
Supplement to “Model Selection in Contextual Stochastic Bandit
Problems"

In Section A we briefly outline other direct applications of our results. In Section B we reproduce the
CORRAL master and EXP3.P master algorithms. In Section D we present the proofs for Section 5.1
and show that algorithms such as UCB, ✏�greedy, LinUCB and EXP3 are (U, T, �)�bounded. In
Sections E, F and G we present the proofs of the bound for Term I, Term II and the total regret,
respectively. In Section H we show the proofs of the lower bounds in Section 6. In Section I we show
the proofs of the regret bounds of the applications in Section 4.

A Other Applications

We outline briefly some other direct applications of our results. Similar to Section 4, we apply the
smoothing procedure (Section 5) to all base algorithms before running them with the masters.

A.1 Generalized Linear Bandits with Unknown Link Function

[14] study the generalized linear bandit model for the stochastic k-armed contextual bandit problem.
In round t and given context xt 2 Rd⇥k, the learner chooses arm it and observes reward rt =
µ(x>

t,it
✓⇤) + ⇠t where ✓⇤ 2 Rd is an unknown parameter vector, ⇠t is a conditionally zero-mean

random variable and µ : R ! R is called the link function. [14] obtain the high probability regret
bound Õ(

p
dT ) where the link function is known. Suppose we have a set of link functions L that

contains the true link function µ. Since the target regret Õ(
p
dT ) is known, we can run CORRAL

with the algorithm in [14] with each link function in the set as a base algorithm. From Theorem 5.3,
CORRAL will achieve regret Õ(

p
|L|dT ).

A.2 Bandits with Heavy Tail

[18] study the linear stochastic bandit problem with heavy tail. If the reward distribution has finite
moment of order 1 + ✏⇤, [18] obtain the high probability regret bound Õ

⇣
T

1
1+✏⇤

⌘
. We consider the

problem when ✏⇤ 2 (0, 1] is unknown with a known lower bound L where L is a conservative estimate
and ✏⇤ could be much larger than L. To the best of our knowledge, we provide the first result when ✏⇤
is unknown. We use the algorithms in [18] with value of ✏⇤ in the grid [blogb(L), ..., b1, b0] for some
0 < b < 1 as base algorithms with ⌘ = T�1/2 for CORRAL. A direct application of Theorem 5.3
yields regret Õ

�
T 1�0.5b✏⇤

�
. When ✏⇤ = 1 (as in the case of finite variance), Õ

�
T 1�0.5b✏⇤

�
is close

to Õ
�
T 0.5

�
when b is close to 1.

A.3 Reinforcement Learning Experiment Details

In Figure 3, we present results for the model selection problem among distinct RL algorithms
in the River Swim environment [19]. We use three different bases, ✏�greedy Q�learning with
✏ = .1, Posterior Sampling Reinforcement Learning (PSRL), as described in [16] and UCRL2
as described in [10]. The implementation of these algorithms and the environment is taken from
TabulaRL (https://github.com/iosband/TabulaRL), a popular benchmark suite for tabular
reinforcement learning problems. Smooth Corral uses a CORRAL master algorithm with a learning
rate ⌘ = 15p

T
, all base algorithms are smoothed using Algorithm 3. The curves for UCRL2, PSRL

and ✏�greedy are all of their un-smoothed versions. Each experiment was repeated 10 times and we
have reported the mean cumulative regret and shaded a region around them corresponding to ±.3 the
standard deviation across these 10 runs.

B Master Algorithms

B.1 Original Corral

The original Corral algorithm [2] is reproduced below.
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Algorithm 4 Original Corral
Input: Base Algorithms {Bj}

M

j=1, learning rate ⌘.
Initialize: � = 1/T,� = e

1
lnT , ⌘1,j = ⌘, ⇢j1 = 2M,pj

1
= 1

⇢
j
1

, pj1 = 1/M for all j 2 [M ].
Initialize all base algorithms.

for t = 1, · · · , T do
Receive context xt ⇠ D.
Receive policy ⇡t,j from Bj for all j 2 [M ].
Sample it ⇠ pt.
Play action at ⇠ ⇡t,it(xt).
Receive feedback rt = f(xt, �at) + ⇠t.
Send feedback rt

pt,it

1{j = it} to Bj for all j 2 [M ].
Update pt, ⌘t and p

t
to pt+1, ⌘t+1 and p

t+1
using rt via Corral-Update.

for j = 1, · · · ,M do
Set ⇢j

t+1 = 1
p
j
t+1

end for
end for

Algorithm 5 Corral-Update
Input: learning rate vector ⌘t, distribution pt, lower bound p

t
and current loss rt

Output: updated distribution ⇡t+1, learning rate ⌘t+1 and loss range ⇢t+1

Update pt+1 = Log-Barrier-OMD(pt,
rt

pt,it
eit , ⌘t).

Set pt+1 = (1� �)pt+1 + � 1
M

.
for j = 1, · · · ,M do

if pj
t
> pj

t+1 then

Set pj
t+1

=
p
j
t+1

2 , ⌘t+1,j = �⌘t,i,
else

Set pj
t+1

= pj
t
, ⌘t+1,j = ⌘t,i.

end if
end for

Return pt+1, ⌘t+1 and p
t+1

.

Algorithm 6 Log-Barrier-OMD(pt, `t, ⌘t)
Input: learning rate vector ⌘t, previous distribution pt and current loss `t
Output: updated distribution pt+1

Find � 2 [minj `t,j ,maxj `t,j ] such that
P

M

j=1
1

1
pit

+⌘t,j(`t,j��)
= 1

Return pt+1 such that 1
p
j
t+1

= 1
p
j
t

+ ⌘t,j(`t,j � �)

B.2 Corral Master

We reproduce our Corral master algorithm below.
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Algorithm 7 Corral Master
Input: Base Algorithms {Bj}

M

j=1, learning rate ⌘.
Initialize: � = 1/T,� = e

1
lnT , ⌘1,j = ⌘, ⇢j1 = 2M,pj

1
= 1

⇢
j
1

, pj1 = 1/M for all j 2

[M ].
for t = 1, · · · , T do

Sample it ⇠ pt.
Receive feedback rt from base Bit .
Update pt, ⌘t and p

t
to pt+1, ⌘t+1 and p

t+1
using rt via Corral-Update.

for j = 1, · · · ,M do
Set ⇢j

t+1 = 1
p
j
t+1

end for
end for

B.3 EXP3.P Master

We reproduce the EXP3.P algorithm (Figure 3.1 in [4]) below. In this formulation we use ⌘ = 1, � =
2�k and p = �

k
.

Algorithm 8 EXP3.P Master
Input: Base Algorithms {Bj}

M

j=1, exploration rate p.
Initialize: pj1 = 1/M for all j 2 [M ].

for t = 1, · · · , T do
Sample it ⇠ pt.
Receive feedback rt from base Bit .
Compute the estimated gain for each base j: r̃t,j =

rt,j1it=j+p/2
pj,t

and update the estimated
cumulative gain R̃j,t =

P
t

s=1 r̃s,j .
for j = 1, · · · ,M do
pj
t+1 = (1� p) exp R̃j,tPM

n=1 exp R̃n,t
+ p

end for
end for

C Some useful lemmas

Lemma C.1. If U(t, �) = t�c(�), for 0  �  1 then:

U(l, �) 
lX

t=1

U(t, �)

t


1

�
U(l, �)

Proof. The LHS follows immediately from observing U(t,�)
t

is decreasing as a function of t and
therefore

P
l

t=1
U(t,�)

t
� lU(l,�)

l
= U(l, �). The RHS is a consequence of bounding the sum by the

integral
R
l

0
U(t,�)

t
dt, substituting the definition U(t, �) = t�c(�) and solving it.

Lemma C.2. If f(x) is a concave and doubly differentiable function on x > 0 and f(0) � 0 then
f(x)/x is decreasing on x > 0

Proof. In order to show that f(x)/x is decreasing when x > 0, we want to show that
⇣

f(x)
x

⌘0
=

xf
0(x)�f(x)

x2 < 0 when x > 0. Since 0f 0(0) � f(0)  0, we will show that g(x) = xf 0(x) � f(x)
is a non-increasing function on x > 0. We have g0(x) = xf 00(x)  0 when x � 0 because f(x) is
concave. Therefore xf 0(x)� f(x)  0f 0(0)� f(0)  0 for all x � 0, which completes the proof.
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Lemma C.3. For any � 
1
4 : KL( 12 ,

1
2 ��)  3�2.

Proof. By definition kl(p, q) = p log(p/q) + (1� p) log( 1�p

1�q
), so

KL

✓
1

2
,
1

2
��

◆
=

1

2

✓
log(

1

1� 2�
) + log(

1

1 + 2�
)

◆

=
1

2
log

✓
1

1� 4�2

◆
=

1

2
log

✓
1 +

4�2

1� 4�2

◆


2�2

1� 4�2


2�2

3
4

 3�2

D Additional discussion from Section 5.1

D.1 Proof of Proposition 5.1

Note that in Step 2 we are replaying the decision of Bi at time s learned from a sequence of contexts
A

(1)
1 , ...,A(1)

s to another context A(2)
`

. Since the contexts are sampled i.i.d from the same distribution,
in Lemma D.1 we will show that when we reuse the policy learned from a series of contexts A1, ...,At

to another series of context A0
1, ...,A

0
t
, the regret is multiplied only by a constant factor. We call

the regret when using a policy learned from a series of context to another series of contexts "replay
regret".
Lemma D.1. Let h be a generic history of algorithm B and h(t) the history h up to time t. If
A1, · · · ,At are i.i.d. contexts from D and ⇡1, · · · ,⇡t is the sequence of policies used by B on these
contexts, the "expected replay regret" R(t, h) is:

R(t, h) = EA0
1,··· ,A0

t

"
tX

l=1

f(A0
l
,⇡⇤)� f(A0

l
,⇡l)

#
(4)

Where A
0
1, · · · ,A

0
t

are i.i.d. contexts from D independent conditional on Ft, the sigma algebra
capturing all that has occurred up to time t. If B is (U, �, T )�bounded, maxx,⇡ |f(x,⇡)|  1,

U(t, �) > 8
q

t log( t
2

�
), and � 

1p
T

, then B’s expected replay regret satisfies: R(t, h)  4U(t, �) +

2�t  5U(t, �).

Proof. Consider the following two martingale difference sequences:

{M1
l
:= f(Al,⇡

⇤)� f(A00
l
,⇡⇤)}t

l=1

{M2
l
:= f(A00

l
,⇡l)� f(Al,⇡l)}

t

l=1

Since max
�
|M1

l
|, |M2

l
|
�
 2 for all t, a simple use of Azuma-Hoeffding yields:

P
 �����
X

l

M i

l

����� � U(t, �)

!
 P

 �����
X

l

M i

l

����� �

s

8t log

✓
8t2

�

◆!

 2 exp

 
�
8t log( 8t

2

�
)

8t

!

=
�

4t2
.

Summing over all t, and all i 2 {1, 2} and applying the union bound, using the fact that
P

T

t=1
1
t2

< 2
implies that for all t, with probability 1� �,

���

 
tX

l=1

f(Al,⇡
⇤)�

tX

l=1

f(Al,⇡l)

!

| {z }
I

�

 
tX

l=1

f(A00
l
,⇡⇤)�

tX

l=1

f(A00
l
,⇡l)

!

| {z }
II

���  2U(t, 2�) .
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Since with probability 1� � term I is upper bounded by U(t, �) for all t a simple union bound implies

that with probability 1�2� term II is upper bounded by U(t, �)+2
q
8t log

�
8t2

�

�
 4U(t, �) for all t.

The replay expected regret R(t, h) can be upper bounded by: (1�2�)4U(t, �)+2�t  4U(t, �)+2�t.
The result follows.

Proof of Proposition 5.1. Since the conditional instantaneous regret on Step 2 of round t equals
the average replay regret of the type 1 steps up to t, Lemma D.1 implies E[r(2)

t
|Ft�1] 

5U(t,�)
t

.
The regret of step 1 is bounded by U(t, �). The regret of step 2 is bounded by

P
T

t=1
5U(t,�)

t
=

5U(T, �) log(T ). Therefore total regret is bounded by 6U(T, �) log(T )

D.2 Applications of Proposition 5.1

We now show that several algorithms are (U, �, T )�bounded:

Lemma D.2. Assuming that the noise ⇠t is conditionally 1-sub-Gaussian, UCB is (U, �, [T ])-bounded
with U(t, �) = O(

p
tk log tk

�
).

Lemma D.3 (Theorem 3 in [1]). LinUCB is (U, �, T )-bounded with U(t, �) = O(d
p
t log(1/�)).

Lemma D.4 (Theorem 1 in [7]). When k is finite, LinUCB is (U, �, T )-bounded with U(t, �) =
O(

p
dt log3(kT log(T )/�)).

Lemma D.5. If c =
10K log( 1

� )
�2

⇤
where �j is the gap between the optimal arm and arm j and

�⇤ = minj �j , then ✏�greedy with ✏t =
c

t
satisfies a (U, �, T )�bounded for � 

�2
⇤

T 3 : U(t, �) =

16
q
log( 1

�
)t when k = 2 and U(t, �) = 20

⇣
k log( 1

�
)
⇣P

k

j=2 �j

⌘⌘1/3
t2/3 when k > 2

Lemma D.6 (Theorem 1 in [17]). Exp3 is (U, �, T )�bounded where U(t, �) = O(
p
tk log tk

�
).

D.2.1 Proof of Lemma D.2

Proof. The regret of UCB is bounded as
P

i:�i>0

⇣
3�i +

16
�i

log 2k
�i�

⌘
(Theorem 7 of Abbasi-

Yadkori et al. [1]) where �i is the gap between arm i and the best arm. By substituting the worst-case
�i in the regret bound, U(T, �) = O(

p
Tk log Tk

�
).

D.2.2 Proof of Lemma D.5

In this section we show that epsilon greedy satisfies a high probability regret bound. We adapt the
notation to this setup. Let µ1, · · · , µK be the unknown means of the K arms. Recall that at time t
the epsilon Greedy algorithm selects with probability ✏t = min(c/t, 1) an arm uniformly at random,
and with probability 1� ✏t it selects the arm whose empirical estimate of the mean is largest so far.
Let µ̂(t)

j
denote the empirical estimate of the mean of arm j after using t samples.

Without loss of generality let µ1 be the optimal arm. We denote the gaps as �j = µ1 � µj for all j.
Let �⇤ be the smallest nonzero gap. We follow the discussion in [3] and start by showing that under
the right assumptions, and for a horizon of size T , the algorithm satisfies a high probability regret
bound for all t  T . The objective of this section is to prove the following Lemma:

Lemma D.7. If c =
10k log( 1

� )
�2

⇤

3, then ✏�greedy with ✏t = c

t
is (�, U, T )�stable for � 

�2
⇤

T 3 and

U(t, �) =
30k log( 1

� )
�2

⇤

⇣P
k

j=2
�j

�2
⇤
+�j

⌘
log(t+ 1).

3This choice of c is robust to multiplication by a constant.
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Proof. Let E(t) = 1
2K

P
t

l=1 ✏l and denote by Tj(t) the random variable denoting the number of
times arm j was selected up to time t. We start by analyzing the probability that a suboptimal arm
j > 1 is selected at time t:

P(j is selected at time t) 
✏t
k
+
⇣
1�

✏t
k

⌘
P
⇣
µ̂
(Tj(t))
j

� µ̂(T1(t))
1

⌘
(5)

Let’s bound the second term.

P
⇣
µ̂
(Tj(t))
j

� µ̂(T1(t))
1

⌘
 P

✓
µ̂
(Tj(t))
j

� µj +
�j

2

◆
+ P

✓
µ̂(T1(t))
1  µ1 �

�j

2

◆

The analysis of these two terms is the same. Denote by TR

j
(t) the number of times arm j was played

as a result of a random epsilon greedy move. We have:

P
✓
µ̂
(Tj(t))
j

� µj +
�j

2

◆
=

tX

l=1

P
✓
Tj(t) = l and µ̂(l)

j
� µj +

�j

2

◆

=
tX

l=1

P
✓
Tj(t) = l|µ̂(l)

j
� µj +

�j

2

◆
P
✓
µ̂(l)
j

� µj +
�j

2

◆

I



tX

l=1

P
✓
Tj(t) = l|µ̂(l)

j
� µj +

�j

2

◆
exp(��2

j
t/2)

II



bE(t)cX

l=1

P
✓
Tj(t) = l|µ̂(l)

j
� µj +

�j

2

◆
+

2

�2
j

exp(��2
j
bE(t)c/2)



bE(t)cX

l=1

P
✓
TR

j
(t) = l|µ̂(l)

j
� µj +

�j

2

◆
+

2

�2
j

exp(��2
j
bE(t)c/2)

 bE(t)cP
�
Tj(t)

R
 bE(t)c

�
| {z }

(1)

+
2

�2
j

exp(��2
j
bE(t)c/2)

| {z }
(2)

Inequality I is a consequence of a Chernoff bound. Inequality II follows becauseP1
l=E+1 exp(�↵l) 

1
a
exp(�↵E). Term (1) corresponds to the probability that within the in-

terval [1, · · · , t], the number of greedy pulls to arm j is at most half its expectation. Term (2) is
already "small".

Recall ✏t = min(c/t, 1). Let c = 10K log(T 3
/�)

�2
⇤

for some � 2 (0, 1) satisfying �  �2
j
. Under these

assumptions we can lower bound E(t): Indeed if t � 10K log(T 3
/�)

�2
⇤

:

1

2K

tX

l=1

✏l =
5 log(T 3/�)

�2
⇤

+
5 log(T 3/�)

�2
⇤

tX

l=log(T 3/�)

1

l

�
5 log(T 3/�)

�2
⇤

+
5 log(T 3/�) log(t)

2�2
⇤

�
5 log(T 3/�)

�2
⇤

By Bernstein’s inequality (see derivation of equation (13) in [3]) it is possible to show that :

P
�
TR

j
(t)  E(t)

�
 exp (�E(t)/5) (6)

Hence for t � 10k log(T 3
/�)

�2
⇤

:

P
�
TR

j
(t)  E(t)

�


⇣ �

T 3

⌘ 1
�2⇤
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And therefore since E(t)  T and 1
�⇤

� 1 we can upper bound (1) as:

bE(t)cP
�
Tj(t)

R
 bE(t)c

�


⇣ �

T 2

⌘ 1
�2⇤


�

T 2

Now we proceed with term (2):

2

�2
j

exp
�
��2

j
bE(t)c/2

�


2

�2
j

exp

 
�5k log(

T 3

�
)
�2

j

�2
⇤

!


2

�2
j

exp

✓
�5k log(

T 3

�
)

◆

=
2

�2
j

⇣ �

T 3

⌘5k

By the assumption �  �2
j

the last term is upper bounded by �

T 3 .

The previous discussion implies that for c = 10k log(T 3
/�)

�2
⇤

, the probability of choosing a suboptimal

arm j � 2 at time t for t � 10k log(T 3
/�)

�2
⇤

as a greedy choice is upper bounded by 2 �

T
. In other words

after t � 10k log(T 3
/�)

�2
⇤

, suboptimal arms with probability 1� 1
T

over all t are only chosen as a result
of a exploration uniformly random epsilon greedy action.

A similar argument as the one that gave us Equation 6 can be used to upper bound the probability that
at a round t, Tj(t)R be much larger than its mean:

P
�
TR

j
(t) � 3E(j)

�
 exp(�E(t)/5)

We can conclude that with probability more than 1� k�

T
and for all t and arms j, TR

j
(t)  3E(t).

Combining this with the obsevation that after t � 10k log(T 3
/�)

�2
⇤

and with probability 1� k�

T
over all t

simultaneously (by union bound) regret is only incurred by random exploration pulls (and not greedy
actions), we can conclude that with probability 1� 2k�

T
simultaneously for all t � 10k log(T 3

/�)
�2

⇤
the

regret incurred is upper bounded by:

10k log(T 3/�)

�2
⇤

·
1

k

kX

j=2

�j

| {z }
I

+3E(t)
kX

j=2

�j

| {z }
II

Where I is a crude upper bound on the regret incurred in the first 10k log(T 3
/�)

�2
⇤

rounds and II is an
upper bound for the regret incurred in the subsequent rounds.

Since E(t) 
20k log(T 3

/�)
�2

⇤
log(t) we can conclude that with probability 1 �

2k�
T

for
all t  T the cumulative regret of epsilon greedy is upper bounded by f(t) =

30K log(T 3/�)
⇣P

k

j=2
�j

�2
⇤
+�j

⌘
max(log(t), 1), the result follows by identifying � = �/T 3.

We now show the proof of Lemma D.5 the instance-independent regret bound for ✏-greedy:

Lemma D.8 (Lemma D.5). If c =
10k log( 1

� )
�2

⇤
, then ✏�greedy with ✏t = c

t
is (�, U, T )�stable for

� 
�2

⇤
T 3 and:

1. U(t, �) = 16
q

log( 1
�
)t when k = 2.

2. U(t, �) = 20
⇣
K log( 1

�
)
⇣P

K

j=2 �j

⌘⌘1/3
t2/3 when k > 2.
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Proof. Let � be some arbitrary gap value. Let R(t) denote the expected regret up to round t. We
recycle the notation from the proof of Lemma D.7, recall � = �/T 3.

R(t) =
X

�j�

�jE [Tj(t)] +
X

�j��

�jE [Tj(t)]

 �t+
X

�j��

�jE [Tj(t)]

 �t+ 30k log(T 3/�)

0

@
kX

�j��

�j

�2
⇤
+�j

1

A log(t)

 �t+ 30k log(T 3/�)

0

@
kX

�j��

�j

�2
⇤

1

A+ 30k log(T 3/�) log(t)

0

@
kX

�j��

�j

1

A (7)

When K = 2, �2 = �⇤ and therefore (assuming � < �2):

R(t)  �t+
30k log(T 3/�)

�2
+ 30k log(T 3/�) log(t)�2

 �t+
30k log(T 3/�)

�
+ 30k log(T 3/�) log(t)�2

I


p
30k log(T 3/�)t+ 30k log(T 3/�) log(t)�2

II
 8
p
k log(T 3/�)t

 16
p
log(T 3/�)t

Inequality I follows from setting � to the optimizer, which equals � =
q

30k log(T 3/�)
t

. The second
inequality II is satisfied for T large enough. We choose this expression for simplicity of exposition.

When K > 2 notice that we can arrive to a bound similar to 7:

R(t)  �t+ 30k log(T 3/�)

0

@
kX

�j��

�j

�2

1

A+ 30k log(T 3/�) log(t)

0

@
kX

�j��

�j

1

A

Where �⇤ is substituted by �. This can be obtained from Lemma D.7 by simply substituting �⇤
with � in the argument for arms j : �j � �.

We upper bound
P

�j�� �j by
P

k

j=2 �j . Setting � to the optimizer of the expression yields

� =

✓
30k log(T 3

/�)(
Pk

j=2 �j)
t

◆1/3

, and plugging this back into the equation we obtain:

R(t)  2

0

@30k log(T 3/�)

0

@
kX

j=2

�j

1

A

1

A
1/3

t2/3 + 30k log(T 3/�) log(t)

0

@
kX

j=2

�j

1

A

⇠

 20

0

@k log(T 3/�)

0

@
kX

j=2

�j

1

A

1

A
1/3

t2/3

The inequality ⇠ is true for T large enough. We choose this expression for simplicity of exposition.

E Bounding term I

When the base algorithms are not chosen, they repeat their step 2’s policy to ensure that the conditional
instantaneous regret is decreasing. Therefore when the base algorithms are chosen by the master,
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we must also only send step 2’s rewards to the master as feedback signals. This is to ensure that the
rewards of the bases at time t do not depend on whether they are selected by the master at time t.
However, since the bases play and incur regrets from both step 1 and step 2 when they are chosen, we
must account to the difference between the reward of step 1 and step 2 (that the bases incur when
they play the arms), and 2 times the reward of step 2 (that the bases send to the master as feedback
signals).

Since we assume all base algorithms to be smoothed and satisfy a two step feedback structure, we
also denote by ⇡(j)

t
as the policy used by the master during round t, step j. Term I, the regret of the

master with respect to base i can be written as:

E [I] = E

2

4
TX

t=1

2X

j=1

f(A(j)
t

,⇡(j)
t,i

)� f(A(j)
t

,⇡(j)
t

)

3

5 (8)

Recall that the master algorithm is updated only using the reward of Step 2 of base algorithms even
though the bases play both step 1 and 2. Let Ti is the random subset of rounds when M choose base
Bi, (it = i). Adding and subtracting terms {f(A(1)

t
,⇡(2)

t
}
T

t=1 we see that:

I =
TX

t=1

2X

j=1

f(A(j)
t

,⇡(j)
t,i

)� f(A(j)
t

,⇡(j)
t

)

=
TX

t2Ti

2X

j=1

f(A(j)
t

,⇡(j)
t,i

)� f(A(j)
t

,⇡(j)
t

)

| {z }
I0

+
TX

t2Tc
i

2X

j=1

f(A(j)
t

,⇡(j)
t,i

)� f(A(j)
t

,⇡(j)
t

)

| {z }
I1

(i)
=

TX

t2Ti

2X

j=1

f(A(j)
t

,⇡(2)
t,i

)� f(A(j)
t

,⇡(2)
t

)

| {z }
I00

+
TX

t2Tc
i

2X

j=1

f(A(j)
t

,⇡(2)
t,i

)� f(A(j)
t

,⇡(j)
t

)

| {z }
I01

(ii)
=

TX

t=1

2X

j=1

f(A(j)
t

,⇡(2)
t,i

)� f(A(j)
t

,⇡(2)
t

)

| {z }
IA

+
TX

t2Tc
i

f(A(1)
t

,⇡(2)
t

)� f(A(1)
t

,⇡(1)
t

)

| {z }
IB

Equality (i) holds because term I0 equals zero and therefore I0 = I00 and in all steps t 2 Tc

i
, base i

repeated a policy of step 2 so that I1 = I01. Equality (ii) follows from adding and subtracting term IB .
Term E [IA] is the regret of the master with respect to base i. Term E [IB ] accounts for the difference
between the rewards of step 1 and step 2 (that the bases incur) and 2 times the rewards of step 2 (that
the bases send to the master). We now focus on bounding E [IA] and E [IB ].

Modified step 2’s rewards. We introduce the following small modification to the algorithm’s
feedback. This will become useful to control E [IB ]. Instead of sending the master the unadulterated
r(2)
t,j

feedback, at all time step t, all bases will send the following modified feedback:

r(2)
0

t,j
= r(2)

t,j
�

U(st,j , �)

st,j
(9)

This reward satisfies:

E
h
r(2)

0

t,j
|Ft�1

i
= E

h
f(A(2)

t
,⇡(2)

t
)|Ft�1

i
�

Uj(st,j , �)

st,j

We’ll show that this modification allows us to control term IB in Section E.2. Since this modification
is performed internally by all bases, we note that term IA corresponds to an adversarial master that is
always fed modified rewards from all bases and trying to compete against base i also with modified
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rewards. Therefore any worst case bound of term IA of an adversarial master will not be affected by
this modification of the reward sequence of all bases.

Term IB is the difference between the (modified) rewards of step 2 and step 1 which, due to the
introduced modification, should intuitively be small because the cumulative (modified) rewards of
step 2 are designed be smaller than step 1. In section E.2 we show that E [IB ]  8

q
MT log( 4TM

�
).

Therefore E [I]  E [IA] + 8
q

MT log( 4TM

�
) .

Since any base j sends the modified reward to the master when it is chosen, when it is not chosen and
repeats its step 2’s policy, the reward also needs to be modified in the same way as in Equation 9.
This is to ensure that the rewards of the base at time t do not depend on whether it is selected by the
master at time t. We now discuss how this modification affects term II. Note that the modification
increases term II (which only depends on base i) at each time step t by Ui(st,i,�)

st,i
. Since the original

instantaneous regret of base i at step 2 is bounded by a term of the same order, the modification
increases term II by only a constant factor (Section F).

E.1 Bounding E [IA]

As we explain above, since the modification of the bases’ rewards in Equation 9 is internal within the
bases, and the master is a k-armed bandit adversarial algorithm, the worst-case performance of the
master against any adversarial sequence of rewards will not be affect when the sequence of rewards
of the bases changes.

E.1.1 CORRAL Master

Notice that:

E [IA] = E

"
TX

t=1

2f(A(2)
t

,⇡(2)
t,i

)� 2f(A(2)
t

,⇡(2)
t

)

#

We can easily bound this term using Lemma 13 from [2]. Indeed, in term IA, the policy choice for
all base algorithms {B̃m}

M

m=1 during any round t is chosen before the value of it is revealed. This

ensures the estimates 2r(2)t

p
it
t

and 0 for all i 6= it are indeed unbiased estimators of the base algorithm’s
rewards.

We conclude:

E [IA]  O

✓
M lnT

⌘
+ T⌘

◆
�

E
h

1
p
i

i

40⌘ lnT

E.1.2 EXP3.P Master

Since E [IA] is the regret of base i with respect to the master, it can be upper bounded by the k-armed
bandit regret of the master with M arms. Choose ⌘ = 1, � = 2k� in Theorem 3.3 in [4], we have
that if p 

1
2k , the regret of EXP3.P:

E [IA]  Õ

✓
MTp+

log(k��1)

p

◆
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E.2 Bounding E [IB ]

Notice that:

E [IB ] = E

2

4
X

t2Tc
i

f(A(1)
t

,⇡(2)
t

)� f(A(1)
t

,⇡(1)
t

)

3

5

= E
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4
X

t2Tc
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f(A(2)
t

,⇡(2)
t

)� f(A(1)
t

,⇡(1)
t
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3

5

I0B

= E

2

4
X

t2Tc
i

f(A(2)
t

,⇡(2)
t

)� f(A(2)
t

,⇡⇤) + f(A(2)
t

,⇡⇤)� f(A(1)
t

,⇡(1)
t

)

3

5

= E

2

4
X

t2Tc
i

f(A(2)
t

,⇡(2)
t

)� f(A(2)
t

,⇡⇤) + f(A(1)
t

,⇡⇤)� f(A(1)
t

,⇡(1)
t

)

3

5

In order to bound this term we will make an extra assumption.

Assumption A1 (Bounded Expected Rewards) We assume |f(A,⇡)|  1 for all A and all policies
⇡.

Substituting the modified step 2 rewards in Equation 9 back into the expectation for E [IB ] becomes:

E[IB ] = E

2

4
X

t2Tc
i

f(A(2)
t

,⇡(2)
t

)� f(A(2)
t

,⇡⇤)�
Ujt(st,jt(t), �)

st,jt
+ f(A(1)

t
,⇡⇤)� f(A(1)

t
,⇡(1)

t
)

3

5

=
X

j 6=i

E

2

4
X

t2Tj

f(A(2)
t

,⇡(2)
t,j

)� f(A(2)
t

,⇡⇤)�
Uj(st,j , �)

st,j
+ f(A(1)

t
,⇡⇤)� f(A(1)

t
,⇡(1)

t,j
)

3

5

(1)


X

j 6=i

E

2

4
X

t2Tj

f(A(2)
t

,⇡(2)
t,j

)� f(A(2)
t

,⇡⇤) + f(A(1)
t

,⇡⇤)� f(A(1)
t

,⇡(1)
t,j

)

3

5� Uj(sT,j , �)

(10)

Inequality (1) follows because by Lemma C.1 applied to Uj(t, �).
Observe that if the j�th algorithm was in its Uj-compatible environment (also referred to as its
"natural environment"), then for any instantiation of Tj and with high probability:

0

@
X

t2Tj

f(A(2)
t ,⇡

(2)
t,j )� f(A(2)

t ,⇡
⇤) + f(A(1)

t ,⇡
⇤)� f(A(1)

t ,⇡
(1)
t,j )

1

A� Uj(Tj(T ), �) 

0

@
X

t2Tj

f(A(1)
t ,⇡

⇤)� f(A(1)
t ,⇡

(1)
t,j )

1

A� Uj(Tj(T ), �)  0 (11)

The first inequality follows because by definition f(A(2)
t

,⇡⇤) � f(A(2)
t

,⇡(2)
t

) and the last because
of the high probability regret bound satisfied by Bj .

When Bj is not in its Uj-compatible environment, this condition may or may not be violated. If this
condition is violated, we need to make sure Bj is dropped by the master. Since it is impossible to
compute the terms f(A(2)

t
,⇡(2)

t
)� f(A(2)

t
,⇡⇤) and f(A(1)

t
,⇡⇤)� f(A(1)

t
,⇡(1)

t
) directly, we instead

rely on the following test:
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Base Test. Let Tj(l) be the first set of l indices when the master chose to play base j. If at any
point during the history of the algorithm we encounter

X

t2Tj(l)

r(2)
t,j

� r(1)
t,j

> Uj(Tj(T ), �) + 2

s

2l log

✓
4TM

�

◆
(12)

Then we drop base Bj .

The logic of this step comes from a simple Azuma-Hoeffding martingale bound along with Assump-
tion A1 with probability at least 1� �/M and for all l 2 [T ]:

|

lX

`=1

f(A(2)
`

,⇡⇤)� f(A(1)
`

,⇡⇤)| 

s

2l log

✓
4TM

�

◆
(13)

|

lX

`=1

r(2)
`,j

� r(1)
`,j

� f(A(2)
`

,⇡(2)
`,j

)� f(A(1)
`

,⇡(1)
`,j

)| 

s

2l log

✓
4TM

�

◆
(14)

This means that whenever Bj is in its Uj-compatible environment, combining Equation 10, with
Equation 13 and Equation 14 we get, with probability at least 1� �:

������

0

@
X

t2Tj

r(2)
t,j

� r(1)
t,j

1

A�

0

@
X

t2Tj

f(A(2)
t

,⇡(2)
t,j

)� f(A(2)
t

,⇡⇤) + f(A(1)
t

,⇡⇤)� f(A(1)
t

,⇡(1)
t,j

)

1

A

������

 2

s

2l log

✓
4TM

�

◆

Plugging in inequality 11, we conclude that if Bj is in its Uj-compatible environment with probability
at least 1� � for all l 2 [T ]:

X

t2Tj

r(2)
t,j

� r(1)
t,j

 Uj(sT,j , �) + 2

s

2l log

✓
4TM

�

◆

Therefore the violation of condition in Equation 12, means Bj couldn’t have possibly been in its
Uj-compatible environment. Furthermore, notice that in case Equation 12 holds (even if Bj is not in
its Uj-compatible environment), then with probability at least 1� �/M :
X

t2Tj

f(A(2)
t

,⇡(2)
t,j

)�f(A(2)
t

,⇡⇤)+f(A(1)
t

,⇡⇤)�f(A(1)
t

,⇡(1)
t,j

)  Uj(sT,j , �)+4
q

2|Tj | log (4TM)

(15)
Consequently, this test guarantees condition 15 is satisfied with for all j 2 [M ] and with probability
at least 1� �, thus implying:

E [IB ] 
X

j 6=i

4
q
2|Tj | log (4TM)  8

s

MT log

✓
4TM

�

◆

The last inequality holds because
P

i 6=j

p
|Tj | 

p
TM .

F Bounding term II

Recall term II equals:

E [II] = E

"
TX

t=1

f(At,⇡
⇤)� f(At,⇡st,i,i)

#
(16)
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We use ni

t
to denote the number of rounds base i is chosen up to time t. Let tl,i be the round index

of the l�th time the master chooses algorithm Bi and let bl,i = tl,i � tl�1,i with t0,i = 0 and
tni

T+1,i = T + 1. Let Ti ⇢ [T ] be the set of rounds where base i is chosen and Tc

i
= [T ]\Ti. For

S ⇢ [T ] and j 2 {1, 2}, we define the regret of the i�th base algorithm during Step j of rounds S as
R(j)

i
(S) =

P
t2S

f(A(j)
t

,⇡⇤)� f(A(j)
t

,⇡(j)
t,i

). The following decomposition of E [II] holds:

E [II] = E
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64R(1)
i

(Ti) +R(2)
i

(Ti) +R(1)
i

(Tc

i
) +R(2)

i
(Tc

i
)

| {z }
II0

3

75 . (17)

R(1)
i

(Ti) consists of the regret when base�i was updated in step 1 while the remaining 3 terms
consists of the regret when the policies are reused by step 2.

F.1 Modified step 2’s rewards

Note that we modified the rewards of step 2 as defined in Equation 9, both when the base is chosen
and not chosen. We now analyze the effect of the modification:
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We provided a bound for term I-modified in Section E. In this section we concern ourselves with
II�modified. Notice its expectation can be written as:

E [II� modified] = E [II] +E

2

4
TX

t=1

2X

j=1

1(t 2 Tc

i
or j = 2)

Ui(st,i, �)

st,i

3

5

Now the second part of this sum is easy to deal with as it can be incorporated into the bound of E [II]
by slightly modifying the bound given by Equation 18 below and changing 2bl � 1 to 2bl + 1. The
rest of the argument remains the same.

F.2 Lemma F.1

From this section onward we drop the subscript i whenever clear to simplify the notations. In this
section we show an upper bound for Term II when there is a value p

i
2 (0, 1) that lower bounds

pi1, · · · , p
i

T
with probability 1. We then use the restarting trick to extend the proof to the case when

p
i

is random in Theorem 5.2
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Lemma F.1 (Fixed p
i
). Let p

i
2 (0, 1) be such that 1

⇢i
= p

i
 pi1, · · · , p

i

T
with probability one,

then, E [II]  4⇢i Ui(T/⇢i, �) log T + �T .

Proof of Lemma F.1. Since E [II]  E [1{E}II] + �T , we focus on bounding E [1{E}II]. since base
i is (U, T, �)�bounded, E

h
R(1)

i
(Ti)1(E)

i
 E

⇥
Ui(�, ni

T
)1(E)

⇤
. We proceed to bound the regret

corresponding to the remaining terms in II0:
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The multiplier 2bl � 1 arises because the policies proposed by the base algorithm during the rounds it
is not selected by M satisfy ⇡(1)

t,i
= ⇡(2)

t,i
= ⇡(2)

tl,i
for all l  nT

i
+1 and t = tl�1+1, · · · , tl�1. The

factorization is a result of conditional independence between E
h
r(2)
tl,i

|Ftl�1

i
and E

⇥
bl|Ftl�1

⇤
where

Ftl�1 already includes algorithm B̃i update right after round tl�1. The inequality holds because B̃i

is (Ui,
�

2M , T (2))�smooth and therefore satisfies Equation 3 on event E .

Recall that as a consequence of Equation 17 we have E [II]  E
h
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(Ti)1(E) + II01{E}
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The first term is bounded by E
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T
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while the second term satisfies the bound in (18).
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l
. By Lemma C.1,
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By (18) and (19),
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Let al = E[bl] for all l. Consider a master algorithm that uses p
i

instead of pi
t
. In this new process let

t0
l

be the corresponding rounds when the base is selected, n̄i

T
be the total number of rounds the base

is selected, and cl = E
⇥
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l
� t0
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⇤
. Since p

i
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t
for all t it holds that

P
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If we use the same coin flips used to generate tl to generate t0

l
, we observe that t0

l
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T
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T
.

Let f : R ! [0, 1] be a decreasing function such that for integer i, f(i) = ui. Then
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We proceed to upper bound the right hand side of this inequality:
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The first inequality holds because E
⇥
t0
l
� t0

l�1

⇤


1
p
i

and the second inequality follows by concavity
of Ui(t, �) as a function of t. The proof follows.
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F.3 Proof of Theorem 5.2

We use the restarting trick to extend Lemma F.1 to the case when the lower bound p
i

is random
(more specifically the algorithm (CORRAL) will maintain a lower bound that in the end will satisfy
p
i
⇡ mint pit) in Theorem 5.2. We restate the theorem statement here for convenience.

Theorem F.2 (Theorem 5.2 ).
E [II]  O(E [⇢i, Ui(T/⇢i, �) log T ] + �T (log T + 1)).

Here, the expectation is over the random variable ⇢i = maxt
1
p
i
t
. If U(t, �) = t↵c(�) for some

↵ 2 [1/2, 1) then, E [II]  4 21�↵

21�↵�1T
↵c(�)E

⇥
⇢1�↵

i

⇤
+ �T (log T + 1).

Restarting trick: Initialize p
i
= 1

2M . If pi
t
< p

i
, set p

i
= p

i
t
2 and restart the base.

Proof of Theorem 5.2. The proof follows that of Theorem 15 in [2]. Let `1, · · · , `di < T be the
rounds where Line 10 of the CORRAL is executed. Let `0 = 0 and `di+1 = T for notational
convenience. Let el = [`l�1 + 1, · · · , `l]. Denote by p

i,`l
the probability lower bound maintained by

CORRAL during timesteps t 2 [`l�1, · · · , `l] and ⇢i,`l = 1/p
i,`l

. In the proof of Lemma 13 in [2],
the authors prove di  log(T ) with probability one. Therefore,

E [II] =

dlog(T )eX

l=1

P(di + 1 � l| {z }
I(l)

)E
h
R

(1)
i (el) +R

(2)
i (el)|di + 1 � l

i

 log T

dlog(T )eX

l=1

P(I(l))E [4⇢i,`lUi(T/⇢i,`l , �)|I(l)] + �T (log T + 1)

= log TE

"
bi+1X

l=1

4⇢i,`lUi(T/⇢i,`l , �)

#
+ �T (log T + 1).

The inequality is a consequence of Lemma F.1 applied to the restarted segment [`l�1, · · · , `l]. This
step is valid because by assumption 1

⇢i,`l
 mint2[`l�1,··· ,`l] pt.

If Ui(t, �) = t↵c(�) for some function c : R ! R+, then ⇢iU(T/⇢i, �) = ⇢1�↵

i
T↵c(�). And

therefore:

E

"
bi+1X

l=1

⇢i,`lUi(T/⇢i,`l , �)

#
 T↵g(�)E

"
bi+1X

l=1

⇢1�↵

i,`l

#


2↵̄

2↵̄ � 1
T↵c(�)E

⇥
⇢1�↵

i

⇤

Where ↵̄ = 1� ↵. The last inequality follows from the same argument as in Theorem 15 in [2].

G Total Regret

Proof of Theorem 5.3. For the CORRAL master,

E [I]  E [IA] +E [IB ]  O

✓
M lnT

⌘
+ T⌘

◆
�

E [⇢]

40⌘ lnT
+ 8

r
MT log(

4TM

�
)

Using Theorem 5.2 to control term II, the total regret of CORRAL is:

R(T )  O

✓
M lnT

⌘
+ T⌘

◆
�E


⇢

40⌘ lnT
� 2⇢U(T/⇢, �) log T

�
+ �T + 8

r
MT log(

4TM

�
)

 O

✓
M lnT

⌘
+ T⌘

◆
�E


⇢

40⌘ lnT
� 2⇢1�↵T↵c(�) log T

�
+ �T + 8

r
MT log(

4TM

�
)

 Õ

✓
p

MT +
M

⌘
+ T⌘ + Tc(�)

1
↵ ⌘

1�↵
↵

◆
+ �T,
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where the last step is by maximizing the function over ⇢. Choose � = 1/T . When both ↵ and c(�)
are known, choose ⌘ = M

↵

c(�)T↵ . When only ↵ is known, choose ⌘ = M
↵

T↵ .

For the EXP3.P master, if p 
1
2k :

E [I]  E [IA] +E [IB ]  Õ

 
MTp+

log(k��1)

p
+

r
MT log(

4TM

�
)

!

Using Lemma F.1 to control term II, we have the total regret of EXP3.P when � = 1/T :

R(T ) = Õ(
p

MT +MTp+
1

p
+

1

p
Ui(Tp, �)) .

= Õ(
p

MT +MTp+ T↵p↵�1c(�))

When both ↵ and c(�) are known, choose p = T� 1�↵
2�↵M� 1

2�↵ c(�)
1

2�↵ . When only ↵ is known,
choose p = T� 1�↵

2�↵M� 1
2�↵ . We then have the following regret:

EXP3.P CORRAL
General Õ

⇣p
MT +MTp+ T

↵
p
↵�1

c(�)
⌘

Õ

⇣p
MT + M

⌘ + T⌘ + T c(�)
1
↵ ⌘

1�↵
↵

⌘

Known ↵

Known c(�) Õ

⇣p
MT +M

1�↵
2�↵ T

1
2�↵ c(�)

1
2�↵

⌘
Õ

⇣p
MT +M

↵
T

1�↵ +M
1�↵

T
↵
c(�)

⌘

Known ↵

Unknown c(�) Õ

⇣p
MT +M

1�↵
2�↵ T

1
2�↵ c(�)

⌘
Õ

⇣p
MT +M

↵
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1�↵ +M
1�↵

T
↵
c(�)

1
↵

⌘

H Lower Bounds (Proofs of Section 6)

Here we state the proofs of Section 6.

Proof of Theorem 6.1. Consider a stochastic 2-arm bandit problem where the best arm has expected
reward 1/2 and the second best arm has expected reward 1/4. We construct base algorithms B1,B2

as follows. B1 always chooses the optimal arm and its expected instantaneous reward is 1/2. B2

chooses the second best arm at time step t with probability 4cp
t+2 log(t+2)

(c will be specified later),
and chooses the best arm otherwise. The expected reward at time step t of B2 is 1

2 �
cp

t+2 log(t+2)
.

Let A⇤ be uniformly sampled from {1, 2}. Consider two environments ⌫1 and ⌫2 for the master, each
made up of two base algorithms B̃1, B̃2. Under ⌫1, B̃1 and B̃2 are both instantiations of B1. Under ⌫2,
B̃A⇤ , where A⇤ is a uniformly sampled index in {1, 2}, is a copy of B1 and B̃3�A⇤ is a copy of B2.

Let P1,P2 denote the probability measures induced by interaction of the master with ⌫1 and ⌫2
respectively. Let B̃At denote the base algorithm chosen by the master at time t. We have P1(At 6=
A⇤) = 1

2 for all t, since the learner has no information available to identify which algorithm is
considered optimal. By Pinskers’ inequality we have

P2(At 6= A⇤) � P1(At 6= A⇤)�

r
1

2
KL(P1||P2)

By the divergence decomposition [see 12, proof of Lemma 15.1 for the decomposition technique]
and using that for � < 1

4 : KL( 12 ,
1
2 ��)  3�2 (Lemma C.3), we have

KL(P1||P2) =
1X

t=2

1

2
KL

✓
1

2
,
1

2
�

c
p
t+ 1 log(t+ 1)

◆



1X

t=2

3c2

2t log(t)2
 3c2 .
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Picking c =
q

1
24 leads to P2(At 6= A⇤) � 1

4 , and the regret in environment ⌫2 is lower bounded by

R(T ) �
TX

t=1

P2(At 6= A⇤)
c

p
t+ 1 log(t+ 1)

�
c

4 log(T + 1)

TX

t=1

1
p
t+ 1

= ⌦(

p
T

log(T )
) .

Proof. Let the set of arms be {a1, a2, a3}. Let x and y be such that 0 < x < y  1. Let � =
T x�1+(y�x)/2. Define two environment E1 and E2 with reward vectors {1, 1, 0} and {1 +�, 1, 0}
for {a1, a2, a3}, respectively. Let B1 and B2 be two base algorithms defined by the following fixed
policies when running alone in E1 or E2:

⇡1 =

⇢
a2 w.p. 1� T x�1

a3 w.p. T x�1 , ⇡2 =

⇢
a2 w.p. 1� T y�1

a3 w.p. T y�1 .

We also construct base B0
2 defined as follows. Let c2 > 0 and ✏2 = (y � x)/4 be two constants.

Base B0
2 mimics base B2 when t  c2T x�y+1+✏2 , and picks arm a1 when t > c2T x�y+1+✏2 . The

instantaneous rewards of B1 and B2 when running alone are r1
t
= 1� T x�1 and r2

t
= 1� T y�1 for

all 1  t  T . Next, consider model selection with base algorithms B1 and B2 in E1. Let T1 and T2

be the number of rounds that B1 and B2 are chosen, respectively.

First, assume case (1): There exist constants c > 0, ✏ > 0, p 2 (0, 1), and T0 > 0 such that with
probability at least p, T2 � cT x�y+1+✏ for all T > T0.

The regret of base B1 when running alone for T rounds is T · T x�1 = T x. The regret of the model
selection method is at least

p · T2 · T
y�1

� p · cT x�y+1+✏
· T y�1 = p · c · T x+✏ .

Given that the inequality holds for any T > T0, it proves the statement of the lemma in case (1).

Next, we assume the complement of case (1): For all constants c > 0, ✏ > 0, p 2 (0, 1), and T0 > 0,
with probability at least p, T2 < cT x�y+1+✏ for some T > T0.

Let T be any such time horizon. Consider model selection with base algorithms B1 and B0
2 in

environment E2 for T rounds. Let T 0
1 and T 0

2 be the number of rounds that B1 and B0
2 are chosen.

Note that B2 and B0
2 behave the same for c2T x�y+1+✏ time steps, and that B1 and B2 never choose

action a1. Therefore for the first c2T x�y+1+✏2 time steps, the model selection strategy that selects
between B1 and B0

2 in E2 behaves the same as when it runs B1 and B2 in E1. Therefore with
probability p > 1/2, T 0

2 < c2T x�y+1+✏2 , which implies T 0
1 > T/2.

In environment E2, the regret of base B0
2 when running alone for T rounds is bounded as

(�+ T y�1)c2T
x�y+1+ y�x

4 = c2T
5x�y

4 + c2T
3x+y

4 < 2c2T
3x+y

4

Given that with probability p > 1/2, T 0
1 > T/2, the regret of the learner is lower bounded as,

p(�+ T x�1) ·
T

2
>

1

2
(T x�1+ y�x

2 + T x�1) ·
T

2
<

1

2
T

x+y
2 ,

which is larger than the regret of B0
2 running alone because 3x+y

4 < x+y

2 . The statement of the
lemma follows given that for any T0 there exists T > T0 so that the model selection fails.

I Applications (Proofs of Section 4)

Here we state the proofs of Section 4.
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I.1 Misspecified Contextual Linear Bandit

Proof of Theorem 4.1. From Lemma D.2, for UCB, U(T, �) = O(
p
Tk log Tk

�
). Therefore from

Theorem 5.3, running CORRAL with smooth UCB results in the following regret bound:

Õ

 
p

MT +
M lnT

⌘
+ T⌘ + T

✓
p

k log
Tk

�

◆2

⌘

!
+ �T.

If we choose � = 1/T and hide some log factors, we get Õ
⇣p

T + 1
⌘
+ Tk⌘

⌘
.

For the modified LinUCB bases in [13] or [20] or the G-optimal algorithm [13], U(t, �) =
O(d

p
t log(1/�) + ✏

p
dt). From the proof of Theorem 5.3 and substitute � = 1/T :

R(T )  O

 r
MT log(

4TM

�
) +

M lnT

⌘
+ T⌘

!
�E


⇢

40⌘ lnT
� 2⇢U(T/⇢, �) log T

�
+ �T

 Õ

✓
p

MT +
M lnT

⌘
+ T⌘

◆
�E

"
⇢

40⌘ lnT
� 2⇢ (d

s
T

⇢
log(1/�) + ✏

p

d
T

⇢
) log T

#

 Õ

✓
p

MT +
M lnT

⌘
+ T⌘

◆
�E


⇢

40⌘ lnT
� 2d

p
T⇢ log(1/�) log T

�
+ 2✏

p

dT log T

Maximizing over ⇢, and running CORRAL with smooth modified LinUCB results in
Õ
⇣p

T + 1
⌘
+ Td2⌘ + ✏

p
dT
⌘

regret bound.

For the misspecified linear bandit problem, we use M = O(log(T )) LinUCB base with ✏ defined in
the grid, and choose ⌘ = 1p

Td
. The resulting regret will be Õ

⇣p
Td+ ✏

p
dT
⌘

.

When the action sets are fixed, by the choice of ⌘ = 1p
Td

, the regret of CORRAL with 1 smooth
UCB and 1 G-optimal base will be:

Õ

 
min

(
p

T

✓
d+

k

d

◆
,
p

Td+ ✏
p

dT

)!
.

If
p
k > d, the above expression becomes Õ

⇣
min

⇣p
T k

d
,
p
Td+ ✏

p
dT
⌘⌘

I.2 Contextual Bandits with Unknown Dimension

Linear Contextual Bandit. First we consider the linear contextual bandit problem with un-
known dimension d⇤. From Lemma D.3 and Lemma D.4, for linear contextual bandit, Lin-
UCB is (U, �, T )-bounded with U(t, �) = O(d

p
t log(1/�)) for infinite action sets and U(t, �) =

O(
p
dt log3(kT log(T )/�)) for finite action sets. Choose � = 1/T and ignore the log factor,

U(t, �) = Õ(d
p
t) for infinite action sets and U(t, �) = Õ(

p
dt) for finite action sets.

Then U(t) = c(�)t↵ with ↵ = 1/2 and c(�) = Õ(d) for infinite action sets, and c(�) = Õ(
p
d) for

finite action sets. When d⇤ is unknown, a direct application of Theorem 5.3 will yield the following
regrets:

Linear contextual bandit
Unknown d⇤

Finite action sets Infinite action sets

Foster et al. [8] Õ(T 2/3k1/3d1/3⇤ ) or
Õ(k1/4T 3/4 +

p
kTd⇤)

N/A

EXP3.P Õ(d
1
2⇤ T

2
3 ) Õ(d⇤T

2
3 )

CORRAL Õ
⇣
d⇤
p
T
⌘

Õ
⇣
d2⇤
p
T
⌘
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Now consider the misspecified linear contextual bandit problem with unknown d⇤ and ✏⇤. We use the
modified LinUCB bases [13, 20]. Using the calculation in the proof of Theorem 4.1 in Section I.1,
using CORRAL with a smooth modified LinUCB base with parameters (d, ✏) in the grids results
in Õ

⇣
1
⌘
+ Td2⌘ + ✏

p
dT
⌘

regret. Since d is unknown, choosing ⌘ = 1/
p
T yields the regret

Õ
⇣p

Td2⇤ + ✏
p
dT
⌘

.

Using EXP3.P with a smooth modified LinUCB base with parameters (d, ✏) in the grids results in:

R(T ) = Õ

✓
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MT +MTp+
1

p
+

1

p
Ui(Tp, �)

◆
.

= Õ

✓
p

MT +MTp+
1

p
+

1

p

⇣
d
p

Tp+ ✏
p

dTp
⌘◆

.

= Õ

 
p

MT +MTp+
d
p
T

p
+ ✏

p

dT

!
.

Since d⇤ is unknown, choosing p = T�1/3 yields the regret bound Õ(T
2
3 d⇤ + ✏⇤

p
dT ).

Misspecified linear contextual bandit
Unknown d⇤ and ✏⇤

Foster et al. [8] N/A
EXP3.P Õ(T

2
3 d⇤ + ✏⇤

p
dT )

CORRAL Õ
⇣p

Td2⇤ + ✏⇤
p
dT
⌘

Nonparametric Contextual Bandit. When the context dimension n⇤ is known, [9] present an
algorithm with U(T, �) = Õ

⇣
T

1+n⇤
2+n⇤

⌘
when � = 1/T . We use this algorithm with value of n in the

grid [b0, b1, b2, ..., blogb(N)] for some b > 1 and applying Theorem 5.3 with p = T�1/3 for EXP3.P
and ⌘ = T�1/2. Let n0 be the value in the grid such that n⇤ 2 [n0/b, n0]. Then n0  bn⇤. We
will have regret Õ

⇣
T

1+n0
2+n0

+ 1
3(2+n0)

⌘
for EXP3.P and Õ

⇣
T

1+2n0
2+2n0

⌘
for CORRAL since n0 is the

minimum value in the grid that will have the regret bound in [9]. Since n0  bn⇤ the regret is upper
bounded by Õ

⇣
T

1+bn⇤
2+bn⇤ + 1

3(2+bn⇤)

⌘
for EXP3.P and Õ

⇣
T

1+2bn⇤
2+2bn⇤

⌘
for CORRAL.

Alternatively, we can also use N base algorithms with each value of n 2 [N ]. Since n⇤ will be
contained in one of the base algorithm, the regret achieved by EXP3.P with p = N�1/2T�1/3 and
CORRAL with ⌘ = (NT )�1/2 will be Õ

⇣p
NT 2/3 +N

1
2+n⇤ T

1+n⇤
2+n⇤ + 1

3(2+n⇤)

⌘
for EXP3.P and

Õ
⇣p

NT +N
1

4+2n⇤ T
1+2n⇤
2+2n⇤

⌘
for CORRAL.

I.3 Tuning the Exploration Rate of ✏-greedy

Proof of Theorem 4.3. From Lemma D.5, we lower bound the smallest gap by 1/T (because the
gaps smaller than 1/T will cause constant regret in T time steps) and choose � = 1/T 5. From
Theorem 5.3, the regret is Õ(T 2/3) when k > 2 and Õ(T 1/2) when k = 2 with the base running
alone.

Next we show that the best value of c in the exponential grid gives a regret that is within a constant
factor of the regret above where we known the smallest non-zero gap �⇤. An exploration rates can
be at most kT . Since 5K

�2
⇤
> 1, we need to search only in the interval [1,KT ]. Let c1 be the element

in the exponential grid such that c1  c⇤  2c1. Then 2c1 = �c⇤ where � < 2 is a constant, and
therefore using 2c1 = �c⇤ will give a regret up to a constant factor of the optimal regret.

I.4 Reinforcement Learning

Proof of Theorem 4.4. [11] obtain the high probability bound Õ(
p
d3H3T ) for LSVI-UCB where

H is the length of each episode. Recall that we focus on the episodic setting. We treat each episode

29



and the re-sampling of a policy deployed by the algorithm in previous episodes as a single unit. The
result then follows from Theorem 5.3 by setting the CORRAL learning rate as ⌘ = M

1/2

T 1/2d3/2H3/2 .
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