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Abstract

Zero-shot semantic segmentation aims to recognize the semantics of pixels from
unseen categories with zero training samples. Previous practice [1] proposed to
train the classifiers for unseen categories using the visual features generated from
semantic word embeddings. However, the generator is merely learned on the seen
categories while no constraint is applied to the unseen categories, leading to poor
generalization ability. In this work, we propose a Consistent Structural Relation
Learning (CSRL) approach to constrain the generating of unseen visual features by
exploiting the structural relations between seen and unseen categories. We observe
that different categories are usually with similar relations in either semantic word
embedding space or visual feature space. This observation motivates us to harness
the similarity of category-level relations on the semantic word embedding space
to learn a better visual feature generator. Concretely, by exploring the pair-wise
and list-wise structures, we impose the relations of generated visual features to
be consistent with their counterparts in the semantic word embedding space. In
this way, the relations between seen and unseen categories will be transferred
to implicitly constrain the generator to produce relation-consistent unseen visual
features. We conduct extensive experiments on Pascal-VOC and Pascal-Context
benchmarks. The proposed CSRL outperforms existing state-of-the-art methods by
a large margin, resulting in ~7-12% on Pascal-VOC and ~2-5% on Pascal-Context.

1 Introduction

Semantic segmentation [2, 3] is a fundamental computer vision task that aims to assign a semantic
label to each pixel in the given image. Although the development of FCN-based models [4, 5, 6]
has significantly advanced semantic segmentation, the success of these approaches highly relies on
cost-intensive and time-consuming dense mask annotations to train the network. To relieve the human
effort in annotating accurate pixel-wise masks, there is an increasing interest in weakly-supervised
segmentation and few-shot segmentation methods. Weakly supervised segmentation [7, 8] targets
on learning segmentation models using lower-quality annotations such as image-level labels [9, 10],
bounding boxes [11, 12] and scribbles [13, 14], which can be obtained more efficiently compared
to pixel-wise masks. Meanwhile, few-shot segmentation [15, 16, 17, 18, 19] tackles the semantic
segmentation from a meta-learning perspective and aims to perform segmentation with only a few
annotated samples. Even significant progress has been made, these works are hard to completely
liberate the request for mask annotations.

Most recently, Bucher et al. [1] took a step further to investigate how to effortlessly recognize
those never-seen categories with zero training examples, and proposed a new learning paradigm,
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Figure 1: Illustration of CSRL. To achieve the goal of GZS3, we learn a generator to produce visual
features from semantic word embeddings. Compared to (a) node-to-node generator, the proposed (b)
structural generator explores the structural relations between seen and unseen categories to constrain
the generation of unseen visual features.

named Generalized Zero-Shot Semantic Segmentation (GZS3). Specifically, during the training
phase, in addition to the annotated images of seen categories, we are also provided with the semantic
word embeddings of both seen and unseen labels. At test time, GZS3 aims to segment images
containing pixels of all categories. As zero training examples of unseen categories are available, the
key challenge of GZS3 lies in how to correctly recognize the pixels from these unseen categories. To
tackle this, Bucher et al. [1] proposed a generative method by exploiting semantic word embeddings
to generate unseen visual features, which are further employed to learn the classifiers for conducting
segmentation. However, when training the generator from semantic space to visual space, they take
each category independently with merely node-to-node knowledge transfer of seen categories. As
shown in Figure 1a, no constraint is applied to guarantee the quality of generated visual features of
unseen categories, resulting in poor generalization ability.

Hence, we seek to harness the inter-class relationship between seen and unseen categories to learn
a better generator. We observe that different categories are roughly with similar relations in either
semantic word embedding space or visual feature space. Therefore, we assume the relational structure
embedded in the semantic space can be conveniently transferred to constrain the generated visual
features of unseen categories. To this end, we propose Consistent Structural Relation Learning (CSRL)
framework to tackle the challenging GZS3 task. Particularly, we propose a semantic-visual structural
generator by integrating both feature generating and relation learning in a unified network architecture.
Instead of taking each category independently, our CSRL generates the visual features from both
seen and unseen categories, simultaneously. We additionally introduce the relational constraints
from different structure granularities, including point-wise, pair-wise, and list-wise consistency, to
facilitate the generalization of unseen categories. In this way, the learned visual features will be
imposed to keep a consistent relational structure to their semantic-based counterparts, making the
generator better adapt to unseen categories. Following [1], we conduct extensive experiments on
two GZS3 benchmarks based on Pascal-VOC and Pascal-Context datasets. The proposed CSRL
outperforms existing state-of-the-art methods by a large margin, resulting in ~7-12% on Pascal-VOC
and ~2-5% on Pascal-Context.

2 Related Work

Zero-Shot Learning ZSL [20, 21] aims to recognize unseen classes with no training examples
by leveraging the semantic label embeddings (e.g., word embeddings or attribute vectors) as side
information. Despite on the traditional image classification task, ZSL has been applied to predict
novel action in videos [22, 23], detect unseen objects [24, 25], and recently, to segment pixel-wise
unseen categories [26, 1]. Former practices address ZSL by learning a projection function from visual
space to semantic space [27, 28] or model weight space [29]. However, the intra-class variation in
visual space is neglected by mapping to a deterministic word embedding in semantic space. Recently,
due to the advance of deep generative models [30, 31], one can overcome the scarce of unseen
visual features by directly generating samples from semantic word embeddings. Commonly, these
generative-based methods [32, 33] train their models firstly on seen classes and then generate visual
features for unseen classes. However, the quality of the generated unseen features solely relies on
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the generalization ability of the generator. Differently, in this work, we apply structural relation
consistency as constraints to guide the learning process.

Generalized Zero-shot Semantic Segmentation Semantic segmentation under fully supervised
paradigm [34, 35, 36, 37, 38, 39] and domain adaptation scheme [40, 41, 42] are extensively studied.
To extremely reduce the cost of label annotation, previous works focus on weakly-supervised
segmentation [7, 8, 43] and few-shot segmentation [17, 44]. Most recent works [1, 26] further
extend the zero-shot learning to the semantic segmentation task. The semantic word embeddings are
projected to synthetic visual features [1] and classifier weights [26]. However, the structural relations
between seen and unseen classes are not well explored. In this work, instead of simple node-to-node
mapping, we tackle the zero-shot segmentation from a new perspective as structural relation learning
from semantic space to visual space.

3 Preliminaries

We denote a set of seen classes as S and a disjoint set of unseen classes as U , where S ∩ U = ∅.
Let Ds = {(x, y|x ∈ X , y ∈ Ys} represents the set of labeled training data on seen classes, where
x is the pixel-wise feature embeddings from the visual space X ∈ Rdv , y is the corresponding
label in the label space Ys of seen classes. Similar to the generalized zero-shot learning setting,
in the task of GZS3, we aim to learn a model that takes an image as input and predicts the label
of each pixel among both seen and unseen classes S ∪ U . Clearly, without any side information,
zero-shot learning is infeasible as there are no training samples of unseen classes. Thus, to achieve the
goal of zero-shot learning, except the training set Ds, we are also provided with the semantic word
embeddings {aj |aj ∈ A}|S∪U|j=1 for both seen and unseen classes, where the semantic spaceA ∈ Rdw .
The dw-dimensional semantic embeddings could be word representations (e.g., word2vec [45] or
GloVe embeddings [46]) or class attribute vectors [47]. In order to overcome the absence of unseen
visual features, recent works [32, 33] adopt the generative model to produce unseen visual features.
Specially, a generator G : A → X is learned to generate visual features using corresponding word
embeddings as input. Another benefit of these generative-based methods is that one can achieve
the goal of zero-shot learning by directly adopting the existing CNN model (e.g., Deeplab) without
complex architecture modification. Concretely, the generator G is learned on seen classes and then
generate visual features for unseen classes. A new classifier (usually the last layer of CNN) is
retrained on real seen visual features and generated unseen visual features. At test time, the label of
each pixel is predicted by selecting the category with the largest probability.

4 Methodology

As shown in Figure 2, we illustrate the details of the proposed CSRL framework. The goal of CSRL
is to learn a better generator to produce visual features using semantic word embeddings as input. To
achieve this goal, we introduce a semantic-visual structural generator to alternately update the node
features of each category and the inter-category relations. We further exploit the structural relation
consistency between seen and unseen categories to constrain the generating of unseen visual features.
These structural relations include the point-wise, pair-wise and list-wise relations between seen and
unseen categories. The generalized zero-shot semantic segmentation is achieved by learning on real
seen visual features and the generated unseen visual features.

4.1 Semantic-Visual Structural Generator

Given a set of semantic word embeddings including samples from both seen and unseen categories, we
aim to generate the corresponding set of synthetic visual features considering the relationships among
categories. Such semantic-to-visual generation is achieved by a node-edge graph G = (V, E), called
semantic-visual structural generator in this work. The nodes V := {vi,n|∀i ∈ [1, |S∪U|], n ∈ [1, N ]}
in the graph denote the pixel-level feature embeddings with total N samples for category i. The
edges E := {eij |∀i, j ∈ [1, |S ∪ U|]} are constructed based on the relationships between prototypes
of category i and j.
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Figure 2: The framework of the proposed CSRL. Our CSRL incorporates the feature generating
and relation learning into a unified architecture. Given the semantic word embedding, CSRL generates
visual features by alternately feature and relation aggregation. The proposed CSRL is trained under
supervision from point-wise consistency on seen classes, pair-wise and list-wise consistency across
seen and unseen classes.

The structural generator consists of L layers, where each layer contains a feature aggregation step to
update the node feature and a relation aggregation step to update the edge feature. We denote v`i and
e`ij as the node feature and the edge feature of layer ` ∈ [1, L], respectively.

As the semantic word embedding ai is a deterministic value, we enhance the feature diversity by
concatenating a random variable z with a Gaussian distribution. Thus, node features are initialized
by the semantic word embeddings v0

i,n = [ai ⊕ zi,n], where ⊕ denotes the concatenation operation.
Edge features e0ij = ai · aj/‖ai‖2‖aj‖2 are initialized by the cosine similarity between semantic
word embeddings.

Feature Aggregation To alleviate the issue introduced by abnormal samples, especially only a
limited number of samples in one categories, we aggregate the feature representation based on the
category prototypes instead of raw samples. Specially, the category prototype pi is defined as,

p`−1i =
1

N

N∑
n=1

v`−1i,n . (1)

After calculating all prototype representations {pi|∀i ∈ [1, |S ∪ U|]}, we are able to propagate the
relevant knowledge from other categories based on the edge features. The node feature aggregation
of the l-th layer follows,

v`i,n = f `v([v
`−1
i,n ⊕

|S∪U|∑
j=1,j 6=i

e`−1ij p`−1i ];φ`v). (2)

where fv is a transformation network with parameters φ`v .

Relation Aggregation After aggregate the node features, the edge feature aggregation is processed
based on the newly updated node features, The edge feature aggregation of the l-th layer follows,

e`ij = f `e(|p`i − p`j |;φ`e)e`−1ij , (3)

where fe is a transformation network with parameters φ`e.

By alternately feature aggregation and the relation aggregation steps, we simultaneous achieve the
feature generating and relation learning. At ` = L, the output nodes are the generated visual features
x̂ including both seen and unseen categories, while the edge features are the learned relations between
categories.

4.2 Consistent Structural Relation Learning

The key to generalized zero-shot segmentation is the ability to generate visual features x̂ ∈ X̂
conditioned on the semantic word embedding a, even without access to any image pixels of this
category. In order to learn a better generator, we explore the relation constraints from different
structure granularities as supervision signals to train the generator G.
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Point-wise consistency At training time, only the real visual features from seen categories are
available to access. Thus, on these seen categories, we optimize the distribution divergence between
real visual features and generated visual features as supervision signals. As this divergence reflects
the consistency of every single category between real and generated visual feature distributions, here
we note it as point-wise consistency. Here, we minimize distribution divergence on seen categories
by optimizing the maximum mean discrepancy as,

Lpoint =
1

|S|

|S|∑
c=1

[Ex,x′∼X cK(x,x′) + Ex̂,x̂′∼X̂ cK(x̂, x̂′)− 2Ex∼X c,x̂∼X̂ cK(x, x̂)], (4)

where K is the Gaussian kernel with bandwidth parameter σ defined as K(x,x′) = exp(− 1
2σ2 ‖x−

x′‖2).
By optimizing the point-wise consistency on seen categories, there is no explicit constraint on the
generation of unseen categories. Thus the quality of produced unseen features purely relies on
the generalization ability of the generator. To enhance and constrain the visual feature generation
especially on unseen categories, we transfer the structural relations on semantic word embedding
space to the generator visual features space. In this paper, we consider the pair-wise consistency
and list-wise consistency. The pair-wise relations reflect that the feature similarity between two
categories, i.e., one seen category and one unseen one, should be consistent on both semantic space
and visual space. The list-wise relations require that the relation ranking permutation order should
also be consistent on semantic space and visual space.

Pair-wise consistency We extract the relation matrix between unseen and seen categories from the
edge features in structural generator G as M = {e`ij |∀i ∈ [1, |U|], j ∈ [1, |S|]} ∈ R|U|×|S|. For each
unseen category, the relation values is further normalized by applying softmax function as follows,

ẽ`ij =
exp(eij/γ)∑|S|

j′=1 exp(eij′/γ)
, (5)

where γ is a scaling factor to soften the relation distribution. Thus, in the semantic word embedding
space (i.e., the input layer ` = 0), we have the relation matrix as MA. In the generated visual feature
space (i.e., the output layer ` = L), the relation matrix is denote as MX̂ .

To maintain the pair-wise relation consistency between semantic space and visual feature space, we
adopt the Kullback-Leibler divergence as the learning objective. Concretely, the pair-wise consistency
is defined as,

Lpair(M
A,MX̂ ) =

1

|U|

|U|∑
i=1

DKL[M
A
i ||MX̂i ]. (6)

List-wise consistency Instead of only focus on the relationship from a pair of categories at a time,
inspired by [48, 49], we further investigate the entire ranking permutation of the relation list as
complementary supervision. The core idea is that we take the relation ranking as a distribution rather
than a deterministic order. We aim to associate the probability with every rank permutation between
semantic space and visual space. Given one permutation π of the relation list, where π(i) denotes the
i-th list index of this permeation. We calculate the probability of this ranking permutation as,

P (π|Mi) =

|S|∏
j=1

exp(eiπ(j)/γ)∑|S|
k=j exp(eiπ(k)/γ)

(7)

where γ is a scaling factor.

We aim to maintain all possible relation ranking permutations π ∈ P as consistent as possible both on
semantic space and visual features space. Similar to pair-wise consistency, the list-wise consistency
is defined as,

Llist(M
A,MX̂ ) =

1

|U|

|U|∑
i=1

DKL[P (π ∈ P|MAi )‖P (π ∈ P|MX̂i )] (8)
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Table 1: Generalized zero-shot semantic segmentation performance on Pascal-VOC dataset.

Settings Methods Seen mIoU Unseen mIoU Overall mIoU Overall hIoU

unseen-2
SegDevis 68.1% 3.2% 44.1% 6.1%
SPNet 71.8% 34.7% 68.2% 46.8%
ZS3Net 72.0% 35.4% 68.5% 47.5%

CSRL 73.4% 45.7% 70.7% 56.3%

unseen-4
SegDevis 64.3% 2.9% 38.9% 5.5%
SPNet 67.3% 21.8% 58.6% 32.9%
ZS3Net 66.4% 23.2% 58.2% 34.4%

CSRL 69.8% 31.7% 62.5% 43.6%

unseen-6
SegDevis 39.8% 2.7% 33.4% 5.1%
SPNet 64.5% 20.1% 51.8% 30.6%
ZS3Net 47.3% 24.2% 40.7% 32.0%

CSRL 66.2% 29.4% 55.6% 40.7%

unseen-8
SegDevis 35.7% 2.0% 24.3% 3.8%
SPNet 61.2% 19.9% 45.5% 30.0%
ZS3Net 29.2% 22.9% 26.8% 25.7%

CSRL 62.4% 26.9% 48.8% 37.6%

unseen-10
SegDevis 31.7% 1.9% 16.9% 3.6%
SPNet 59.0% 18.1% 39.5% 27.7%
ZS3Net 33.9% 18.1% 26.3% 23.6%

CSRL 59.2% 21.0% 50.0% 31.0%

4.3 Training and Inference

In this subsection, we introduce the whole procedures to achieve GZS3. During the training stage,
we start from training an off-the-shelf segmentation model (e.g., DeepLabv3+) on all annotated data
from seen categories. After training on seen categories, we remove the last classification layer and
the remaining network serves as a visual features extractor to get the training set of seen categories
Ds. Then, we train our semantic-visual structural generator G under the supervision of consistent
structural relation learning losses,

L(φ) = Lpoint + Lpair + Llist. (9)

To maintain simplicity, here we directly add these three terms. Once the generator G is trained,
arbitrarily many visual features can be generated from semantic word embeddings, especially for
unseen categories. In this way, we build a generated unseen training set denote as D̂u = {x̂, y|x̂ ∈
X̂ , y ∈ Yu}. A new pixel-level classifier is trained on the combined training set including real seen
visual features from Ds and generated unseen visual features from D̂u. In this way, the new model
can be used to conduct generalized zero-shot semantic segmentation of a given image that exhibit
categories from both seen and unseen classes.

5 Experiments

5.1 Experiment Settings
Datasets We conduct experiments on two datasets including Pascal-VOC [50] and Pascal-
Context [51]. Pascal-VOC focuses on object semantic segmentation scenario, which contains 10,582
training and 1,449 validation images from 20 classes. Pascal-Context targets on the scene parsing
scenario, which comprises 4,998 training and 5,105 validation images from 59 classes. Following [1],
we construct zero-shot segmentation setups with different number of unseen classes, including 2, 4, 6,
8 and 10 unseen classes, and all the rest ones are the seen classes. Concretely, the unseen class set is
extended in an incremental manner, i.e., the 4-unseen set contains the 2-unseen set. The unseen class
splits are 2-cow/motorbike, 4-airplane/sofa, 6-cat/tv, 8-train/bottle, 10-chair/potted-plant for Pascal-
VOC dataset and 2-cow/motorbike, 4-sofa/cat, 6-boat/fence, 8-bird/tvmonitor, 10-keyboard/aeroplane
for Pascal-Context dataset.

Evaluation Metrics In our experiments, similar to the standard semantic segmentation task, we
adopt mean intersection-over-union (mIoU) as the principal metric. The generalized zero-shot

6



Table 2: Generalized zero-shot semantic segmentation result on Pascal-Context dataset.

Settings Methods Seen mIoU Unseen mIoU Overall mIoU Overall hIoU

unseen-2
SegDevis 35.8% 2.7% 33.1% 5.0%
SPNet 38.2% 16.7% 37.5% 23.2%
ZS3Net 41.6% 21.6% 41.0% 28.4%

CSRL 41.9% 27.8% 41.4% 33.4%

unseen-4
SegDevis 33.4% 2.5% 30.7% 4.7%
SPNet 36.3% 18.1% 35.1% 24.2%
ZS3Net 37.2% 24.9% 36.4% 29.8%

CSRL 39.8% 23.9% 38.7% 29.9%

unseen-6
SegDevis 31.9% 2.1% 28.8% 3.9%
SPNet 31.9% 19.9% 30.7% 24.5%
ZS3Net 32.1% 20.7% 30.9% 25.2%

CSRL 35.5% 22.0% 34.1% 27.2%

unseen-8
SegDevis 22.0% 1.7% 19.2% 3.2%
SPNet 28.6% 14.3% 26.7% 19.1%
ZS3Net 20.9% 16.0% 20.3% 18.1%

CSRL 31.7% 18.1% 29.9% 23.0%

unseen-10
SegDevis 17.5% 1.3% 14.3% 2.4%
SPNet 27.1% 9.8% 24.3% 14.4%
ZS3Net 20.8% 12.7% 19.4% 15.8%

CSRL 29.4% 14.6% 27.0% 19.5%

semantic segmentation focuses on the overall performance including both seen and unseen categories.
To avoid the performance on seen categories dominates, we also report the harmonic mean (hIoU) of
seen mIoU and unseen mIoU suggested by [52],

hIoU =
2 ∗mIoUs ∗mIoUu
mIoUs +mIoUu

. (10)

Implementation Details We choose the DeeplabV3+ [6] with ResNet-101 [53] as our segmentation
network. The ImageNet [54] covers a wide range of categories, where most unseen categories are
actually included. Therefore, directly adopting the publicly ImageNet pre-trained model may break
the setting of zero-shot learning. To avoid the supervision leakage from unseen classes, we employ
the model provided by [1], which is solely pre-trained using seen categories. For the aggregation
network fe and fv in Sec 4.1, we use the multi-layer perception network proposed by [55]. We
implemented our method both by the Pytorch platform and the PaddlePaddle platform, both achieving
similar performance. More details of the network structure and parameter settings can be found in
our supplementary materials.

5.2 Comparisons with State-of-the-art Methods
We compare our proposed CSRL with SegDeViSe [56], SPNet [26], ZS3Net [1]. SegDeViSe regresses
semantic word features from pixel-level visual features, which is learned by maximizing the cosine
similarity between the output and the target word embeddings. SPNet encodes images in the word
embedding space and uses a semantic projection layer to produce class probabilities. ZS3Net is
the current state-of-the-art method, which generates unseen visual features from word embeddings
to achieve zero-shot segmentation. All these methods adopt the same segmentation network, i.e.,
DeepLabV3+, for a fair comparison. The key commonality shared by these methods is: they take each
category as an independent point without considering its relations to other categories. Differently, we
generate the unseen visual features by exploring the structural relations between categories.

We report the performance of generalized zero-shot semantic segmentation on Pascal-VOC dataset in
Table 1 and Pascal-Contex dataset in Table 2. Results of SPNet are based on our implementation, and
other results of ZS3Net and SegDeVis are directly taken from paper [1]. In these two tables, first,
we observe that the generative methods (i.e., ZS3Net, CSRL) significantly outperforms semantic
embedding-based methods (i.e., SegDeViSe, SPNet). The semantic embedding-based methods,
although perform well on seen categories, achieve a large performance drop for unseen ones. By
leveraging structural relation consistency to better guide the generation of unseen visual features, our
CSRL provides significant gains particularly on the unseen classes (e.g., +10.3% for the 2-unseen
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Figure 3: Qualitative comparisons on Pascal-VOC dataset under the unseen-2 setting.

split in terms of unseen mIoU). Second, our CSRL significantly outperforms others by large margins
for various splits (~7-12% for hIoU), which can well demonstrate the effectiveness of the consistent
structural relation learning framework. Third, our CSRL also achieves large performance gains on the
more challenging benchmark Pascal-Context, which requires densely predictions for the full images.
The qualitative comparison between ZS3Net and CSRL is shown in Figure 3. We can observe that
our CSRL achieves much better segmentation results and successfully recognize the unseen objects
(e.g. cow and motorbike) where the ZS3Net mostly fails. More qualitative results are provided in the
supplementary materials.

Semantic Space Relation

Visual Space Relation

Generated Visual Features Relaiton (w/ CSRL)

Generated Visual Features Relaiton (w/o CSRL)

Figure 4: Relations between unseen (cow and
motorbike) and seen categories.

Table 3: Ablation study of CSRL on Pascal-
VOC.

Exp Point Pair List Seen
mIoU

Unseen
mIoU

Overall
mIoU

Overall
hIoU

I X - - 73.0% 40.3% 69.8% 51.9%
II X X - 73.4% 43.3% 70.5% 54.5%
III X - X 73.0% 42.7% 70.1% 53.9%

CSRL X X X 73.4% 45.7% 70.7% 56.3%

5.3 Ablation Analysis

Quantitative analysis for structural relations We conduct extensive quantitative analysis for
those key components in CSRL. In Table 3, we compare the effects of different structural relations
with the unseen-2 split on Pascal-VOC. First, simply performing node-to-note generation results
in the hIoU score of 51.9% (I). Second, by introducing the pair-wise relation for optimization, the
hIoU will be significantly enhanced by 3.6% (II). Third, by replacing pair-wise relation with list-wise
relation, the improvement is still notable, i.e., 2.0% (III). Finally, simultaneously considering all the
components will lead to the best hIoU score of 56.3% (CSRL).

Qualitative analysis for inter-category relations In Figure 4, we visualize the inter-category
relations between unseen categories (i.e., cow and motorbike) and seen categories based on different
feature embeddings. The relations are normalized for better visualization. The darker the colors,
the stronger the relations. “Semantic Space Relation" and “Visual Space Relation" indicate cosine
similarities of using word2vec features and CNN features with supervised training, respectively. First,
we can observe that semantic relations between unseen and seen categories keep consistent across
different feature spaces. Second, by introducing the CSRL, the relations of generated visual features
will be more consistent compared to those without CSRL, leading to better discriminative ability.
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6 Conclusion
In this paper, to tackle the challenging generalized zero-shot semantic segmentation task, we proposed
a simple yet effective framework called Consistent Structural Relation Learning (CSRL). We propose
a semantic-visual structural generator by integrating both feature generating and relation learning in
a unified network architecture. We effectively explore relation consistency from multiple structure
granularities to better guide the generation of unseen visual features. The proposed CSRL achieves
the new state-of-the-art on two zero-shot segmentation benchmarks, which outperforming the former
practices by a large margin. Although CSRL achieves a large improvement for the generalized
zero-shot semantic segmentation, there is still a long way to go. We can observe that there is still a
large performance gap between the seen and the unseen categories on the two benchmarks. Thus,
more effective GZS3 algorithms are still required to alleviate this gap. We hope that our efforts will
motivate more researchers and ease future research.
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Our research advances the zero-shot learning segmentation task, which alleviates the need for
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computational cost which only needs to re-train the classification head rather than the whole network.
Thus our research is more financially-friendly and environmental-friendly compared to the traditional
fully-supervised learning paradigm. By utilizing the large amount of word embedding vectors, the
network can be built with stronger scalability to potential unseen categories.

References
[1] Bucher, M., T.-H. Vu, M. Cord, et al. Zero-shot semantic segmentation. In Advances in Neural Information

Processing Systems (NeurIPS). 2019.

[2] Noh, H., S. Hong, B. Han. Learning deconvolution network for semantic segmentation. In IEEE
International Conference on Computer Vision (ICCV), pages 1520–1528. 2015.

[3] Long, J., E. Shelhamer, T. Darrell. Fully convolutional networks for semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431–3440. 2015.

[4] Liang, X., Z. Hu, H. Zhang, et al. Symbolic graph reasoning meets convolutions. In Advances in Neural
Information Processing Systems (NeurIPS), pages 1853–1863. 2018.

[5] Chen, L.-C., G. Papandreou, I. Kokkinos, et al. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Recognition
and Machine Intelligence, 40(4):834–848, 2017.

[6] Chen, L.-C., Y. Zhu, G. Papandreou, et al. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In European Conference on Computer Vision (ECCV), pages 801–818. 2018.

[7] Wei, Y., X. Liang, Y. Chen, et al. Stc: A simple to complex framework for weakly-supervised semantic
segmentation. IEEE Transactions on Pattern Recognition and Machine Intelligence, 39(11):2314–2320,
2016.

[8] Wei, Y., J. Feng, X. Liang, et al. Object region mining with adversarial erasing: A simple classification
to semantic segmentation approach. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1568–1576. 2017.

[9] Oh, S. J., R. Benenson, A. Khoreva, et al. Exploiting saliency for object segmentation from image level
labels. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5038–5047. 2017.

[10] Jing, L., Y. Chen, Y. Tian. Coarse-to-fine semantic segmentation from image-level labels. IEEE Transac-
tions on Image Processing, 29:225–236, 2019.

[11] Dai, J., K. He, J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for
semantic segmentation. In IEEE International Conference on Computer Vision (ICCV), pages 1635–1643.
2015.

[12] Hsu, C.-C., K.-J. Hsu, C.-C. Tsai, et al. Weakly supervised instance segmentation using the bounding box
tightness prior. In Advances in Neural Information Processing Systems (NeurIPS), pages 6582–6593. 2019.

9



[13] Lin, D., J. Dai, J. Jia, et al. Scribblesup: Scribble-supervised convolutional networks for semantic
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3159–
3167. 2016.

[14] Shu, Z., X. Shen, S. Xin, et al. Scribble based 3d shape segmentation via weakly-supervised learning.
IEEE transactions on visualization and computer graphics, 2019.

[15] Li, P., Y. Wei, Y. Yang. Meta parsing networks: Towards generalized few-shot scene parsing with adaptive
metric learning. In ACM MM, pages 64–72. 2020.

[16] Dong, N., E. Xing. Few-shot semantic segmentation with prototype learning. In British Machine Vision
Conference (BMVC), vol. 3. 2018.

[17] Wang, K., J. H. Liew, Y. Zou, et al. Panet: Few-shot image semantic segmentation with prototype alignment.
In IEEE International Conference on Computer Vision (ICCV), pages 9197–9206. 2019.

[18] Xiao, H., B. Kang, Y. Liu, et al. Online meta adaptation for fast video object segmentation. IEEE
Transactions on Pattern Recognition and Machine Intelligence, 2019.

[19] Hu, T., P. Yang, C. Zhang, et al. Attention-based multi-context guiding for few-shot semantic segmentation.
In AAAI Conference on Artificial Intelligence (AAAI), vol. 33, pages 8441–8448. 2019.

[20] Zhang, L., T. Xiang, S. Gong. Learning a deep embedding model for zero-shot learning. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2021–2030. 2017.

[21] Jiang, H., R. Wang, S. Shan, et al. Transferable contrastive network for generalized zero-shot learning. In
IEEE International Conference on Computer Vision (ICCV), pages 9765–9774. 2019.

[22] Mandal, D., S. Narayan, S. K. Dwivedi, et al. Out-of-distribution detection for generalized zero-shot action
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 9985–9993.
2019.

[23] Gao, J., T. Zhang, C. Xu. I know the relationships: Zero-shot action recognition via two-stream graph
convolutional networks and knowledge graphs. In AAAI Conference on Artificial Intelligence (AAAI),
vol. 33, pages 8303–8311. 2019.

[24] Rahman, S., S. Khan, F. Porikli. Zero-shot object detection: Learning to simultaneously recognize and
localize novel concepts. In Asian Conference on Computer Vision, pages 547–563. 2018.

[25] Bansal, A., K. Sikka, G. Sharma, et al. Zero-shot object detection. In European Conference on Computer
Vision (ECCV), pages 384–400. 2018.

[26] Xian, Y., S. Choudhury, Y. He, et al. Semantic projection network for zero-and few-label semantic
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 8256–
8265. 2019.

[27] Li, Y., D. Wang, H. Hu, et al. Zero-shot recognition using dual visual-semantic mapping paths. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3279–3287. 2017.

[28] Changpinyo, S., W.-L. Chao, F. Sha. Predicting visual exemplars of unseen classes for zero-shot learning.
In IEEE International Conference on Computer Vision (ICCV), pages 3476–3485. 2017.

[29] Changpinyo, S., W.-L. Chao, B. Gong, et al. Synthesized classifiers for zero-shot learning. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5327–5336. 2016.

[30] Goodfellow, I., J. Pouget-Abadie, M. Mirza, et al. Generative adversarial nets. In Advances in Neural
Information Processing Systems (NeurIPS), pages 2672–2680. 2014.

[31] Wang, X., A. Gupta. Generative image modeling using style and structure adversarial networks. In
European Conference on Computer Vision (ECCV), pages 318–335. 2016.

[32] Xian, Y., T. Lorenz, B. Schiele, et al. Feature generating networks for zero-shot learning. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5542–5551. 2018.

[33] Kumar Verma, V., G. Arora, A. Mishra, et al. Generalized zero-shot learning via synthesized examples. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4281–4289. 2018.

[34] Yuan, Y., J. Wang. Ocnet: Object context network for scene parsing. arXiv preprint arXiv:1809.00916,
2018.

[35] Yuan, Y., X. Chen, J. Wang. Object-contextual representations for semantic segmentation. arXiv preprint
arXiv:1909.11065, 2019.

[36] Huang, L., Y. Yuan, J. Guo, et al. Interlaced sparse self-attention for semantic segmentation. arXiv preprint
arXiv:1907.12273, 2019.

[37] Li, P., Y. Xu, Y. Wei, et al. Self-correction for human parsing. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020.

10



[38] Li, P., X. Dong, X. Yu, et al. When humans meet machines: Towards efficient segmentation networks.
British Machine Vision Conference (BMVC), 2020.

[39] Feng, Q., Z. Yang, P. Li, et al. Dual embedding learning for video instance segmentation. In IEEE
International Conference on Computer Vision Workshop (ICCVW). 2019.

[40] Li, G., G. Kang, W. Liu, et al. Content-consistent matching for domain adaptive semantic segmentation. In
ECCV. 2020.

[41] Luo, Y., L. Zheng, T. Guan, et al. Taking a closer look at domain shift: Category-level adversaries for
semantics consistent domain adaptation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2507–2516. 2019.

[42] Luo, Y., P. Liu, T. Guan, et al. Adversarial style mining for one-shot unsupervised domain adaptation. In
Advances in Neural Information Processing Systems (NeurIPS). 2020.

[43] Wei, Y., H. Xiao, H. Shi, et al. Revisiting dilated convolution: A simple approach for weakly-and semi-
supervised semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7268–7277. 2018.

[44] Li, A., W. Huang, X. Lan, et al. Boosting few-shot learning with adaptive margin loss. arXiv preprint
arXiv:2005.13826, 2020.

[45] Le, Q., T. Mikolov. Distributed representations of sentences and documents. In International Conference
on Machine Learning (ICML), pages 1188–1196. 2014.

[46] Pennington, J., R. Socher, C. D. Manning. Glove: Global vectors for word representation. In EMNLP,
pages 1532–1543. 2014.

[47] Russakovsky, O., L. Fei-Fei. Attribute learning in large-scale datasets. In European Conference on
Computer Vision (ECCV), pages 1–14. 2010.

[48] Cao, Z., T. Qin, T.-Y. Liu, et al. Learning to rank: from pairwise approach to listwise approach. In
International Conference on Machine Learning (ICML), pages 129–136. 2007.

[49] Xia, F., T.-Y. Liu, J. Wang, et al. Listwise approach to learning to rank: theory and algorithm. In
International Conference on Machine Learning (ICML), pages 1192–1199. 2008.

[50] Everingham, M., L. Van Gool, C. K. Williams, et al. The pascal visual object classes (voc) challenge.
International Journal on Computer Vision, 88(2):303–338, 2010.

[51] Mottaghi, R., X. Chen, X. Liu, et al. The role of context for object detection and semantic segmentation in
the wild. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2014.

[52] Xian, Y., C. H. Lampert, B. Schiele, et al. Zero-shot learning—a comprehensive evaluation of the good, the
bad and the ugly. IEEE Transactions on Pattern Recognition and Machine Intelligence, 41(9):2251–2265,
2018.

[53] He, K., X. Zhang, S. Ren, et al. Deep residual learning for image recognition. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 770–778. 2016.

[54] Deng, J., W. Dong, R. Socher, et al. Imagenet: A large-scale hierarchical image database. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 248–255. 2009.

[55] Li, Y., K. Swersky, R. Zemel. Generative moment matching networks. In International Conference on
Machine Learning (ICML), pages 1718–1727. 2015.

[56] Frome, A., G. S. Corrado, J. Shlens, et al. Devise: A deep visual-semantic embedding model. In Advances
in Neural Information Processing Systems (NeurIPS), pages 2121–2129. 2013.

[57] Li, P., P. Pan, P. Liu, et al. Hierarchical temporal modeling with mutual distance matching for video based
person re-identification. IEEE Transactions on Circuits and Systems for Video Technology, 2020.

[58] Feng, Q., G. Kang, H. Fan, et al. Attract or distract: Exploit the margin of open set. IEEE International
Conference on Computer Vision (ICCV), 2019.

[59] Feng, Q., Y. Wu, H. Fan, et al. Cascaded revision network for novel object captioning. IEEE Transactions
on Circuits and Systems for Video Technology, 2020.

11


