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A Derivation of the Proposition

A.1 Formal Proof

We provide more detailed derivations of the lower bound b(z;u). For clarity, we briefly restate the
proof outline from the main paper first before going into the main proof.

For pixel coordinates u on the image plane with distance transform value D(u), the set of 2D points
{v | ‖v − u‖2 ≤ D(u)} within the circle of radius D(u) centered at u must be exterior to the
2D silhouette. It immediately follows that the set of 3D points {z′v̄ | z′ ≥ 0, ‖v − u‖2 ≤ D(u)}
within the (oblique) cone formed by back-projecting the circle from the camera center must be free
space. For a 3D point zū, the SDF value f(zū) is thus lower-bounded by the radius of the sphere
centered at zū while being inscribed by the cone. Let b(z;u) = ‖zū− z′v̄‖2 be the lower bound for
f(zū), where z′v̄ is the tangent point of the sphere and the conical surface (with v on the 2D circle
back-projected to depth z′). We aim to find b(z;u) by solving the minimization problem

min
v,z′≥0

‖zū− z′v̄‖22 subject to ‖v − u‖2 = D(u) . (1)

First, by noting u = (ux, uy), we reparametrize v (the set of 2D points on the circle) with θ to be

v =

[
ux +D(u) cos θ
uy +D(u) sin θ

]
. (2)

The problem in (1) thus becomes

min
θ,z′≥0

∥∥∥∥∥z
[
ux
uy
1

]
− z′

[
ux +D(u) cos θ
uy +D(u) sin θ

1

]∥∥∥∥∥
2

2

. (3)

Without loss of generality, the first-order optimality condition on θ is

0 = 2 ·

(
z

[
ux
uy
1

]
− z′

[
ux +D(u) cos θ
uy +D(u) sin θ

1

])>(
−z′

[−D(u) sin θ
D(u) cos θ

0

])

=

(
z

[
ux
uy

]
− z′

[
ux +D(u) cos θ
uy +D(u) sin θ

])> [− sin θ
cos θ

]
=

(
z

[
ux
uy

]
− z′

[
ux
uy

])> [− sin θ
cos θ

]
=

[
ux
uy

]> [− sin θ
cos θ

]
, (4)
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leading to θ = tan−1
uy

ux
and thus

cos θ =
ux
‖u‖2

and sin θ =
uy
‖u‖2

. (5)

This indicates the optimality of θ is only dependent on the (normalized) image coordinates u while
being independent of both the given depth z and the variable z′. Plugging (5) back into (2) leads to

v =

ux +D(u)
ux
‖u‖2

uy +D(u)
uy
‖u‖2

 =

(
1 +
D(u)

‖u‖2

)
u . (6)

Having solved for v, the problem in (1) simplifies into

min
z′≥0
‖zū− z′v̄‖22 , (7)

which is a linear problem with the solution

z′ = z · ū
>v̄

v̄>v̄
. (8)

Note that z′ satisfies the non-negativity constraint by nature; one can verify by plugging (6) into (8).

Finally, the lower bound thus becomes

b(z;u) = ‖zū− z′v̄‖2 = z ·
∥∥∥∥ū− v̄>ū

v̄>v̄
v̄

∥∥∥∥
2

(9)

by noting the expression of v is given in (6).

A.2 Orthographic cameras

We show that b(z;u) = D(u) under orthographic cameras. Intuitively, one can imagine the camera
center to be pulled away from the image to negative infinity, in which case the back-projected cone
would approach an unbounded cylinder. Correspondingly, the radius of the inscribed sphere would
always be D(u), irrespective of the queried depth z.

The back-projected 3D point (denoted as x) from pixel coordinates u at depth z has a fixed distance
z − 1 to the image plane. Denoting fc as the camera focal length and writing the new depth as a
function of fc, we can rewrite the queried 3D point as

x =
z − 1 + fc

fc

[
u
fc

]
, (10)

which becomes x = zū when fc = 1. Similarly, we can rewrite the tangent point of the cone and the
inscribed sphere

x′ =
z′ − 1 + fc

fc

[
v
fc

]
, (11)

which becomes x′ = z′v̄ when fc = 1. The lower bound b(z;u) = ‖x− x′‖2 thus becomes

b(z;u) = ‖x− x′‖2

=

∥∥∥∥z − 1 + fc

fc

[
u
fc

]
− z′ − 1 + fc

fc

[
v
fc

]∥∥∥∥
2

. (12)

For orthographic cameras (where fc approaches infinity), taking the limit of fc →∞ on (12) yields

lim
fc→∞

b(z;u) = lim
fc→∞

∥∥∥∥z − 1 + fc

fc

[
u
fc

]
− z′ − 1 + fc

fc

[
v
fc

]∥∥∥∥
2

= ‖u− v‖2 = D(u) . (13)

B Dataset

In this section, we provide more details on the datasets used in the experiments.
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B.1 ShapeNet [3]

The dataset split from Yan et al. [15] were from ShapeNet v1. As nearly half of the CAD models
in the car category were removed in ShapeNet v2, we take the intersection as the final splits for
our experiments. The final statistics of ShapeNet CAD models are reported in Table 1. Following
standard protocol, we used the validation set for hyperparameter tuning and the test set for evaluation.

The ground-truth point clouds provided by Kato et al. [9] were directly sampled from the ShapeNet
CAD models. However, many interior details were also included in a significant portion of the CAD
models, especially the car category (e.g. car seats and steering wheels). Such details cannot be
recovered by 3D-unsupervised 3D reconstruction frameworks, including SoftRas [10], DVR [12], and
the proposed SDF-SRN, as they are limited to reconstructing the outer (visible) surfaces of objects.
Therefore, we use the ground truth provided by Groueix et al. [6], whose point clouds were created
using a virtual mesh scanner from Wang et al. [13]. We re-normalize the point clouds to match that
from Kato et al. [9], tightly fitting a zero-centered unit cube.

When performing on-the-fly data augmentation in the single-view supervision experiments, we ran-
domly perturb the brightness by [−20%, 20%], contrast by [−20%, 20%], saturation by [−20%, 20%],
and hue uniformly in the entire range. We do not perturb the image scales for ShapeNet renderings.

Table 1: Dataset statistics of ShapeNet v2
(number of CAD models).

Category train validation test total

airplane 2830 809 405 4044
car 2465 359 690 3514

chair 4744 678 1356 6778

Table 2: Dataset statistics of PAS-
CAL3D+ (number of images).

Category train validation total

airplane 991 974 1965
car 2847 2777 5624

chair 539 514 1053

B.2 PASCAL3D+ [14]

The PASCAL3D+ dataset is comprised of two subsets from PASCAL VOC [5] and ImageNet [4],
labeled with ground-truth CAD models and camera poses. We evaluate on the ImageNet subset
as it exhibits much less object occlusions than the PASCAL VOC subset. We note that occlusion
handling is still an open problem to all methods (including the proposed SDF-SRN) since appropriate
normalization of object scales is required to learn meaningful semantics within category. The statistics
of PASCAL3D+ used in the experiments are reported in Table 2.

Since the natural images from PASCAL3D+ come in different image and object sizes, we rescale by
utilizing the (tightest) 2D bounding boxes. In particular, we center the object and rescale such that
1.2 times the longer side of the bounding box fits the canonical images (with a resolution of 64× 64);
for the car category, we rescale such that the height of the bounding box fits 1/3 of the canonical
image height. When performing on-the-fly data augmentation, we randomly perturb the brightness
by [−20%, 20%], contrast by [−20%, 20%], saturation by [−20%, 20%], and hue uniformly in the
entire range. We additionally perturb the image scale by [−20%, 20%].

We use the ground-truth CAD model and camera pose associated with each image to create the object
silhouettes. For evaluation, we create ground-truth point clouds from the 3D CAD models using the
virtual mesh scanner from Wang et al. [13] (described in Sec. B.1) and rescale by the factor

s =
camera focal length

camera distance
· 2

64
, (14)

which scales the point clouds to match the [−1, 1] canonical image space where the silhouettes lie.
Note that the camera parameters provided from the dataset are used only for evaluation. Since there
may still exist misalignment mainly due to depth ambiguity, we run the rigid version of the Iterative
Closest Point algorithm [2] for 50 iterations to register the prediction to the rescaled ground truth.

C Architectural and Training Details

We provide a more detailed description of the network architectures of SDF-SRN. As described
in the paper, the implicit functions fθ, gφ and hψ share an MLP backbone extracting point-wise
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deep features for each 3D point. The shared MLP backbone consists of 4 linear layers with 128
hidden units, with layer normalization [1] and ReLU activations in between. The shallow heads of f
and g are single linear layers, predicting the SDF and RGB values respectively. The encoder E is
built with a ResNet-18 [7] followed by fully-connected layers, which consists of six 512-unit hidden
layers for the ShapeNet [3] experiments and two 256-unit hidden layers for the PASCAL3D+ [14]
experiments. We use separate branches of fully-connected layers to predict the weights and biases of
each linear layer of the implicit function, i.e. the latent code (from the encoder) is passed to 4 sets
of fully-connected layers for the 4 linear layers of the MLP backbone, and similarly for the shallow
heads. We choose the hidden and output state dimension for the LSTM to be 32 and add a following
linear layer to predict the update step for the depth δz.

Following prior practice [8, 12], we initialize ResNet-18 with weights pretrained with ImageNet [4].
To make the training of SDF-SRN better conditioned, we also pretrain the fully-connected part of the
hypernetwork to initially predict an SDF space of a zero-centered sphere with radius r. In practice,
we randomly sample z̃ ∼ N (0, I) on the hidden latent space to predict the weights θ̃ of an implicit
function fθ̃. Subsequently, we uniformly sample x̃ ∈ R3 in the 3D space and minimize the loss

Lpretrain =
∑
x̃

∥∥∥fθ̃(x̃)−
(
‖x̃‖2 − r

)∥∥∥2
2
. (15)

We choose radius r = 0.5 and pretrain the fully-connected layers randomly sampling 10K points for
2000 iterations. We find this pretraining step important for facilitating convergence at the early stage
of training and avoiding degenerate solutions.

To encourage high-frequency components to be recovered in the 3D shapes, we take advantage of the
positional encoding technique advocated by Mildenhall et al. [11]. For each input 3D point x of the
implicit functions f , g, and h, we map x to higher dimensions with the encoding function

γ(p) =
[
p, cos(20p), sin(20p), . . . , cos(2L−1p), sin(2L−1p)

]
, (16)

where p is applied to all 3D coordinates of x = (x, y, z) and subsequently concatenated. We choose
L = 6 in our implementation. More details can be found in the work of Mildenhall et al. [11].

D Supplementary Video

Please see the attached video supp.mp4 for a 3D visualization of the 3D reconstruction results on
both ShapeNet [3] and PASCAL3D+ [14].

E Additional Results

We visualize additional qualitative comparisons for the ShapeNet [3] multi-view supervision exper-
iment in Fig. 1 for airplanes, Fig. 2 for cars, and Fig. 3 for chairs. We again emphasize that these
results are from unknown multi-view associations, where each image is treated independently during
training. SDF-SRN is able to consistently capture meaningful shape semantics within category,
while SoftRas [10] and DVR [12] suffer from the lack of viewpoint correspondences. In addition,
SDF-SRN can successfully capture various shape topologies that underlies in the images. We also
provide additional results of SDF-SRN on natural images (PASCAL3D+ [14]) in Fig. 4 for airplanes,
Fig. 5 for cars, and Fig. 6 for chairs.
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Input SoftRas DVR SDF-SRN (ours) GT Input SoftRas DVR SDF-SRN (ours) GT

Figure 1: Additional results on ShapeNet airplanes.

Input SoftRas DVR GT Input SoftRas DVR GTSDF-SRN (ours) SDF-SRN (ours)

Figure 2: Additional results on ShapeNet cars.

Input SoftRas DVR SDF-SRN (ours) GT Input SoftRas DVR SDF-SRN (ours) GT

Figure 3: Additional results on ShapeNet chairs.
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Input SDF-SRN (ours) GT Input SDF-SRN (ours) GT

Figure 4: Additional results on PASCAL3D+ airplanes.

Input SDF-SRN (ours) GT Input SDF-SRN (ours) GT

Figure 5: Additional results on PASCAL3D+ cars.

Input SDF-SRN (ours) GT Input SDF-SRN (ours) GT

Figure 6: Additional results on PASCAL3D+ chairs.
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