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A Properties of Lipschitz functions

The Lipschitz constant of differentiable functions can be obtained from their gradients; this follows
from the mean value theorem as shown below.

Theorem A.1. [4] Let U ∈ Rn be open, h : U → R be differentiable and the line segment
[u1,u2] ∈ U , where [u1,u2] = {v | v = u1 + t(u2 − u1), t ∈ [0, 1]} joins u1 to u2. Based on the
Mean Value Theorem, there exists a u ∈ [u1,u2]

f(u2)− f(u1) = f ′(u)T (u2 − u1).

Corollary A.1. Let U ∈ Rn be open and convex, h : U → R be differentiable inside U , then the
following inequality holds:

lip(h← u) = max
u1,u2∈U,u1 6=u2

|h(u2)− h(u1)|
‖u2 − u1‖

≤ max
u∈U
‖h′(u)‖.

Proof. Since U is convex, ∀u1,u2 ∈ U ,u1 6= u2, the line segment [u1,u2] = {v | v = u1 +
t(u2 − u1), t ∈ [0, 1]} ∈ U .

|h(u2)− h(u1)| =(a) |h′(u)T (u2 − u1)| ≤(b) ‖h′(u)‖‖u2 − u1‖ ≤(c) max
u∈U
‖h′(u)‖‖u2 − u1‖,

where equality (a) is due to Theorem A.1; inequality (b) is due to the Cauchy-Schwarz inequality;
inequality (c) is due to ‖h′(u)‖ ≤ maxu∈U ‖h′(u)‖.

Sophisticated Lipschitz functions can be constructed from the basic ones using the following lemma.

Lemma A.1. [5, 9] Let lip(h1 ← u) ≤ L1, lip(h2 ← u) ≤ L2 and lip(h2 ◦h1 ← h1) ≤ L3, where
◦ denotes the composition of functions. Then
(a) lip(ah1 ← u) ≤ |a|L1, where a is a constant;
(b) lip(h1 + h2 ← u) ≤ L1 + L2, lip(h1 − h2 ← u) ≤ L1 + L2;
(c) lip(min(h1, h2) ← u) ≤ max{L1, L2}, lip(max(h1, h2) ← u) ≤ max{L1, L2}, where
min(h1, h2) or max(h1, h2) denote the pointwise minimum or maximum of functions h1 and h2;
(d) lip(h2 ◦ h1 ← u) ≤ L1L3.

This lemma illustrates that after the operations of multiplication by constant, addition, subtraction,
minimization, maximization and function composition, the functions are still Lipschitz continuous.

B Proofs of theorems and lemmas

B.1 Preliminary

The following McDiarmid’s inequality will be frequently used in subsequent proofs.

Lemma B.1. [6] Let zn = {z1, . . . ,zi−1, zi, zi+1, . . . ,zn} be n independent samples. Let zn,i =
{z1, . . . ,zi−1, z

′
i, zi+1, . . . ,zn}, where the replacement example z′i is assumed to be drawn from

the same distribution of zi and is independent from zn. Furthermore, let m : Zn → R be a function
of z1, . . . ,zn that satisfies ∀i,∀zn,∀zn,i

|m(zn)−m(zn,i)| ≤ ci, (1)

for some constant ci. Then for all ε > 0,

Pzn [m(zn)− Ezn [m(zn)] ≥ ε] ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
,

Pzn [Ezn [m(zn)]−m(zn) ≥ ε] ≤ exp

(
−2ε2∑n
i=1 c

2
i

)
;

that is,

Pzn [|m(zn)− Ezn [m(zn)]| ≥ ε] ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
. (2)
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B.2 Proof: generalization PAC bound is a weaker condition than uniform convergence

For completeness, we show that the generalization PAC bound is a weaker condition than the uniform
convergence bound [1] in Lemma B.2.
Lemma B.2. The relationship between the generalization PAC bound and the uniform convergence
bound is as follows:

Pzn [R(ĥ)−Rn(zn, ĥ) ≤ ε] ≥ Pzn

[
max
h∈H

(
R(h)−Rn(zn, h)

)
≤ ε
]
. (3)

Proof. Let E1 be the set of events of R(ĥ) − Rn(zn, ĥ) ≤ ε and E2 be the set of events of
maxh∈H

(
R(h)−Rn(zn, h)

)
≤ ε. The probabilities of these two events are given as follows:

Pzn(E1) =

∫
(p(zn)1[E1]) dzn

Pzn(E2) =

∫
(p(zn)1[E2]) dzn.

1. At the points zn where 1[E2] = 1, we have 1[E1] = 1 and thus

p(zn)1[E1] = p(zn)1[E2].

2. At the points zn where 1[E2] = 0, we have

p(zn)1[E1] ≥ 0 = p(zn)1[E2].

Therefore, integrating over all possible points zn, we have
∫

(p(zn)1[E1])dzn ≥
∫

(p(zn)1[E2])
dzn. That is, Pzn(E1) ≥ Pzn(E2).

B.3 Proof of Theorem 1

After proving Proposition B.1, Theorem 1 is proved.
Proposition B.1. Suppose the range of the risk function r(z, h) is [0, Cr], then

Pzn

[
min
h∈H

Rn(zn, h)− Ezn

[
min
h∈H

Rn(zn, h)
]
≥ ε
)
≤ exp

(
−2nε2

C2
r

)
.

Proof. Given zn and a fixed hypothesis class of H, the value of a(zn) = minh∈HRn(zn, h)
is fixed and the mapping a : Zn → R is a function. Therefore, the McDiarmid’s inequality
(Lemma B.1) can be applied as long as the bounded difference condition (Eq. 1) holds. We show that
|minh∈HRn(zn, h)−minh∈HRn(zn,i, h)| is bounded as follows:

min
h∈H

Rn(zn,i, h)

= min
h∈H

(
Rn(zn, h)− r(zi, h)

n
+
r(z′i, h)

n

)
≤min
h∈H

(
Rn(zn, h)− 0 +

Cr
n

)
= min
h∈H

Rn(zn, h) +
Cr
n
.

Similarly,

min
h∈H

Rn(zn, h) ≤ min
h∈H

Rn(zn,i, h) +
Cr
n
.

Therefore ∣∣∣min
h∈H

Rn(zn, h)−min
h∈H

Rn(zn,i, h)
∣∣∣ ≤ Cr

n
.

The result is obtained by substituting ci = Cr

n into Lemma B.1.
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Theorem 1 is proved as follows.

Proof. Let ĥ ∈ argminh∈HRn(zn, h), we have

Rn(zn, ĥ) = min
h∈H

Rn(zn, h).

Suppose
Pzn [R(ĥ)−Rn(zn, ĥ) ≤ ε/2] ≥ 1− δ/2,

Pzn

[
Rn(zn, ĥ)− Ezn [Rn(zn, ĥ)] ≤ ε/2

]
≥ 1− δ/2.

Let E1 = {zn|R(ĥ) − Rn(zn, ĥ) ≤ ε/2} and E2 = {zn|Rn(zn, ĥ) − Ezn [Rn(zn, ĥ)] ≤ ε/2}.
∀zn ∈ E1 ∩ E2, we have

R(ĥ)

(a) ≤Rn(zn, ĥ) +
ε

2

(b) ≤Ezn [Rn(zn, ĥ)] + ε

(c) =Ezn min
h∈H

∑n
i=1 r(zi, h)

n
+ ε

(d) ≤min
h∈H

Ezn

∑n
i=1 r(zi, h)

n
+ ε

(e) = min
h∈H

Ezr(z, h) + ε

(f) = min
h∈H

R(h) + ε,

where inequality (a) is due to R(ĥ) − Rn(zn, ĥ) ≤ ε/2; inequality (b) is due to Rn(zn, ĥ) −
Ezn [Rn(zn, ĥ)] ≤ ε/2; equality (c) is due to the definitions of Rn(zn, h) and ĥ; inequality (d) is
due to change the order of Ezn and minh∈H; equality (e) is due to the identical assumption of zn;
equality (f) is due to the definition of R(h).

Therefore,

Pzn

[
R(ĥ) ≤ min

h∈H
R(h) + ε

]
(a) ≥Pzn [zn ∈ E1 ∩ E2]

(b) ≥1− δ/2− δ/2,

where inequality (a) is due to the relationship between E1 ∩ E2 and R(ĥ) ≤ minh∈HR(h) + ε;
inequality (b) is due to the probability of union of sets.

Based on Proposition B.1, in order to guaranteePzn

[
Rn(zn, ĥ)−Ezn [Rn(zn, ĥ)] ≤ ε/2

]
≥ 1−δ/2,

2C2
r

ε2 ln 4
δ instances are required. Meanwhile, based on the definition of generalization PAC bound

(Definition 5 of the main text), in order to guarantee Pzn [R(ĥ) − Rn(zn, ĥ) ≤ ε/2] ≥ 1 − δ/2,
nGH(ε/2, δ/2) instances are required. Therefore, with more than max

[
nGH(ε/2, δ/2),

2C2
r

ε2 ln 4
δ

]
instances, Pzn

[
R(ĥ) ≤ minh∈HR(h) + ε

]
≥ 1 − δ is satisfied. Based on the definition of the

agnostic PAC learnability (Definition 4 of the main text), the hypothesis class is agnostic PAC
learnable and the agnostic PAC learner forH is ERMH.

B.4 Proof of Theorem 2

Proof. Let E1 denote the set of events R(ŵ)−Rn(zn, ŵ) ≤ ε, E2 denote the set of events ŵ ∈ Ŵ ,
and E3 denote the set of events maxw∈Ŵ [R(w)−Rn(zn,w)] ≤ ε.

Pzn [¬E1]

=Pzn [¬E1, E2] + Pzn [¬E1,¬E2]

(a) ≤Pzn [¬E1, E2] + δ1
(b) ≤Pzn [¬E3] + δ1

=δ2 + δ1;
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where inequality (a) is due to Pzn [¬E1,¬E2] ≤ Pzn [¬E2] = 1− Pzn [E2] ≤ δ1; inequality (b) is
based on the relationship between 1[E2]1[¬E1] and 1[E3]. At the points zn that satisfym(zn) =

ŵ ∈ Ŵ , 1[¬E1] = 1 ⇒ 1[¬E3] = 1, thus 1[E2]1[¬E1] ≤ 1[¬E3] and Pzn [¬E1, E2] ≤
Pzn [¬E3].

B.5 Proof of Lemma 1

Proof. To show that m(T )
[q] (zn; s) is concentrated around its expectation, we make use of the Mc-

Diarmid’s Inequality. First, we note that m(T )
[q] (zn; s) : Zn → R is function mapping from ran-

dom variables to a real value, and zn satisfies the independent assumption. Second, we show
that |m(T )

[q] (zn; s) − m(T )
[q] (zn,i; s)| is bounded. m(T )(zn; s) and m(T )

[q] (zn; s) are temporar-

ily simplified to m(T )(zn) and m(T )
[q] (zn), respectively. ∀s,∀q, |m(T )

[q] (zn) − m(T )
[q] (zn,i)| ≤

‖m(T )(zn) −m(T )(zn,i)‖, where ‖ · ‖ denotes the vector L2-norm1. We will now discuss the
bound of ‖m(T )(zn)−m(T )(zn,i)‖.

(1) Decomposem(t)(zn). To understand the influence of zi, the updating equation ofm(t)(zn) is
divided into two parts:

m(t)(zn) =

(
m(t−1)(zn)−

∑
j∈[n]/i

α(t)

n

∂r(zj ,w)

∂w
|m(t−1)(zn)

)
− α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn).

LetGi(m(t−1)(zn); zn) = m(t−1)(zn)−α(t)

n

∑
j∈[n]/i

∂r(zj ,w)
∂w |m(t−1)(zn). SinceGi has the same

formula for zn and zn,i once m(t−1) is given, i.e. Gi(m(t−1)(zn); zn) = Gi(m
(t−1)(zn); zn,i),

the dependency of Gi on the second argument can be dropped. Representing the above updating
equation via Gi gives:

m(t)(zn) = Gi(m
(t−1)(zn))− α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn).

Then,

‖m(t)(zn)−m(t)(zn,i)‖

=
∥∥∥Gi(m(t−1)(zn))− α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn)

−Gi(m(t−1)(zn,i)) +
α(t)

n

∂r(z′i,w)

∂w
|m(t−1)(zn,i)

∥∥∥
≤
∥∥∥α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn) −

α(t)

n

∂r(z′i,w)

∂w
|m(t−1)(zn,i)

∥∥∥ (Term 1)

+ ‖Gi(m(t−1)(zn))−Gi(m(t−1)(zn,i))‖ (Term 2).

Term 1 and Term 2 in the inequality can be bounded by using the Lipschitz constant of a function r
with respect to w and the Lipschitz constant of G with respect to w, respectively.

(2) Bound Term 1. Recall that the Lipschitz constant is defined as:

lip(r ← w) = max
w1,w2∈W,w1 6=w2,z∈Z

|r(z;w1)− r(z;w2)|
‖w1 −w2‖

.

Term 1 is bounded as follows:∥∥∥α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn) −

α(t)

n

∂r(z′i,w)

∂w
|m(t−1)(zn,i)

∥∥∥
≤
∥∥∥α(t)

n

∂r(zi,w)

∂w
|m(t−1)(zn)

∥∥∥+
∥∥∥α(t)

n

∂r(z′i,w)

∂w
|m(t−1)(zn,i)

∥∥∥
≤2α(t)

n
lip (r ← w).

1In the cases of m being a matrix, the matrix will be reshaped into a vector and the vector L2-norm can then
be used; this is equivalent to using the matrix Frobenius norm directly.

5



(3) Bound Term 2. Let ηi = lip (Gi ← w).

‖Gi(m(t−1)(zn))−Gi(m(t−1)(zn,i))‖ ≤ ηi‖m(t−1)(zn)−m(t−1)(zn,i)
∥∥∥

(4) Bound ‖m(T )(zn)−m(T )(zn,i)‖ and |m(T )
[q] (zn)−m(T )

[q] (zn,i)|.

t = 1

‖m(1)(zn)−m(1)(zn,i)‖

≤
∥∥∥α(1)

n

∂r(zi,w)

∂w
|w0 − α(1)

n

∂r(z′i,w)

∂w
|w0

∥∥∥+ ‖Gi(w0)−Gi(w0)‖

≤2α(1)

n
lip (r ← w);

t = 2

‖m(2)(zn)−m(2)(zn,i)‖

≤
∥∥∥α(2)

n

∂r(zi,w)

∂w
|m(1)(zn) −

α(2)

n

∂r(z′i,w)

∂w
|m(1)(zn,i)

∥∥∥
+ ‖Gi(m(1)(zn))−Gi(m(1)(zn,i))‖

≤2α(2)

n
lip (r ← w) + ηi

2α(1)

n
lip (r ← w)

=
2(ηiα

(1) + α(2)) lip (r ← w)

n
;

...
t = T

‖m(T )(zn)−m(T )(zn,i)‖

≤
∥∥∥α(T )

n

∂r(zi,w)

∂w
|m(T−1)(zn) −

α(T )

n

∂r(z′i,w)

∂w
|m(T−1)(zn,i)

∥∥∥
+ ‖Gi(m(T−1)(zn))−Gi(m(T−1)(zn,i))‖

≤
2
(∑T

t=1 η
T−t
i α(t)

)
lip (r ← w)

n
.

Let Ci = 2
(∑T

t=1 η
T−t
i α(t)

)
lip (r ← w). Then, |m(T )

[q] (zn)−m(T )
[q] (zn,i)| ≤ Ci

n .

(5) Derive the concentration inequality. Based on Lemma B.1,m(T )
[q] (zn) can be bounded as

Pzn

[∣∣m(T )
[q] (zn)− Eznm

(T )
[q] (zn)

∣∣ ≤ ε√
Q

]
≥ 1− 2 exp

( −2ε2

Q
∑n
i=1(Ci/n)2

)
≥ 1− 2 exp

(−2ε2n

QC2

)
,

where C = 2
(∑T

t=1 η
T−tα(t)

)
lip (r ← w) and η = maxi∈[n] lip (Gi ← w).

Therefore,

Pzn [‖m(T )(zn)− Eznm(T )(zn)‖ ≤ ε]

(a) ≥Pzn

[
Q⋂
q=1

∣∣m(T )
[q] (zn)− Eznm

(T )
[q] (zn)

∣∣ ≤ ε√
Q

]

(b) ≥1− 2Q exp
(−2ε2n

QC2

)
,

where inequality (a) is due the relationship between the events; inequality (b) is due to a Frechet
inequality.
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B.6 Proof of Lemma 2

First, the definitions of Rademacher complexity, uniform convergence and covering number are
introduced. Dudley’s Integral Theorem that uses covering number to bound Rademacher complexity
is also introduced. Then, by using the Lipschitz constant, the covering number of functional space is
shown to be bounded by the covering number of parameter space. Finally, based on Dudley’s Integral
Theorem, Lemma 2 is shown.

B.6.1 Preliminary

Definition B.1. [6] Let εn = {ε1, . . . εn} be i.i.d. random variables with P (εi = 1) = P (εi =
−1) = 1

2 . zn = {z1, . . . ,zn} are i.i.d. samples. The empirical Rademacher complexity is defined as

ˆRadn(H) = Eεn
[

max
h∈H

1

n

∑
i

εih(zi)
∣∣∣zn];

and the Rademacher complexity is defined as

Rad(H) = Ezn

[
ˆRadn(H)

]
.

Theorem B.1. [6] With probability at least 1− δ the following bound holds:

R(h)−Rn(zn, h) ≤ 2 ˆRadn(φ ◦ H) + 3

√
ln 2

δ

2n
,

where φ : R→ R denotes the loss function l(h(x); y); ◦ denotes the composition of functions.
Lemma B.3. [6] Let φ : R → R be an L-Lipschitz function. Then, for any hypothesis set H of
real-valued functions, Talagrand’s Lemma indicates the following inequality holds:

ˆRadn(φ ◦ H) ≤ L ˆRadn(H).

Corollary B.1. Suppose lip(r ← h) ≤ L, then with probability at least 1− δ the following bound
holds:

R(h)−Rn(zn, h) ≤ 2L ˆRadn(H) + 3

√
ln 2

δ

2n

Proof. Substituting the result of Lemma B.3 into Theorem B.1 gives the result.

Definition B.2. [8] An ε-cover of a subset U of a metric space (V, ρ) is a set Û ⊆ U such that for
each u ∈ U there is a û ∈ Û such that ρ(u, û) ≤ ε. The ε-cover number of U is

N(ε,U , ρ) = min{|Û | : Û is an ε-cover of U}.

The following theorem illustrates how to bound the covering number.
Theorem B.2. [8] Let U ⊆ V = RD. Then(1

ε

)D vol(U)

vol(B)
≤ N(ε,U , ‖ · ‖) ≤

(vol(U + ε
2B)

vol( ε2B)

)
where + is the Minkovski sum, B is the unit norm ball and vol indicates the volume of the set.

Remark: Consider U ∈ RD with diameter diam(U). Based on the last inequality, we have

N(ε,U , ‖ · ‖) ≤
(vol(U + ε

2B)

vol( ε2B)

)
≤
(diam(U) + ε

ε

)D
=
(

1 +
diam(U)

ε

)D
.

Definition B.3. Let ∀h1, h2 ∈ H be two functions mapping z ∈ Z into real value, ρH|zn is defined
as follows:

ρH|zn(h1, h2) =

√√√√ 1

n

n∑
i=1

(h1(zi)− h2(zi))2.

7



Theorem B.3. [7] With metric ρH|zn onH, Dudley’s integral indicates

ˆRadn(H) ≤ 12

∫ ∞
0

√
logN(ε,H, ρH|zn)

n
dε.

Dudley’s integral bounds the empirical Rademacher complexity by the covering number of the
function space (with a metric based on the difference of the function value on n inputs).

B.6.2 Bound of the covering number of functional space

To start with, another definition of metric in function space is given as follows.
Definition B.4. A metric ρHw in parametric function space is defined as follows:

ρHw(h(·;w1), h(·;w2)) = max
x∈X
|h(x;w1)− h(x;w2)|. (4)

lip(h;Hw ←W) will be written as lip(h← w) ifW andHw are clear from the context:

lip(h← w) = max
w1,w2∈W,w1 6=w2

ρHw

(
h(·; ·,w1), h(·; ·,w2)

)
ρW(w1,w2)

= max
w1,w2∈W,w1 6=w2,x

|h(x;w1)− h(x;w2)|
‖w1 −w2‖

.

Proposition B.2. For all spaces of parametric functionsHw, ∀ε,∀H,

N(ε,H, ρH|zn) ≤ N(ε,H, ρHw), (5)

wherew denotes all parameters of the function, ρH|zn is defined in Definition B.3 and ρHw is defined
in Definition B.4.

Proof. Let {ĥ1, . . . , ĥN} be an ε-covering set inHw with metric ρHw , then based on the definition
of covering set,

∀h ∈ H,min
j
ρHw(h, ĥj) ≤ ε.

Based on the definitions of ρH|zn and ρHw , we have

ρH|zn(h, ĥj) =

√√√√ 1

n

n∑
i=1

(h(zi)− ĥj(zi))2 ≤

√√√√ 1

n

n∑
i=1

(
max
z
|h(z)− ĥj(z)|

)2
=

√
1

n
× n×

(
ρHw(h, ĥj)

)2
= ρHw(h, ĥj) ≤ ε.

Therefore, {ĥ1, . . . , ĥN} is also an ε-covering set ofHw with metric ρH|zn and

N(ε,H, ρH|zn) ≤ |{ĥ1, . . . , ĥN}| = N(ε,H, ρHw).

Corollary B.2. The empirical Rademacher complexity can be bounded by the covering number with
metric ρHw as follows:

ˆRadn(H) ≤ 12

∫ ∞
0

√
logN(ε,H, ρHw)

n
dε.

Proof. Substituting the result of Proposition B.2 into Theorem B.3 gives the result.

Proposition B.3. Let h(z;w) be a parameterized function and w ∈ W ∈ RQ. Suppose lip(h ←
w) ≤ L. Then,

N(ε,Hw, ρHw) ≤ N(ε/L,W, ρW) ≤
(

1 +
diam(W)L

ε

)Q
.
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Proof. The second inequality follows from Theorem B.2. We now show the first inequality. Let
{ŵ1, . . . , ŵN} be an (ε/L)-covering set inW . Based on the definition of covering set,

∀w ∈ W,min
i
ρW(w, ŵi) ≤ ε/L.

Based on the definition of Lipschitz constant,

∀h(·;w) ∈ Hw,min
i
ρHw

(
h(·;w), h(·; ŵi)

)
≤ Lmin

i
ρW(w, ŵi) ≤ ε.

Therefore, {h(·; ŵ1), . . . , h(·; ŵN )} is a ε-covering set ofH and

N(ε,H(w), ρHw)
(c)

≤ |{h(·; ŵ1), . . . , h(·; ŵN )}|
(d)

≤ |{ŵ1, . . . , ŵN}| = N(ε/L,W, ρW),

where inequality (c) is based on the definition of covering number; inequality (d) is due to the fact
that h is a function.

B.6.3 Proof of Lemma 2

Proof. Based on the result of Corollary B.2,

ˆRadn(H)

≤ 12

∫ ∞
0

√
logN(ε,H, ρHw)

n
dε

(a)
= 12

∫ LB

0

√
logN(ε,H, ρHw)

n
dε

(b)

≤ 12√
n

∫ LB

0

√
log
(

1 +
LB

ε

)Q
dε

(c)
=

12LB√
n

∫ 1

0

√
Q log

(
1 +

1

ε′

)
dε′

(d)

≤ 12LB

√
Q

n

∫ 1

0

√
log(2/ε′)dε′

(e)
= 24LB

√
Q

n

∫ 1/2

0

√
log(1/ε)dε.

Equality (a) holds as the value of h is bounded by LB; if ε > LB, then logN(ε,H, ρHw) = 0;
inequality (b) is based on Proposition B.3; equality (c) follows from variable substitution ε′ = ε

LB ;
inequality (d) is due to ε′ ∈ [0, 1]; equality (e) follows from another variable substitution ε = ε′

2 .

Then we calculate the integral∫ 1/2

0

√
log(1/ε)dε

(a)
=

∫ √log2
∞

yd(e−y
2

)
(b)
= e−y

2

y|
√

log 2
∞ −

∫ √log 2

∞
e−y

2

dy

= e−y
2

y|
√

log 2
∞ +

∫ ∞
√

log 2

e−y
2

dy ≤ e−y
2

y|
√

log 2
∞ +

∫ ∞
0

e−y
2

dy

=

√
log 2

2
+

√
π

2
,

where equality (a) is based on variable substitution y =
√

log(1/ε), i.e. ε = e−y
2

and equality (b) is
based on integration by parts.

Therefore,

ˆRadn(H) ≤ 24LB

√
Q

n

∫ 1/2

0

√
log(1/ε)dε

≤ 24
(√log 2

2
+

√
π

2

)
LB

√
Q

n

= CLB

√
Q

n
,

where C = 12(
√

log 2 +
√
π).

Finally, substituting the above bound of empirical Rademacher complexity into Corollary B.1 gives
Lemma 2.
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B.7 Proof of Theorem 3

Proof. Let ball(E, ε) := ball
(
Eznm(T )(zn), ε

)
denote the ball with the center at Eznm(T )(zn)

and radius of ε. Let L = lip(r ← w). Based on Lemma 1, we have
Pzn [m(zn) ∈ ball(E, ε)] ≥ 1− δ1, (6)

where δ1 = 2Q exp( −2ε2n
Q(2C2)2L2 ), that is ε = C2L

√
2Q
n ln 2Q

δ1
.

Based on the result of Lemma 2,

Pzn

[
max

w∈ball(E,ε)

(
R(w)−Rn(zn,w)

)
≤ CL(2ε)

√
Q

n
+

√
ln 1/δ2

2n

]
≥ 1− δ2.

Substituting ε = C2L
√

2Q
n ln 2Q

δ1
≤ C2L1Ll

√
2Q
n ln 2Q

δ1
into the above formula, we have

Pzn

[
max

w∈ball(E,ε)

(
R(w)−Rn(zn,w)

)
≤ ε′

]
≥ 1− δ2, (7)

where

ε′ =
2CC2L

2
1L

2
lQ
√

2 ln(2Q/δ1)

n
+

√
ln(1/δ2)

2n
.

Based on Theorem 2, the final result is obtained by combining Eqs. 6,7 and setting C1 = 2
√

2C:
Pzn [R(m(zn))−Rn(zn,m(zn)) ≤ ε] ≥ 1− δ1 − δ2.

C Lipschitz smoothness and updating equations of SMILE

For a classifier h with convex constraints on parameters, the parameter w will be restricted to be
inside a convex set, as explained in Sec. C.1. Then based on Corollary A.1, a sufficient condition for
bounded lip( ∂h∂w ← w) is to have finite values of the first and second partial derivatives. Conditions
when SMILE satisfies these two conditions are shown in Secs. C.2 and C.3, respectively. Based on
these results, the generalization bound of SMILE is proved in Sec. C.4 and its updating equations are
given in Sec. C.5.

C.1 Equivalence between constrained optimization and the use of regularization terms

Let us review two optimization problems.
Problem 1:

min
w

Rn(zn, hw) s.t. P(w) ≤ C;

Problem 2:
min
w

Rn(zn, hw) + λP(w).

The Lagrange function of Problem 1 is
L(w, u) = Rn(zn, hw) + u(P(w)− C), u ≥ 0,

where u is the Lagrangian multiplier.
For Problem 1, the (KKT) necessary conditions imply

Condition 1
∂Rn(zn, hw)

∂w
+ u

∂P(w)

∂w
= 0;

Condition 2 u(P(w)− C) = 0.

For Problem 2, the necessary condition implies
∂Rn(zn, hw)

∂w
+ λ

∂P(w)

∂w
= 0.

Suppose w∗1 and µ∗ satisfy the necessary condition of Problem 1. Setting λ = µ∗, we can see that
w∗1 satisfies for the necessary condition of Problem 2. Suppose w∗2 satisfies the necessary condition
of Problem 2. Setting µ = λ and C = P(w∗2), we can see that Condition 1 and Condition 2 of
Problem 1 are satisfied, so w∗2 satisfies the necessary condition of Problem 1 as well. Based on the
above results, the necessary conditions of Problem 1 and Problem 2 are equivalent.

Meanwhile, when the regularization term in Problem 2 is a convex function, the equivalent Problem 1
constrains w inside the set of {w|P(w) ≤ C}, which is a convex set [2].
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C.2 First partial derivatives of SMILE classifier

The first partial derivatives of the classifier (Eq. 8) are as follows:

∂h(x; Θ)

∂r+
j

=− exp(−‖Lx− r+
j ‖

2)(2r+
j − 2Lx)

∂h(x; Θ)

∂r−k
= exp(−‖Lx− r−k ‖

2)(2r−k − 2Lx)

∂h(x; Θ)

∂L[a,b]
=−

∑
j

2(Lx− r+
j )[a]x[b] exp(−‖Lx− r+

j ‖
2)

+
∑
k

2(Lx− r−k )[a]x[b] exp(−‖Lx− r−k ‖
2),

where L[a,b] denotes the ath row and bth column element of matrix L and x[a] denotes the ath
element of the vector x; (Lx− r)[a] =

∑
iL[ai]x[i] − r[a].

∂h(x;Θ)

∂r+j
and ∂h(x;Θ)

∂r−k
are bounded by 2 diam(r) + 2 diam(L) diam(x); ∂h(x;Θ)

∂L is bounded by

4m(diam(r) + diam(L) diam(x)) diam(x), where m denotes the number of representative in-
stances. All first partial derivatives have finite values as long as diam(L), diam(x) and diam(r) are
bounded.

C.3 Second partial derivatives of SMILE classifier

The (unmixed) second partial derivatives are as follows:

∂2h(x; Θ)

∂r+2
j

=4 exp(−‖Lx− r+
j ‖

2)(r+
j −Lx)(r+

j −Lx)T − 2 exp(−‖Lx− r+
j ‖

2)I;

∂2h(x; Θ)

∂r−2
k

=− 4 exp(−‖Lx− r−k ‖
2)(r−k −Lx)(r−k −Lx)T + 2 exp(−‖Lx− r−k ‖

2)I;

∂2h(x; Θ)

∂L[a,b]
2 =

∑
j

4(Lx− r+
j )2

[a]x
2
[b] exp(−‖Lx− r+

j ‖
2)− 2

∑
j

x2
[b] exp(−‖Lx− r+

j ‖
2)

−
∑
k

4(Lx− r−k )2
[a]x

2
[b] exp(−‖Lx− r−k ‖

2) + 2
∑
k

x2
[b] exp(−‖Lx− r−k ‖

2),

where I is the identity matrix. The mixed partials, e.g. ∂2h
∂r+j ∂r

−
k

, ∂2h
∂r+j ∂L[a,b]

, can be derived similarly.

All second partial derivatives have finite values as long as diam(L), diam(x) and diam(r) are
bounded.

C.4 Generalization bound of SMILE

Corollary C.1. Let θ ∈ Θ = {rm,L} ∈ RQ and θ̂ denote the learned parameters. Let R and X
denote the set of all possible values of r and x respectively, and assume {Lx} ⊆ R. Then with
probability at least 1− δ1 − δ2, the following bound holds:

R(θ̂)−Rn(zn, θ̂) ≤
C1C2Q

√
ln(2Q/δ1)

n
+

√
ln(1/δ2)

2n
, (8)

where C1 = 96
√

2(
√

log 2 +
√
π)m diam(R)2(1 +mdiam(X )2) and C2 =

∑T
t=1 η

T−tα(t).

Proof. The corollary is obtained by calculating L2
1 and L2

l of Theorem 3. As the derivative of the
proposed loss (i.e. Eq. 9) is bounded by 1, L2

l ≤ 1. L1 can be derived as follows.

L2
1

(a)

≤
m∑
i=1

lip(h← ri)
2 + lip(h← L)2

≤ 4m diam(R)2 + 4m2 diam(R)2 diam(X )2,
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where

lip(h← r)2 ≤
∥∥∥∂h(x; Θ)

∂r

∥∥∥2

2

(b)

≤ (2 diam(R))2,

lip(h← L)2 ≤
∥∥∥∂h(x; Θ)

∂L

∥∥∥2

F

=
∥∥∥ m∑
i=1

2(Lx− ri)xT exp(−‖Lx− ri‖2) sign(ri)
∥∥∥2

F

= trace
( m∑
j=1

m∑
i=1

4 sign(ri) sign(rj) exp(−‖Lx− ri‖2)·

exp(−‖Lx− rj‖2)(Lx− ri)xTx(Lx− rj)T
)

≤ 4

m∑
j=1

m∑
i=1

trace
(

(Lx− rj)T (Lx− ri)xTx
)

(b)

≤ 4m2 diam(R)2 diam(X )2,

and sign(ri) = 1 if ri is a representative instance of the positive class and −1 otherwise.

Inequality (a) is due to lip(h ← θ) ≤
√∑Q

q=1 lip(h← θ[q]) [3]; inequality (b) makes use of the
assumption that {Lx} ⊆ R.

C.5 Updating equations of SMILE

The updating equations of SMILE are as follows:

r+,t+1
j =r+,t

j − 2λαr+,t
j +

α

n

n∑
i=1

yil
′(yih(xi; Θ)) exp(−‖Lxi − r+

j ‖
2)(2r+

j − 2Lxi)|Θt ;

r−,t+1
k =r−,tk − 2λαr−,tk − α

n

n∑
i=1

yil
′(yih(xi; Θ)) exp(−‖Lxi − r−k ‖

2)(2r−k − 2Lxi)|Θt ;

Lt+1 =Lt − 2λαLt +
α

n

n∑
i=1

yil
′(yih(xi; Θ))

∑
j

exp(−‖Lxi − r+
j ‖

2)2(Lxi − r+
j )xTi |Θt

− α

n

n∑
i=1

yil
′(yih(xi; Θ))

∑
k

exp(−‖Lxi − r−k ‖
2)2(Lxi − r−k )xTi |Θt .

D Data description

Table 1 lists information on sample size and feature dimension, as well as the source of studied
datasets.
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