
Appendices

A Masking distribution

When choosing which time-steps to mask, each latent speech representation in an utterance is
considered a candidate starting time-step with probability p where M is the length of each masked
span starting from the respective time step; both are hyper-parameters. Sampled starting time steps
are expanded to length M and spans can overlap.

For a 15 sec long audio sample, the average mask length is 14.7 time-steps, corresponding to 299ms
of audio, with a median of 10 time-steps, and a maximum of about 100 time steps; about 49% of
all time-steps in the sample will be masked. A plot of the corresponding mask length distribution
is shown in Figure 2 and an ablation of M and p as well as the effect of other masking strategies
is shown in Table 5. Reducing M results in increased prediction accuracy for the self-supervised
but the task becomes trivial when spans with length one are masked, leading to poor performance
on downstream speech recognition tasks. We also consider other masking strategies: w/o overlap
uniform(a,b) samples for each starting index a span length M

s from interval a to b and masks the
subsequent Ms time-steps taking care not to overlap with existing spans; poisson(�) and normal(µ,
�) sample M

s from Poisson and normal distributions.

Figure 2: Mask length distribution for a 15 second sample with p = 0.065 and M = 10.

Table 5: Ablations on settings for the masking strategy during pre-training. When masking without
overlap, we choose starting time steps with p = 0.037 which results in the total number of masked
tokens to match the baseline.

avg WER std

Baseline (p = 0.075) 7.97 0.02

Mask length M = 8 8.33 0.05
Mask length M = 12 8.19 0.08
Mask length M = 15 8.43 0.19

Mask probability p = 0.065 7.95 0.08
Mask probability p = 0.06 8.14 0.22

Mask w/o overlap, uniform(1,31) 8.39 0.02
Mask w/o overlap, uniform(10,30) 9.17 0.05
Mask w/o overlap, poisson(15) 8.13 0.04
Mask w/o overlap, normal(15, 10) 8.37 0.03
Mask w/o overlap, length 10 9.15 0.02
Mask w/o overlap, length 15 9.43 0.26
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B Fine-tuning Setup

During fine-tuning we apply a masking strategy to the feature encoder outputs similar to SpecAug-
ment [41]: we randomly choose a number of starting time steps for which a span of ten subsequent
time-steps is replaced with a mask embedding; spans may overlap and we use the same masked time
step embedding as during pre-training. We also mask channels by choosing a number of channels as
starting indices and then expand each one to cover the subsequent 64 channels. Spans may overlap
and the selected channel spans are set to zero value. We use LayerDrop [22, 12] at a rate of 0.05 for
BASE and 0.1 for LARGE during fine-tuning.

Table 6 summarizes the fine-tuning hyper-parameter settings used for the different labeled data setup.
Table 7 shows the decoding parameters used for final evaluations of the various labeled data setups
for Librispeech pre-trained models and Table 8 shows decoding parameters for LibriVox.

Table 6: Fine-tuning hyperparameters
timestep mask prob. channel mask prob. updates

10 min 0.075 0.008 12k
1 hour 0.075 0.004 13k
10 hours 0.065 0.004 20k
100 hours 0.05 0.008 50k
960 hours 0.05 0.0016 320k
TIMIT 0.065 0.012 40k

Table 7: Decoding parameters for Librispeech subsets for models pre-trained on Librispeech
4gram LM weight 4gram word insert. TransLM weight TransLM word insert.

10 min 3.23 -0.26 1.20 -1.39
1 hour 2.90 -1.62 1.15 -2.08
10 hours 2.46 -0.59 1.06 -2.32
100 hours 2.15 -0.52 0.87 -1.00
960 hours 1.74 0.52 0.92 -0.86

Table 8: Decoding parameters for Librispeech subsets for models pre-trained on Librivox.
4gram LM weight 4gram word insert. TransLM weight TransLM word insert.

10 min 3.86 -1.18 1.47 -2.82
1 hour 3.09 -2.33 1.33 -0.69
10 hours 2.12 -0.90 0.94 -1.05
100 hours 2.15 -0.52 0.87 -1.00
960 hours 1.57 -0.64 0.90 -0.31
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C Full results for Libri-light and Librispeech

Table 9: WER on the Librispeech dev/test sets when training on the Libri-light low-resource labeled
data setups (cf. Table 1).

Model Unlabeled LM dev test
data clean other clean other

10 min labeled
BASE LS-960 None 46.1 51.5 46.9 50.9

4-gram 8.9 15.7 9.1 15.6
Transf. 6.6 13.2 6.9 12.9

LARGE LS-960 None 43.0 46.3 43.5 45.3
4-gram 8.6 12.9 8.9 13.1
Transf. 6.6 10.6 6.8 10.8

LARGE LV-60k None 38.3 41.0 40.2 38.7
4-gram 6.3 9.8 6.6 10.3
Transf. 4.6 7.9 4.8 8.2

1h labeled
BASE LS-960 None 24.1 29.6 24.5 29.7

4-gram 5.0 10.8 5.5 11.3
Transf. 3.8 9.0 4.0 9.3

LARGE LS-960 None 21.6 25.3 22.1 25.3
4-gram 4.8 8.5 5.1 9.4
Transf. 3.8 7.1 3.9 7.6

LARGE LV-60k None 17.3 20.6 17.2 20.3
4-gram 3.6 6.5 3.8 7.1
Transf. 2.9 5.4 2.9 5.8

10h labeled
BASE LS-960 None 10.9 17.4 11.1 17.6

4-gram 3.8 9.1 4.3 9.5
Transf. 2.9 7.4 3.2 7.8

LARGE LS-960 None 8.1 12.0 8.0 12.1
4-gram 3.4 6.9 3.8 7.3
Transf. 2.9 5.7 3.2 6.1

LARGE LV-60k None 6.3 9.8 6.3 10.0
4-gram 2.6 5.5 3.0 5.8
Transf. 2.4 4.8 2.6 4.9

100h labeled
BASE LS-960 None 6.1 13.5 6.1 13.3

4-gram 2.7 7.9 3.4 8.0
Transf. 2.2 6.3 2.6 6.3

LARGE LS-960 None 4.6 9.3 4.7 9.0
4-gram 2.3 5.7 2.8 6.0
Transf. 2.1 4.8 2.3 5.0

LARGE LV-60k None 3.3 6.5 3.1 6.3
4-gram 1.8 4.5 2.3 4.6
Transf. 1.9 4.0 2.0 4.0
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Table 10: WER on Librispeech when using all 960 hours of Librispeech as labeled data (cf. Table 2).

Model Unlabeled LM dev test
data clean other clean other

LARGE - from scratch - None 2.8 7.6 3.0 7.7
- 4-gram 1.8 5.4 2.6 5.8
- Transf. 1.7 4.3 2.1 4.6

BASE LS-960 None 3.2 8.9 3.4 8.5
4-gram 2.0 5.9 2.6 6.1
Transf. 1.8 4.7 2.1 4.8

LARGE LS-960 None 2.6 6.5 2.8 6.3
4-gram 1.7 4.6 2.3 5.0
Transf. 1.7 3.9 2.0 4.1

LARGE LV-60k None 2.1 4.5 2.2 4.5
4-gram 1.4 3.5 2.0 3.6
Transf. 1.6 3.0 1.8 3.3

D Analysis of Discrete Latent Speech Representations

Next, we investigate whether the discrete latent speech representations qt learned by the quantizer
relate to phonetic information: Using LARGE pre-trained on LV-60k and without any fine-tuning, we
compute the discrete latents for the training data of TIMIT and compute the co-occurrence between
human annotated phonemes and the latents. Ties are broken by choosing the phoneme which is most
represented in the receptive field of qt. The training data contains 3696 utterances of average length
13.6 sec, or 563k discrete latents.

Figure 3 plots P (phoneme|qt) and shows that many discrete latents appear to specialize in specific
phonetic sounds. The silence phoneme (bcl) represents 22% of all human annotated speech data and
is therefore also modeled by many different latents.

Figure 3: Visualization of the co-occurrence between discrete latent speech representations and
phonemes. We plot the conditional probability P (phoneme|qt) on TIMIT train data. The y-axis
shows the collapsed 39 classes of phonemes and the x-axis is over the different discrete latents.
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E Speech Recognition Error Analysis

In this section we study the most common errors our models make when fine-tuned on different
amounts of labeled data (Table 11). We also show transcriptions of a few relatively challenging
utterances from the dev-clean subset of Librispeech (Table 12).

We consider models with no lexicon or no language model decoding, marked None in Table 9: Larger
capacity decreases error rates: LARGE on LS-960 improves the word error rate on dev-clean from
46.1 to 43 compared to BASE. Increasing the amount of unlabeled training data further decreases the
error rate to 33.8 for LARGE on LS-960.

In the ten minute labeled data setup, the model is still able to recognize basic units of speech: Table 11
shows that most errors are around spelling of words, e.g., omitting silent characters such as could
! coud, know ! now, or ignoring repeated letters such as still ! stil, little ! litle. The LARGE
LV-60k model achieves WER 38.3 on dev-clean and adding a Transformer language model enables
to choose more likely pronunciations during the search and gives a large WER improvement to 5.0.

The ten minute models without lexicon and language model tend to spell words phonetically and omit
repeated letters, e.g., will ! wil (Table 11). Spelling errors decrease with more labeled data: with one
hour of labeled data, slightly less common words move into the list of the most frequent errors, e.g.,
heaven and food are spelled phonetically. At ten hours, top errors include articles, e.g., a, the which
are a common source of errors in speech recognition in general. There are also alternative spellings,
color vs. colour as well as relatively rare words including person names, still spelled phonetically,
e.g., phoebe ! feeby.

At 100 hours, person names dominate the most frequent errors: phoebe ! phebe, along with incorrect
spacing anyone ! any one, awhile ! a while. Finally at 960 hours the word error rate falls to
2% and top errors are mostly articles, incorrect splits, and some very rare words or names such as
deucalion or gryce.

The “from scratch” 960 hour model has a similar word error rate as the 100 hour pre-trained model
and displays a similar pattern of errors.

The pre-trained speech representations can be easily adapted to recognize specific sounds while
fine-tuning grounds these representations to the actual spelling.
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Table 11: Top word errors for models trained on 10m, 1h and 10h, 100h, 960h of labeled data and
decoded on the Librispeech dev-clean subset without a language model or lexicon (see Table 9 and
Table 10 - None). In brackets is the total number of occurrences of each error.

10m LARGE LV-60k 1h LARGE LV-60k 10h LARGE LV-60k

all ! al (181) too ! to (26) in ! and (15)
are ! ar (115) until ! untill (24) a ! the (11)
will ! wil (100) new ! knew (22) o ! oh (10)
you ! yo (90) door ! dor (18) and ! in (9)
one ! on (89) says ! sais (18) mode ! mod (9)
two ! to (81) soul ! sol (17) ursus ! ersus (9)
well ! wel (80) bread ! bred (16) tom ! tome (8)
been ! ben (73) poor ! pore (16) randal ! randol (7)
upon ! apon (73) a ! the (13) the ! a (7)
good ! god (67) either ! ither (13) color ! colour (6)
see ! se (66) food ! fud (13) flour ! flower (6)
we ! whe (60) doubt ! dout (12) phoebe ! feeby (6)
little ! litle (54) earth ! erth (12) an ! and (5)
great ! grate (53) led ! lead (12) cucumbers ! cucombers (5)
your ! yor (53) sea ! see (12) egg ! eg (5)
could ! coud (51) thee ! the (12) macklewain ! macklewaine (5)
here ! hear (51) tom ! tome (12) magpie ! magpi (5)
know ! now (45) add ! ad (11) milner ! millner (5)
there ! ther (45) good ! god (11) stacy ! staci (5)
three ! thre (45) heaven ! heven (11) trevelyan ! trevellion (5)
still ! stil (42) mary ! marry (11) verloc ! verlock (5)
off ! of (40) randal ! randel (11) ann ! an (4)
don’t ! dont (37) answered ! ansered (10) anyone ! one (4)
shall ! shal (36) blood ! blod (10) apartment ! appartment (4)
little ! litl (35) bozzle ! bosel (10) basin ! bason (4)

100h LARGE LV-60k 960h LARGE LV-60k 960h LARGE from scratch

a ! the (13) a ! the (12) and ! in (20)
and ! in (10) and ! in (9) a ! the (16)
in ! and (10) macklewain ! mackelwaine (7) in ! and (13)
o ! oh (8) in ! and (6) the ! a (10)
minnetaki ! minnitaki (7) o ! oh (6) in ! an (8)
randal ! randall (7) bozzle ! bosell (5) and ! an (5)
christie ! cristy (6) criss ! chris (5) clarke ! clark (4)
macklewain ! mackelwane (6) bozzle ! bosel (4) grethel ! gretel (4)
randal ! randoll (6) clarke ! clark (4) macklewain ! mackelwaine (4)
bozzle ! bosall (5) colored ! coloured (4) this ! the (4)
kaliko ! calico (5) grethel ! gretel (4) an ! and (3)
trevelyan ! trevelian (5) lige ! lyge (4) anyone ! one (3)
an ! and (4) the ! a (4) bozzle ! basell (3)
and ! an (4) and ! an (3) buns ! bunds (3)
anyone ! one (4) ann ! marianne (3) carrie ! carry (3)
bozzle ! bozall (4) butte ! bute (3) criss ! chris (3)
clarke ! clark (4) color ! colour (3) he’s ! is (3)
gryce ! grice (4) deucalion ! ducalion (3) his ! is (3)
i’m ! am (4) forcemeat ! meat (3) honor ! honour (3)
in ! ind (4) gryce ! grice (3) lattimer ! latimer (3)
letty ! lettie (4) honor ! honour (3) millet ! mellet (3)
phoebe ! phebe (4) kearny ! kirney (3) pyncheon ! pension (3)
the ! a (4) nuova ! noiva (3) tad ! ted (3)
ann ! anne (3) thing ! anything (3) thing ! anything (3)
awhile ! while (3) this ! the (3) trevelyan ! trevelian (3)
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Table 12: Examples of transcription of selected utterances from the dev-clean subset by various
models without a language model or lexicon. Capitalized words indicate errors.

Model Transcription

Reference i’m mister christopher from london
10m LV-60k IM mister CRESTIFER FROME LUNDEN
1h LV-60k IM mister CRISTIFFHER from LOUNDEN
10h LV-60k i’m mister CHRYSTEPHER from london
100h LV-60k i’m mister christopher from london
960h LV-60k i’m mister christopher from london
960h scratch I MISSTER christopher from london

Reference il popolo e una bestia
10m LV-60k ILPOPULAR ONABESTIA
1h LV-60k O POPOLAONABASTIA
10h LV-60k U POPULAONABASTIAR
100h LV-60k O POPALOON A BASTYA
960h LV-60k YOU’LL POP A LAWYE ON A BAISTYE
960h scratch OL POPALOY ON ABESTIA

Reference he smelt the nutty aroma of the spirit
10m LV-60k he SMELTD the NUDY aroma of the spirit
1h LV-60k he SMELTD the NUDDY ARROMA of the spirit
10h LV-60k he smelt the NUDDY ERROMA of the spirit
100h LV-60k he smelt the NUDDY aroma of the spirit
960h LV-60k he smelt the NUTTIE aroma of the spirit
960h scratch he smelt the nutty EROMA of the spirit

Reference phoebe merely glanced at it and gave it back
10m LV-60k FEABY MEARLY glanced at it and gave it BAK
1h LV-60k FIEABY merely glanced at it and gave it back
10h LV-60k FEEBY merely glanced at it and gave it back
100h LV-60k BEBE merely glanced at it and gave it back
960h LV-60k phoebe merely glanced at it and gave it back
960h scratch phoebe merely glanced at it and gave it back

Reference sauterne is a white bordeaux a strong luscious wine the best known varieties being
10m LV-60k SULTERIN is a white BORDOE a strong LUCHOUS WIN the best NOWN VERIATYS being
1h LV-60k CLTEREN is a white BORDO a strong LUCHIOUS wine the best known VERIETIES being
10h LV-60k SOTERN is a white BOURDO a strong LUCIOUS wine the best known VORIETIES being
100h LV-60k SOTERN is a white BORDAUX a strong LUCIOUS wine the best known varieties being
960h LV-60k SOTERN is a white bordeaux a strong luscious wine the best known varieties being
960h scratch SOTERAN is a white bordeaux a strong luscious wine the best known varieties being

Reference i happen to have mac connell’s box for tonight or there’d be no chance of our getting places
10m LV-60k i HAPEND to have MECONALES BOXS for TONIT ORE THIRLD be no chance of OR GETING places
1h LV-60k i happen to have MACCONNEL’S BOCXS for tonight or TE’ELD be no chance of our getting places
10h LV-60k i HAPPENED to have MUKONNEL’S box for tonight or THERED be no chance of our getting places
100h LV-60k i HAPPENED to have MC CONNEL’S box for TO NIGHT or there’d be no chance of our getting places
960h LV-60k i happen to have MC CONALL’S box for TO NIGHT or there’d be no chance of our getting places
960h scratch i HAPPENE to have MACONEL’S box for TO NIGHT or there’d be no chance of our getting places

F Ablations

Table 13 ablates various hyperparameter choices of our architecture. The setup for the baseline
model is described in § 5.4. First, we tried to improve the continuous input and continuous target
model (§ 5.4) by adding an MLP on top of the continuous target representation and we also tried to
use a separate set of encoder parameters for the representations used as input and targets (Separate
encoders). Both did not lead to meaningful improvements.

Increasing the receptive field size from 25ms to 30ms had little effect. Setting the diversity penalty
weight (↵) too low results in lower codebook usage and lower performance. Setting it too high leads
to slight instability. Doubling the number of relative positional embeddings to 256 also did not help.
Stopping gradients from the quantizer to the encoder shows that the encoder requires training signal
from the quantizer as well.

Next, increasing the number of negatives did not result in better performance (K = 200) and sampling
negatives from the entire batch of utterances hurt performance, likely because candidates from other
utterances are easy to distinguish. Sampling negatives from any time step in the utterance, masked
or unmasked, does not help and is more computationally expensive. Gumbel noise is important and
increasing the number of codebooks did not result in better performance.
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Table 13: Ablation of various hyper-parmeter choices. We report average WER and standard deviation
on combined dev-clean/other of Librispeech for three seeds of training.

avg. WER std.

Baseline (p = 0.075, ↵ = 0.1) 7.97 0.02

Continuous inputs, continuous targets 8.58 0.08
+ MLP on targets 8.51 0.05
+ Separate encoders 8.90 0.01

receptive field 30ms 7.99 0.06

diversity penalty
↵ = 0 8.48 0.08
↵ = 0.05 8.34 0.08
↵ = 0.2 8.58 0.45

Conv pos emb, kernel 256 8.14 0.05

No gradient to encoder from quantizer 8.41 0.08

Negatives
K = 200 same utterance 8.12 0.05
K = 50 same utterance + K = 50 from batch 8.79 0.06

Sample negatives from any time step 8.07 0.02

No Gumbel noise 8.73 0.42

Codebook
G=4, V=18 9.02 0.38
G=8, V=8 8.13 0.07

Predict exactly U time steps from edges
U = 1 9.53 0.91
U = 5 8.19 0.07
U = 10 8.07 0.07
U = 15 7.89 0.10
U = 20 7.90 0.01

We also investigated predicting only time steps immediately next to the last unmasked time step for
each span. This enables to better control the difficulty of the pre-training task. Given the leftmost or
rightmost unmasked time step next to a masked span, we compute the contrastive loss only for the first
U masked time steps next to these unsmasked spans. Predicting only up to one time step performs
poorly because there is little training signal from each utterance and predicting more time steps
performs better but does not significantly outperform predicting all masked time steps. Increasing the
number of training updates helps but this increases training time.
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