
Supplementary Material for
Learning to Learn Variational Semantic Memory

Xiantong Zhen, Yingjun Du, Huan Xiong, Qiang Qiu, Cees G. M. Snoek, Ling Shao

A More Results

We provide more experimental results on the Omniglot dataset, under the 20-way settings on
miniImageNet and tieredImageNet datasets, comparisons with other deep architectures, e.g., WRN-
10-28 [22], and further ablation studies on effect of the hyperparameter (α) in the memory update
and the effect of the Gumbel-softmax for approximating the addressing vectors in the memory recall.

On the Omniglot dataset, as shown in Table A1 our model consistently achieves high performance,
exceeding other competitive methods (98.3% - up 0.07%) under the 20-way 1-shot setting. The
results are consistent with the findings on the other datasets.

The performance under the 20-way 1-shot setting on the miniImageNet and tieredImageNet datasets
are reported in Table A2. We compare against state-of-the-art methods, i.e., [9] and Baseline++ [3]
under this setting. The proposed variational semantic memory consistently outperforms these two
methods on miniImageNet. We do not observe previous results under the 20-way 1-shot setting on
tieredImageNet and we provide our results for future comparison.

We have also experimented with one more deep architecture, i.e., WRN-28-10 [22], to compare with
previous methods using the same architecture. The results are reported in Table A3. Again, our model
outperforms those methods, which is consistent with the results using other architectures.

In addition, we test the impact of α in (13) the memory update. The value of α control how much
information in the memory will be kept during the update with new information. The experimental
results on the miniImageNet dataset under both 1-shot and 5-shot setting are shown in Table A4. We
can see that the performance achieves the best when the values of α are 0.7 and 0.8. This means that
in each update we need to keep the majority of old information in the memory.

Finally, in the memory recall, we use softmax to generate the addressing vector, and compare it
against the Gumbel-softmax approximation. The results on three datasets are shown in Table A5.
We can see that Gumbel-softmax achieves comparable performance with the regular softmax. It
is worth mentioning that the memory size needs to be pre-fixed when using the Gumbel-softmax
approximation, while the regular softmax can deal with dynamic memories with growing size.

B Datasets

miniImageNet. The miniImageNet is originally proposed in [20], has been widely used for evaluating
few-shot learning algorithms. It consists of 60, 000 color images from 100 classes with 600 examples
per class. The images have dimensions of 84×84 pixels. We follow the train/val/ test split introduced
in [15], which uses 64 classes for meta-training, 16 classes for meta-validation, and the remaining 20
classes for meta-testing.

tieredImageNet. The tieredImageNet dataset [16] is a larger subset of ImageNet with 608 classes
(779, 165 images) grouped into 34 higher-level categories in the ImageNet human-curated hierarchy.
These categories are further divided into 20 training categories (351 classes), 6 validation categories
(97 classes), and 8 testing categories (160 classes). This construction near the root of the ImageNet

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

hierarchy results in a more challenging, yet realistic regime with test classes that are distinctive
enough from training classes.

CIFAR-FS. The CIFAR-FS is proposed in [2], which is randomly sampled from CIFAR-100 by using
the same standard with which miniImageNet has been generated. The original resolution of 32× 32
pixels makes the task harder.

Omniglot. The Omniglot [12] is a few-shot learning dataset consisting of 1623 handwritten characters
(each with 20 instances) derived from 50 alphabets. We follow a pre-processing and training procedure
defined in [19]. We first resize images to 28 × 28 and then character classes are augmented with
rotations of 90 degrees. The training, validation and test sets consist of a random split of 1100, 100,
and 423 characters, respectively.

C Implementation details

We provide more implementation details. For the feature extraction networks, we do not use any
fully connected layer after the convolutional layers. All of our models were trained via SGD with
the Adam [10] optimizer. For the 5-way 5-shot model, we train using the setting of 8 tasks per batch
for 100, 000 iterations and use a constant learning rate of 0.0001. For the 5-way 1-shot model, we
train with the setting of 8 tasks per batch for 150, 000 iterations and use a constant learning rate of
0.00025. No regularization was used other than batch normalization. In the Monte Carlo sampling,
we set the number J = 150 for m and to L = 100 for z, which are chosen by using the validation set.
The architectures of inference networks qϕ(·), pψ(·), the prior network pθ(·) and feature extraction
networks hφ(·) are provided in Tables A6 and A7. The sketch of the implementation is shown in
Figure A1. We implemented all models in the Tensorflow framework and tested on an NVIDIA Tesla
V100.

In the experiments of comparison with alternative methods of memory recall, For rote memory, we put
concatenation of the addressed memory contents with mean feature representation of the support set as
input to the inference network: q(z|M̄, hφ(xSt

n
)), where M̄ =

∑|M |
a λaMa, and λa = g(Ma,S)∑

i g(Mi,S)
;

for transformed memory, we follow the strategy in [8, 21] and pass the addressed memory M̄ through
a parameterized transformation before feeding into the inference network: q(z|T (M̄), hφ(xSt

n
)),

where T (·) is the transformation implemented as a multi-layer perception (MLP).

Table A1: Comparison (%) on Omniglot using a shallow feature extractor.
Omniglot, 5-way Omniglot, 20-way

1-shot 5-shot 1-shot 5-shot

Siamese Net [11] 96.7 98.4 88.0 96.5
Matching net [19] 98.1 98.9 93.8 98.5
MAML [5] 98.7 ±0.4 99.9 ± 0.1 95.8 ± 0.3 98.9 ± 0.2
SNAIL [13] 99.1 ± 0.2 99.8 ± 0.1 97.6 ± 0.3 99.4 ± 0.2
GNN [6] 99.2 99.7 97.4 99.0
VERSA [7] 99.7 ± 0.2 99.8 ± 0.1 97.7 ± 0.3 98.8 ± 0.2
R2-D2 [2] 98.6 99.7 94.7 98.9
IMP [1] 98.4 ± 0.3 99.5 ± 0.1 95.0 ± 0.1 98.6 ± 0.1

ProtoNet [18] 98.5 ± 0.2 99.5 ± 0.1 95.3 ± 0.2 98.7 ± 0.1
This paper 99.8 ± 0.1 99.9 ± 0.1 98.3 ± 0.3 99.4 ± 0.2

References
[1] K. R. Allen, E. Shelhamer, H. Shin, and J. B. Tenenbaum. Infinite mixture prototypes for few-shot learning.

In ICML, 2019.

[2] L. Bertinetto, J. F. Henriques, P. H. Torr, and A. Vedaldi. Meta-learning with differentiable closed-form
solvers. In ICLR, 2019.

[3] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. F. Wang, and J.-B. Huang. A closer look at few-shot classification.
arXiv preprint arXiv:1904.04232, 2019.

2

Table A2: Performance comparison under 20-way settings on the miniImageNet and tieredImageNet
datasets.

miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

TAML [9] 19.73 ± 0.65 29.81 ± 0.35 n/a n/a
Baseline++ [3] n/a 38.03 ± 0.24 n/a n/a
This paper 22.07 ± 0.53 39.98 ± 0.27 24.76 ± 0.51 41.84 ± 0.31

Table A3: Comparison (%) on miniImageNet and tieredImageNet using WRN-28-10 feature extractor.

miniImageNet, 5-way tieredImageNet, 5-way

1-shot 5-shot 1-shot 5-shot

Activation to Parameter [14] 59.60 ± 0.41 73.74 ± 0.19 - -
Fine-Tuning [4] 57.73 ± 0.62 78.17 ± 0.49 66.58 ± 0.70 85.55 ± 0.48
LEO [17] 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09
This paper 63.45 ± 0.39 78.99 ± 0.29 68.54 ± 0.61 86.25 ± 0.39

[4] G. S. Dhillon, P. Chaudhari, A. Ravichandran, and S. Soatto. A baseline for few-shot image classification.
In ICLR, 2020.

[5] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In
ICML, 2017.

[6] V. Garcia and J. Bruna. Few-shot learning with graph neural networks. In ICLR, 2018.

[7] J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. E. Turner. Meta-learning probabilistic inference for
prediction. In ICLR, 2019.

[8] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401, 2014.

[9] M. A. Jamal and G.-J. Qi. Task agnostic meta-learning for few-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 11719–11727, 2019.

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[11] G. Koch. Siamese neural networks for one-shot image recognition. In ICML Workshop, 2015.

[12] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic
program induction. Science, 350(6266):1332–1338, 2015.

[13] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel. A simple neural attentive meta-learner. In ICLR,
2018.

[14] S. Qiao, C. Liu, W. Shen, and A. L. Yuille. Few-shot image recognition by predicting parameters from
activations. In CVPR, 2018.

Figure A1: The sketch of the implementation.

3

Table A4: Performance comparison by using various α on the miniImageNetdataset.

1-shot 5-shot

α = 0. 51.28 ± 1.70 65.77 ± 0.70
α = 0.1 51.93 ± 1.80 65.71 ± 0.90
α = 0.2 52.15 ± 1.70 65.99 ± 0.80
α = 0.3 52.11 ± 1.70 65.96 ± 0.70
α = 0.4 52.10 ± 1.90 66.11 ± 0.90
α = 0.5 53.15 ± 1.60 66.93 ± 0.70
α = 0.6 53.61 ± 1.70 67.15 ± 0.80
α = 0.7 54.73 ± 1.60 67.37 ± 0.80
α = 0.8 53.94 ± 1.70 68.01 ± 0.90
α = 0.9 53.77 ± 1.80 67.53 ± 0.90
α = 1.0 53.53 ± 1.70 67.05 ± 0.80

Table A5: Performance comparison with Gumbel-softmax for memory addressing.
miniImageNet, 5-way tieredImageNet, 5-way CIFAR-FS, 5-way
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Gumbel-softmax 53.27 ± 1.70 68.37 ± 0.80 55.25 ± 1.80 74.57 ± 0.80 62.11 ± 1.60 77.69 ± 0.80
Softmax 54.73 ± 1.60 68.01 ± 0.90 56.88 ± 1.71 74.65 ± 0.81 63.42 ± 1.90 77.93 ± 0.80

[15] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

[16] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle, and R. S. Zemel.
Meta-learning for semi-supervised few-shot classification. In ICLR, 2018.

[17] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell. Meta-learning
with latent embedding optimization. In ICLR, 2019.

[18] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In NeurIPS, 2017.

[19] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra. Matching networks for one shot
learning. In NeurIPS, 2016.

[20] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In NeurIPS. 2015.

[21] J. Weston, S. Chopra, and A. Bordes. Memory networks. In ICLR, 2014.

[22] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

4

Table A6: The architectures of inference networks and prior network.

The inference network qϕ(·) for Omniglot, miniImageNet, CIFAR-FS.

Output size Layers

J × 512 concatenate m(j) and hφ(xSt
n
)

256 fully connected, ELU
256 fully connected, ELU
256 linear fully connected to µz , log σ2

z

The prior network pθ(·) for Omniglot, miniImageNet, CIFAR-FS

Output size Layers

256 Input query feature
256 fully connected, ELU
256 fully connected, ELU
256 fully connected to µz , log σ2

z

The inference network pψ(·) for Omniglot, miniImageNet, CIFAR-FS.

Output size Layers

256 Input memory feature
256 fully connected, ELU
256 fully connected, ELU
256 linear fully connected to µm, log σ2

m

Table A7: The architectures of CNN for different datasets.

The CNN architecture hφ(·) for Omniglot.

Output size Layers
28×28×1 Input images
14×14×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
7×7×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
4×4×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.9, pool (2×2, stride=2, SAME)
256 flatten

The shallow architecture hφ(·) for CIFAR-FS
Output size Layers
32×32×3 Input images
16×16×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
8×8×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
4×4×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
256 flatten

The CNN architecture hφ(·) for miniImageNet and tieredImageNet
Output size Layers
84×84×3 Input images
42×42×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
21×21×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
10×10×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
5×5×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
2×2×64 conv2d (3×3, stride=1, SAME, RELU), dropout 0.5, pool (2×2, stride=2, SAME)
256 flatten

5

	More Results
	Datasets
	Implementation details

