are only
dependent through the base measure, while still being independently modulated through the auxiliary
variable y. This (and the necessity of having an auxiliary variable) is the price to pay for obtaining
identifiability in a nonlinear setting.

E.3.3 Identifiability of the non quasi-location family

The identifiability result of Theorem 7 is weak because of the presence of the linear transformation
A in equation (103). It turns out that by excluding the quasi-location family (definition 8), we can
remove this matrix and achieve a stronger form of identifiability. The main technical result of this
paper is the following.
Theorem 8. Assume that the assumptions of Theorem 7 hold. Further assume one of the two
following sets of assumptions:

44

(V) The sufficient statistic in (101) is twice differentiable and dim(Tl) ≥ 2, ∀l.

(VI) The mixing function h is a D2-diffeomorphism6.

or

(V)’ dim(Tl) = 1 and Tl is non-monotonic ∀l.

(VI)’ The mixing function h is a C1-diffeomorphism7.

Then the IMCA model is strongly identifiable.

This form of identifiability mirrors the strongest results proven in the nonlinear ICA (Khemakhem
et al., 2020, Theorems 2,3), without requiring that the latent components be independent. As far as
we know, this is the first proof of the kind for nonlinear representation learning. We further note that
this theorem generalizes even existing identifiability theory of the linear case. The mixed case where
we have both cases where some sufficient statistics are of dimension greater than 2 and some are
univariate and non-monotonic will be studied in future work.

E.4 Estimation of IMCA by self-supervised learning

A recent development in nonlinear ICA is given by Hyvärinen et al. (2019) where the authors
assume they observe data x = h(z) following a noiseless conditional nonlinear ICA model p(z|y) =∏
i pi(zi|y) For estimation, they rely on a self-supervised binary discrimination task based on

randomization to learn the unmixing function. More specifically, from a dataset of observations and
auxiliary variables pairs D = {x(i),y(i)}, they construct a randomized dataset D∗ = {x(i),y∗}
where y∗ is randomly drawn from the observed distribution of y. To distinguish between both
datasets, a deep logistic regression is used. The last hidden layer of the neural network is a feature
extractor whose purpose is to extract the relevant features which will allow to distinguish between
the two datasets. Surprisingly, this estimation technique works for IMCA, and is summarized by the
following theorem.
Theorem 9. Self-supervised nonlinear ICA estimation algorithms presented in Hyvärinen and
Morioka (2016); Hyvärinen et al. (2019) work for the estimation of IMCA.

E.5 Proofs

E.5.1 Proof of Theorem 7

Consider two different sets of parameters (h,T,λ, µ) and (h̃, T̃, λ̃, µ̃), defining two conditional
latent densities p(z|y) and p̃(z|y). Suppose that the density of the observations arising from these
two different models are equal:

p(x|y) = p̃(x|y) (105)

log p(g(x)|y)− log
∣∣det J−1

h (x)
∣∣ = log p(g̃(x)|y)− log |det Jg̃(x)| (106)

logµ(g(x)) + T(g(z))Tλ(y)− Γ(y)− log |det Jg(x)| =
log µ̃(g̃(x)) + T̃(g̃(z))T λ̃(y)− Γ̃(y)− log |det Jg̃(x)| (107)

Let y0, . . . ,yk be the points provided by assumption (IV) of the theorem for T, where k =
∑
i ki,

and ki = dim(Ti). We plug each of those yl in (107) to obtain k + 1 such equations. Then, we
subtract the first equation for y0 from the remaining k equations to get for l = 1, . . . , k:

T(z)T (λ(yl)− λ(y0))−G(yl) = T̃(z)T (λ̃(yl)− λ̃(y0))− G̃(yl) (108)

where we grouped terms that are only a function of yl in G and G̃.

Most importantly, both base measure terms disappear after taking the differences, which is the key
enabler of identifiability in the IMCA framework.

6invertible, all second order cross-derivatives of the function and its inverse exist but aren’t necessarily
continuous

7invertible, all partial derivatives of the function and its inverse exist and are continuous

45

The rest of the proof is similar to the proof of Khemakhem et al. (2020, Theorem 1). The only
difference is that we don’t restrict the sufficient statistics to have equal dimensions, and so we can’t
use the proof technique from Khemakhem et al. (2020, Theorem 1) without any modification. We
present an alternative technique in the proof of Theorem 4, which we refer too for more details. We
then conclude that

T(h−1(x)) = AT̃(h̃−1(x)) + b (109)

which implies that the model is weakly identifiable. �

E.5.2 Proof of Theorem 8

The conclusion of Theorem 7 is the same as the conclusion of Khemakhem et al. (2020, Theorem
1). Since we make the same assumptions as Khemakhem et al. (2020, Theorems 2,3), the proof to
Theorem 8 is similar to the proof of these theorems, which we refer too for more details. The IMCA
model is strongly identifiable under the assumptions of Theorem 8. �

E.5.3 Proof of Theorem 9

We will first quickly summarize the method proposed in Hyvärinen et al. (2019), and then show how
it works for IMCA.

We consider that we observe data (x,y) that follows the exponential IMCA model of equations (4)-
(5). Following Hyvärinen et al. (2019) we start by constructing new data from the observations x and
y to obtain two datasets

x̃ = (x,y) (110)
x̃∗ = (x,y∗) (111)

where y∗ is a random value from the distribution of y and independent of x. We then proceed by
defining a multinomial classification task, where we consider the set of all {x̃, x̃∗} as data points to
be classified, and whether they come from the randomized dataset or not as labels. In particular, we
train a deep neural network using multinomial logistic regression to perform this classification task.
The last hidden layer of the neural network is a feature extractor denoted s(x). The purpose of the
feature extractor is therefore to extract the relevant features which will allow to distinguish between
the true dataset x̃ and the randomized dataset x̃∗. The final layer of the network is simply linear, and
the regression function takes the form

r(x,y) = s(x)Tv(y) + a(x) + b(u) (112)

We state now the main result.

Theorem 9 (Hyvärinen et al. (2019), adapted). Assume that the assumptions of Theorem 7, and the
assumptions (V)-(VI) of Theorem 8 hold. Further assume that we train a nonlinear logistic regression
with universal approximation capability to discriminate between x̃ in (110) and x̃∗ in (111) with the
regression function in (112), where the feature extractor has dimension d.

Then in the limit of infinite data, the components si(x) of the regression function give the latent
components up to pointwise nonlinearities.

Proof. The proof of this theorem is inspired by Hyvärinen et al. (2019). By well known theory, after
convergence of logistic regression, the regression function equals the difference of the log-densities
of the two classes:
d∑
i=1

si(x)vi(y) + a(x) + b(u) = log px̃(x,y)− log px̃∗(x,y
∗)

= log p(z,y) + log
∣∣det J−1

h (x)
∣∣− log p(z)p(y)− log

∣∣det J−1
h (x)

∣∣
= log p(z|y)− log p(z)

= logµ(z)− logZ(y) +

d∑
i=1

Ti(zi)
Tλi(y)− log p(z)

(113)

46

where J−1
h (x) is the Jacobian matrix of h−1 at point x. Let y0, . . . ,yk be the point provided by

assumption (iv). We plug each of those yk in (113) to obtain k + 1 such equations. We subtract the
first equation for y0 from the remaining k equations to get for l = 1, . . . , k:

d∑
i=1

si(x)(vi(yl)−vi(y0))+(b(yl)− b(y0))−log
Z(yl)

Z(y0)
=

d∑
i=1

Ti(zi)
T (λi(yl)−λi(y0)) (114)

Interestingly, the term logµ(z) cancels out. The rest of the proof is similar to Theorems 4a and 4b.
The only minor difference is that the matrix A will not be square, but it is still full rank, and can be
used to prove that s ◦ h is a point-wise nonlinearity. �

47

