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A Properties of Lipschitz functions

The Lipschitz constant of differentiable functions can be obtained from their gradients; this follows
from the mean value theorem as shown below.

Theorem A.1. [4] Let i/ € R™ be open, h : U — R be differentiable and the line segment
[u1,us] € U, where [u1,us] = {v | v =u; +t(uz —uy),t € [0, 1]} joins ©; to ug. Based on the
Mean Value Theorem, there exists a u € [u1, uz]

flug) = flur) = f'(u)" (ug — uy).

Corollary A.1. Let i/ € R” be open and convex, h : Y — R be differentiable inside /, then the
following inequality holds:

[h(uz) = h(wy))|

lip(h < u) = max 2l 2 < max ||R (w)]].
p( ) wy,u2 €U, Fug Hu2 — U1|| — weld || ( )”
Proof. Since U is convex, Yuq,us € U, u; # uo, the line segment (w1, us] = {v | v = us +

t(’U,Q — ul),t S [O, 1]} eu.

at2) = R )| = oy I ()t = w01)] <0 o) a2 — v | <0y ma | )|tz — v

where equality (a) is due to Theorem[A.T} inequality (b) is due to the Cauchy-Schwarz inequality;
inequality (c) is due to ||A/(uw)] < max,ey |B/(w)]]. O

Sophisticated Lipschitz functions can be constructed from the basic ones using the following lemma.

Lemma A.1. [5/9] Let lip(hy + u) < Ly, lip(he < u) < Lo and lip(ha o hy < hy) < L3, where
o denotes the composition of functions. Then

(a) lip(ahy < u) < |a|Ly, where a is a constant;

(b) hp(hl + h,Q < ’LL) < Ll + L2, hp(h1 — hg — u) < L1 + LQ;

(¢) lip(min(hq, he) + w) < max{Lj, Lo}, lip(max(hi, he) < u) < max{L;, Lo}, where
min(hq, ho) or max(hy, he) denote the pointwise minimum or maximum of functions h; and ho;
(d) lip(hg ohy u) < L. Ls.

This lemma illustrates that after the operations of multiplication by constant, addition, subtraction,

minimization, maximization and function composition, the functions are still Lipschitz continuous.

B Proofs of theorems and lemmas

B.1 Preliminary

The following McDiarmid’s inequality will be frequently used in subsequent proofs.

Lemma B.1. [6] Let 2" = {21,...,2;_1, 2i, Zi+1, . . - , 2, } be n independent samples. Let 2™ =
{z1,...,2i-1, 2}, Zi+1, - - -, Zn}, Where the replacement example z/ is assumed to be drawn from
the same distribution of z; and is independent from z". Furthermore, let m : Z™ — R be a function
of z1, ..., z, that satisfies Vi, Vz", Vz™?

m(z") = m(z"")] < ¢, (D

for some constant ¢;. Then for all € > 0,

P [(2") — Banm(z")] > d < exp (_2) ,

that is,

—9¢2
Panllz") = B ("] 2 d < 2000 (5 ). @



B.2 Proof: generalization PAC bound is a weaker condition than uniform convergence

For completeness, we show that the generalization PAC bound is a weaker condition than the uniform
convergence bound [[1] in Lemma|B.2)

Lemma B.2. The relationship between the generalization PAC bound and the uniform convergence
bound is as follows:

P, [R(h) — Ru(2",h) < € > Pyn [r&aﬁ (R(h) — Ro(2", 1)) < e] 3)

Proof. Let E; be the set of events of R(h) — R,(2z",h) < ¢ and E, be the set of events of
maxpey (R(h) — R, (2", h)) < e. The probabilities of these two events are given as follows:

Par(E1) = [ (=" 1E) 2"
P (B2) = [ (p(=")L[Es]) da"

1. At the points 2" where 1[E5] = 1, we have 1[E;] = 1 and thus
p(z")[E\] = p(z")1[Ey].
2. At the points 2™ where 1[E>] = 0, we have
p(z")1[E1] > 0 = p(z")1[Ey].

Therefore, integrating over all possible points 2", we have [(p(z")1[E1])dz™ > [(p(z™)1[E,])
dzn. That iS, ]Pzn (El) Z ]Pzn (EQ). D

B.3 Proof of Theorem[l

After proving Proposition [B.I] Theorem|T]is proved.
Proposition B.1. Suppose the range of the risk function r(z, ) is [0, C,], then

2
o

—2ne?
IPZH{ in R, (2", h) — Eyn [ min R, (2", h >)< :
min (2", h) [hmelg (2", h)] =€) < exp( c )
Proof. Given z™ and a fixed hypothesis class of #, the value of a(z") = minpey R, (2", h)
is fixed and the mapping a : Z" — R is a function. Therefore, the McDiarmid’s inequality
(Lemma [B.T) can be applied as long as the bounded difference condition (Eq.[I)) holds. We show that
| minpey Ry (2™, h) — minpey Ry (2™, h)| is bounded as follows:

in R, (2™ h
min R, (2™, h)

iy (R (e - TC0R) TRy

heH n n
. n Cr
< min (Rn(z h) — 0+ 7)
heH n
Gy
=min R, (2", h) + —.
heH n
Similarly,
: n : n,i CT
min R, (2", h) < min R, (2™",h) + —.
heH heH n
Therefore c
min R, (2", h) — min R, (2™, h)‘ < =
heH heH n
The result is obtained by substituting ¢; = % into Lemma O



Theorem I]is proved as follows.

Proof. Let he argming ¢ 4 R, (2", h), we have
R, (2", h) = ixgﬁRn(z ,h).
Suppose
P..[R(h) — (z h)<e/2}>1—5/2
Pon [Ry (2", h) = Eon [Ry (2", B)] < /2] > 1-5/2.

Let By = {z"|R(h) — R, (2" ,h) < 6/2} and By = {2"|Ry(2",h) — Ezn[Rp (2", h)] < €/2}.
Vz™ € E1 N Es, we have

(C) :Ezn mln + €
heH n

(d) <minkE,. 217z, h) +e
heH n

—minE,r(z, h
(e) min r(z,h) +e
=min R(h
(f)  =minR(h) +e,
where inequality (a) is due to R(h) — Rn(2", h) < €¢/2; inequality (b) is due to R, (2", h) —
E.n[R, (2", h)] < €/2; equality (c) is due to the definitions of R,, (2", h) and h; inequality (d) is
due to change the order of E,» and minyc4; equality (e) is due to the identical assumption of 2™;
equality (f) is due to the definition of R(h).

Therefore,
« | R(h) < mi
P.»|R(h) < min R(h) + €
(a) >Pun[z" € E1 N Ey)
() >1-6/2—16/2,

where inequality (a) is due to the relationship between By N Ey and R(h) < mingey R(h) + €
inequality (b) is due to the probability of union of sets.

Based on Proposition L in order to guarantee P» [ R, (2", h)—En[Ry (2", )] < /2] >1-6/2,
202

= Ind 5 instances are required. Meanwhile, based on the definition of generalization PAC bound
(Deﬁnltlonlof the main text), in order to guarantee P,n [R(h) — R, (2", h) < /2] > 1 —§/2,
n§(e/2,6/2) instances are required. Therefore, with more than max [ng,(e/2, §/2), 2 62’ In %]

instances, P n [R(h) < minpey R(h) + e] > 1 — ¢ is satisfied. Based on the definition of the
agnostic PAC learnability (Definition [4] of the main text), the hypothesis class is agnostic PAC
learnable and the agnostic PAC learner for H is ERMy,. O

B.4 Proof of Theorem[2l

Proof. Let E; denote the set of events R(w) — R,,(z ”, )
L

E, denote the set of events w € W,
and E3 denote the set of events max,, 3, [R(w) — Ry ( <e

€,
)]
P..
Pn[—FE1, Eo] + Pon[-Ey, —Ey]

[—EA]
[

Pon[-Ey, Eo] + 61
[~E:

J

(@) <
(b) <Pun[-E3]+d
=d9 + 61;



where inequality (a) is due t0 P n [ E1, 7 Es] < Pyn[-Es] =1 — Pya[Es] < 61; inequality (b) is
based on the relationship between 1[F5]1[—E;]| and 1[E3]. At the points 2™ that satisfy m(2") =
w € W, ]l[_‘El] =1= ]l["Eg} = 1, thus ]l[EQ]]l[_‘El] S ]l[_‘Eg] and ]Pzn [—|E1, EQ] §
P.n[—Es). O

B.5 Proof of Lemmalll

Proof. To show that m%) (2™; ) is concentrated around its expectation, we make use of the Mc-

Diarmid’s Inequality. First, we note that m%)(z"; s) : 2™ — R is function mapping from ran-
dom variables to a real value, and 2" satisfies the independent assumption. Second, we show
that |quT})(z";s) - m%)(znvi;sﬂ is bounded. m™)(z";s) and mET])(z”;s) are temporar-
ily simplified to m(™)(2") and m%)(z”), respectively. Vs, Vg, \m(T)( ") - m%)(z”’iﬂ <
[m™)(z") — m(T)(2™%)||, where || - || denotes the vector Lo- nornﬂ We will now discuss the
bound of [|m(™)(2") — m(T) (z™7)]|.

(1) Decompose m(*) (2™). To understand the influence of z;, the updating equation of m (") (2") is
divided into two parts:

®) Or(z. ®) 9r(z.
0 o) Or(z;, w o' Or(z;, w
m(t)(zn) - (m(t 1)(z M — Z n(J)lmUl)(z")) _ 7¥‘m(t*1)(z”)'

ienli ow n ow

Let G;(m*~D(z"); 2") = m“‘”(z”)—% e/ Br(ggw) lm(t—1) (zn)- Since G has the same

formula for 2 and 2™ once m(*~1 is given, i.e. G;(mE~D(2"); 2") = Gi(m=D(2n); 2™,
the dependency of GG; on the second argument can be dropped. Representing the above updating
equation via G; gives:

®) 9r(z.
m®(2") = G;(mtV (")) — L%lm(t*n(z")'
n

Then,
lm (") —m® (z"1)]|
® 9r(z;
_ . (t=1)(m\y _ L T(zl’w) L
|Gitmm ) - S
o 9r(z], w)
n ow

a® or (2!, w)
Im(tfl)(zn) — TaT‘m(tfl)(zn,i)

- Gi<m<t—”<zm‘>> ¥
H a® or( zl,

|m(t71)(zn.i)

(Term 1)

+||Gi(m(t D(2") = Gi(m =D (z"))]|| (Term 2).

Term 1 and Term 2 in the inequality can be bounded by using the Lipschitz constant of a function r
with respect to w and the Lipschitz constant of G with respect to w, respectively.

(2) Bound Term 1. Recall that the Lipschitz constant is defined as:

r(z;w1) — r(z;ws)|

lip(r + w) = max
w1, w2 EW, w1 #ws,zEZ le — w2||

Term 1 is bounded as follows:

H a Or(z;, w) a or(z], w)

ow |m(t 1 (zn) — 78T|m(t 1) (gnai)
a(t) ar( zl, a® 87‘ (2], w)
—H |m(t D(zm) H |m(t—1)(zn,i)
2 (t)
< lip (r + w).

'In the cases of m being a matrix, the matrix will be reshaped into a vector and the vector Lz-norm can then
be used; this is equivalent to using the matrix Frobenius norm directly.



(3) Bound Term 2. Let n; = lip (G; + w).
I1Gi(m =D (z") = Gi(m D (z")|| < nifmtD(z") — m (2

(4) Bound [|m(™) (") — m(®) (z™7)| and [m{1) (z") — m{1) (z"9)|.

q]
t=1
m®(z") - m<1>( il
W ar( zl, o) ar (2}, w)
oo ortenn)y @ IR 46w - i)
n
(1)
<2 i (r e w);
t=2
lm® (z") m(Q)(z”’i)H
a® or( Zz, a? or(z], w)
—H OHUE L)) om - T T e
+ 1Gi(m ( ") = Gi(mD (z"1)]
20 201
< < lip (r < w) +n; a lip (1 < w)
2(piaM + o) lip (r + w)
= - ’
t=1T
lm (2") = m(D (21)]
or(z;, w) o) or(z!,w)
Hiilm(T—U(z") - TTL,n(T—l)(zn,i)
+[Gi(mT=V (") = Gi(mT =D ("))
2( 51y 0l a0 ) lip (r < w)
< - .
Let C; = 2(2?:1 ninta(t)) lip (r <= w). Then, |m$)(z") — mfi)(z”’i)| <&

(5) Derive the concentration inequality. Based on Lemma , m%) (2™) can be bounded as

() n (@) | < _€ —2¢
my (2") = Banmyy ' (2")] < ﬁ} = 1= 2Zexp (m)

—2¢%n
>1—2exp (7),
Z 0C?

where C' = 2( S0t (t)> lip (r <= w) and 1 = max; ¢y lip (G + w).

P.. {

Therefore,
P [|[m™)(2") — Ernm D (27)|| < €]
2 (T)
(a) Z]Pz" ﬂ |m[q] (Zn) - znm | ~ ‘|
q=1
—2¢e2n
(b) >1-2Qexp (W)»
where inequality (a) is due the relationship between the events; inequality (b) is due to a Frechet
inequality. O



B.6 Proof of Lemmalf2l

First, the definitions of Rademacher complexity, uniform convergence and covering number are
introduced. Dudley’s Integral Theorem that uses covering number to bound Rademacher complexity
is also introduced. Then, by using the Lipschitz constant, the covering number of functional space is
shown to be bounded by the covering number of parameter space. Finally, based on Dudley’s Integral
Theorem, Lemma[2]is shown.

B.6.1 Preliminary
Deﬁnltlon B.1. [6] Let € = {e€1,...€,} be i.i.d. random variables with P(e; = 1) = P(e; =

—1)=35. 2" ={z1,...,2,} are i.i.d. samples. The empirical Rademacher complexity is defined as

2"];

Ré,dn(’H) Een [max — Z eih(z;)

heH n

and the Rademacher complexity is defined as
Rad(H) = Ex» [Rédn(H)} :

Theorem B.1. [6] With probability at least 1 — § the following bound holds:

R(h) — Rp(2", 1) < 2Rad,(po H) + 34/ 1121;

where ¢ : R — R denotes the loss function [(h(x); y); o denotes the composition of functions.
Lemma B.3. [6] Let ¢ : R — R be an L-Lipschitz function. Then, for any hypothesis set H of
real-valued functions, Talagrand’s Lemma indicates the following inequality holds:

Rad, (¢ o #) < LRad,(H).

Corollary B.1. Suppose lip(r < h) < L, then with probability at least 1 — ¢ the following bound
holds:

~ ln
R(h) — R, (2", h) <2LRad,(H)+3 2n
Proof. Substituting the result of Lemma B.3]into Theorem [B.T| gives the result. O

Definition B.2. [8] An e-cover of a subset U of a metric space (V, p) is a set U C U such that for
each u € U there is a & € U such that p(u, @) < e. The e-cover number of U is

N(e,U, p) = min{|U| : U is an e-cover of U }.
The following theorem illustrates how to bound the covering number.
Theorem B.2. [8] LetZ/ C V = RP. Then

(1)]323% < N(eth, |- ]) < (VOIV(S(;;E)B))

where + is the Minkovski sum, B is the unit norm ball and vol indicates the volume of the set.

Remark: Consider / € RP with diameter diam(Z/). Based on the last inequality, we have

N(e,U,||-|) < (VOIV((Z(;;S)B)) < (diam(u) +e)D _ (1 . M)D.

Definition B.3. Let Vi1, hy € H be two functions mapping z € Z into real value, py|.» is defined
as follows:

€ €

prjzn (M ho) = (| = (ha(2:) — ha(2:))?.
=1

S|



Theorem B.3. [7] With metric py.» on H, Dudley’s integral indicates

. (log N(c, H, prajon
Radn(H)§12/ \/Og (€n =) 4o
0

Dudley’s integral bounds the empirical Rademacher complexity by the covering number of the
function space (with a metric based on the difference of the function value on 7 inputs).

B.6.2 Bound of the covering number of functional space

To start with, another definition of metric in function space is given as follows.

Definition B.4. A metric py,, in parametric function space is defined as follows:

P (h(5w1), h(5w2)) = 2123(‘ |h(z; wy) — h(z; wa)|. 4)

lip(h; Hap < W) will be written as lip(h <— w) if W and H,, are clear from the context:

pre. (B w1), A wo))

lip(h + =
lp( ’lU) w17w2g1)/%§111¢w2 pW(wl? w2)
_ s [P(; wi) — h(@;ws)|
w1, wrEW, w1 Awa, ||w1 - w2||

Proposition B.2. For all spaces of parametric functions H.,, Ve, VH,
N(G’vaﬂ\z") < N(&,H, pru,,), )

where w denotes all parameters of the function, py|.~ is defined in Deﬁnitionand P, 1s defined
in Definition [B.4]

Proof. Let {ﬁl, ... h ~ } be an e-covering set in H,, with metric py,, , then based on the definition
of covering set,

Vh € H,min py,, (h, hj) <e.
j

Based on the definitions of p4.» and p4,,, we have

N 1 — A 1 A 2
pujen (hshg) = | > (h(zi) = hy(z))? < — ) (max|h(z) = h;(2)])
i=1 i=1
1 A2 2
= SR o) = ) < e
Therefore, {Eh . h N} is also an e-covering set of H.,, with metric py;|,» and

N(67H7PH\Z") < ‘{iLlw-wﬁNH = N(e,'H,pr).
O

Corollary B.2. The empirical Rademacher complexity can be bounded by the covering number with
metric py,, as follows:

- < [log N
Rad, (H) < 12/ \/Wde'
0

Proof. Substituting the result of Proposition into Theorem gives the result. O

Proposition B.3. Let h(z;w) be a parameterized function and w € W € R?. Suppose lip(h +
w) < L. Then,
diam(W)L ) Q

€

N(€7Hwap7—lw) S N(G/L7W,pw) S (1 +



Proof. The second inequality follows from Theorem [B.2} We now show the first inequality. Let
{1, ..., Wy} be an (¢/L)-covering set in V. Based on the definition of covering set,

Yw € W, min pyy(w, ;) < €/L.
Based on the definition of Lipschitz constant,

Vh(1w) € Huomin pac,, (A w), h(50:) ) < Lmin py (w, 1) < e.
Therefore, {h(:;w1),...,h(;;wn)} is a e-covering set of A and
(¢) R R @ R
N(e, H(w), pr,,) < {P(5a01), - h(50n)} < [{br, . N} = N(e/LW, pw),

where inequality (c) is based on the definition of covering number; inequality (d) is due to the fact
that A is a function. O

B.6.3 Proof of Lemmal[2|
Proof. Based on the result of Corollary [B.2]

Radn
log N( LB log N(
<12/ \/og (.. pra) 4, 12/ \/og e%pmd
0 0

() 12 Q 12LB
§ — log 1—1—* de

Qlog 1 + de

< 12LB\/7/ Vog(2/€)de 24LB\/;/0 V1og(1/€)de.

Equality (a) holds as the value of & is bounded by LB; if ¢ > LB, then log N (¢, H, pq.[ ) =0;

inequality (b) is based on Proposition equality (c) follows from variable substitution ¢/ = ﬁ;
6

inequality (d) is due to ¢’ € [0, 1]; equality (e) follows from another variable substitution ¢ = 5.

Then we calculate the integral
1/2

V/log(1/e)de

o [VToTE . . Vg2
(:)/ yd(efy )(b) -y y|oox/log2_/ e~V dy

=€
00 oo

o0 o0
= e~V y| e +/ eV dy < 7V y| I8 +/ e~V dy
0

V1og 2
Vieg2 /m
~ T2 Ty

where equality (a) is based on variable substitution y = 1/log(1/¢), i.e. € = e~v" and equality (b) is
based on integration by parts.

Therefore,

Rad, (H) < 24LB\/§ /O o de

< 24(¥ l;)gQ + ‘/;)LB\/g

= CLB4/ Q,
n
where C' = 12(y/log 2 + /7).
Finally, substituting the above bound of empirical Rademacher complexity into Corollary gives
Lemmal2l



B.7 Proof of Theorem[3|

Proof. Let ball(E, €) := ball (E;»m(T)(2"), €) denote the ball with the center at E,»m(?) (z")
and radius of €. Let L = lip(r < w). Based on Lemmal[I] we have

P [m(z") € ball(E,¢)] > 1 — 4, ©)
where §; = 2Q) exp(m%j?p), thatis e = Cy L4/ % In %.

Based on the result of Lemma 2]

max  (R(w) — R, (2", w)) < CL 1/ \/lnl/(&] >1—4,.
weball(E,e)

Substituting € = Co L4/ Q In %—Q < ColqLy 291, % into the above formula, we have

n

P,.

=

" _ n <d|l>1-
i () ) <] 21 0

where

g 20C,I3L2Q/21n(2Q/61) . \/111(1/52)
n 2n
Based on Theorem the final result is obtained by combining Egs. lland setting C = 2v/2C":

Pon[R(m(2")) — Ry (2", m(2™)) < ¢ >1— 68 — da.

C Lipschitz smoothness and updating equations of SMILE

For a classifier h with convex constraints on parameters, the parameter w will be restricted to be
inside a convex set, as explained in Sec.|C.I] Then based on Corollary [A.T] a sufficient condition for
bounded hp(—w <+ w) is to have finite values of the first and second partial derivatives. Conditions
when SMILE satisfies these two conditions are shown in Secs. [C.2]and [C.3] respectively. Based on
these results, the generalization bound of SMILE is proved in Sec.|C.4and its updating equations are

given in Sec.|[C.5]

C.1 Equivalence between constrained optimization and the use of regularization terms

Let us review two optimization problems.

Problem 1:
min R, (zn, hyw)  s.t. P(w) < C
w

Problem 2:
min R, (zn, hw) + AP(w).

w
The Lagrange function of Problem 1 is

L(w,u) = Rp(2n, hw) +u(P(w) —C), u>0,
where u is the Lagrangian multiplier.
For Problem 1, the (KKT) necessary conditions imply
OR, (zn, haw) OP(w)
ow Tu ow
Condition2  u(P(w) — C) = 0.
For Problem 2, the necessary condition implies
OR, (2, hay) i 879( )
ow ow
Suppose w7 and p* satisfy the necessary condition of Problem 1. Setting A = p*, we can see that
wy satisfies for the necessary condition of Problem 2. Suppose w3 satisfies the necessary condition
of Problem 2. Setting 4 = A and C' = P(w3), we can see that Condition 1 and Condition 2 of
Problem 1 are satisfied, so w3 satisfies the necessary condition of Problem 1 as well. Based on the
above results, the necessary conditions of Problem 1 and Problem 2 are equivalent.

Condition 1

=0.

Meanwhile, when the regularization term in Problem 2 is a convex function, the equivalent Problem 1
constrains w inside the set of {w|P(w) < C'}, which is a convex set [2].

10



C.2 First partial derivatives of SMILE classifier

The first partial derivatives of the classifier (Eq.[8) are as follows:

%éf}@) = — exp(~ | Lz — 7 |?)(2r} — 2La)
m =exp(—| Lz — T]ZHZ)(Q’I‘; ~2La)

or,
8;1(33[6; j) =—> 2(Lx —r])wap exp(— | La — r|?)

J
+ Y 2(La — 7))@ exp(— || Lx — 7 |1%),
k

where Ly, ;) denotes the ath row and bth column element of matrix L and x|, denotes the ath

element of the vector z; (L& — 7)(q] = >_; L{ai) T[] — T[a-

Oh(x;0 Oh(x;©
(9) 4ng 2z

4dm(diam(r) + diam(L) diam(z)) diam(x), where m denotes the number of representative in-

stances. All first partial derivatives have finite values as long as diam(L), diam(x) and diam(r) are
bounded.

are bounded by 2 diam(r) + 2 diam(L) diam(z); &) s bounded by

C.3 Second partial derivatives of SMILE classifier

The (unmixed) second partial derivatives are as follows:

9%h(x; O

85“?2) =4exp(—||Lx — 7';r||2)(7“j+ — Lm)(r;f — Lx)" — 2exp(—|| Lz — r;r||2)I;
0%h(x;©) _ _ _ _
Cor 2 dexp(—||ILe — 7 |*)(ry — La)(r; — La)" + 2exp(—|La —r; |*)I;
0?h(x;©

;0)

P =3 A(Le ey expl— | La —r |P) — 23 @ expl(—| L — v )

J J
= ALa —r)at exo(— || La — v |*) + 2 ) @y exp(—||Le — 7 |1%),
k k

2°h 2°h
rFor,? OrtOL,
All second partial derivatives have finite values as long as diam(L), diam(x) and diam(r) are
bounded.

where I is the identity matrix. The mixed partials, e.g. 5

, can be derived similarly.

C.4 Generalization bound of SMILE

Corollary C.1. Let @ € © = {r™ L} € R® and 6 denote the learned parameters. Let R and X
denote the set of all possible values of r and x respectively, and assume {Lx} C R. Then with
probability at least 1 — §; — J, the following bound holds:

R(0) — R,(2",0) < ClCQQ\/:Ln(QQ/él) + \/ln(;/;h)a
where C, = 96v/2(v/1og 2 + v/7)m diam(R)2(1 + m diam(X)?) and Cy = 32, nT~ta®).

®)

Proof. The corollary is obtained by calculating L% and L? of Theorem As the derivative of the
proposed loss (i.e. Eq. E]) is bounded by 1, L? < 1. L; can be derived as follows.

(@)
L} < lip(h « 7;)* +lip(h + L)
i=1

< 4mdiam(R)? 4 4m? diam(R)? diam(X)?,
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where

) Oh(x;09) |2
2 < ’
L
®) ,
< (2diam(R))=,
lip(h + L)% < 8h (@; @ H
2
= 22 (Lx — r;)x” exp(—||Lx — r;||?) sign(r;) .

i=1
m

= trace (Z Z4Sign(ri) sign(r;) exp(—| Lz — 7;?):
j=11

i—1
exp(—||Lx — rj||2)(L:c — ri)wTw(La: — rj)T>

< 4§: zm:trace ((La: —r) (L — ri):cT:c)

j=11i=1

®)
< 4m? diam(R)? diam(X)?,

and sign(r;) = 1if r; is a representative instance of the positive class and —1 otherwise.

Inequality (a) is due to lip(h < 0) \/ Z L lip(h <= 6}4)) [31; inequality (b) makes use of the
assumption that { Lz} C R. O

C.5 Updating equations of SMILE
The updating equations of SMILE are as follows:
a n
PP e a4 53 (i ©)) exp(— | L — v ) 2rf — 2Laler
i=1

_ _ - a _ _
T i+l =r, ' —2\ar; " — -~ Z yil (yih(z4;0)) exp(—||Lz; — 7). ||*)(2r, — 2Lx;)|er;

L' =L' -2\l + — Zyz yih(z:;© Zexp (=l La; = rf|*)2(La; — )] o
——Zyz yih(z;© Zexp—nm—m )2(La; — r0)a] o

D Data description

Table E] lists information on sample size and feature dimension, as well as the source of studied
datasets.
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