
A Further Details on NetHack

Character options The player may choose (or pick randomly) the character from thirteen roles
(archaeologist, barbarian, cave(wo)man, healer, knight, priest(ess), ranger, rogue, samurai, tourist,
valkyrie, and wizard), five races (human, elf, dwarf, gnome, and orc), three moral alignments (neutral,
lawful, chaotic), and two genders (male or female). Each choice determines some of the character’s
features, as well as how the character interacts with other entities (e.g., some species of monsters may
not be hostile depending on the character race; priests of a particular deity may only help religiously
aligned characters).

The hero’s interaction with several game entities involves pre-defined stochastic dynamics (usually
defined by virtual dice tosses), and the game is designed to heavily punish careless exploration
policies.5 This makes NetHack an ideal environment for evaluating exploration methods such as
curiosity-driven learning [56, 12] or safe reinforcement learning [28].

Learning and planning in NetHack involves dealing with partial observability. The game, by default,
employs Fog of War to hide information based on a simple 2D light model (see for example the
difference between white . and gray . room tiles in Figure 1 or Figure 11), requiring the player
not only to discover the topology of the level (including searching for hidden doors and passages),
but to also condition their policy on a world that might change, e.g., due to monsters spawning and
interacting outside of the visible range.

On top of the standard ASCII interface, NetHack supports many official and unofficial graphical user
interfaces. Figure 6 shows a screenshot of Lu Wang’s BrowserHack6 as an example.

Figure 6: Screenshot of BrowserHack showing NetHack with a graphical user interface.

5Occasionally dying because of simple, avoidable mistakes is so common in the game that the online
community has defined an acronym for it: Yet Another Stupid Death (YASD).

6Playable online at https://coolwanglu.github.io/BrowserHack/

15

https://coolwanglu.github.io/BrowserHack/

Conducts While winning NetHack by retrieving and ascending with the Amulet of Yendor is
already immensely challenging, experienced NetHack players like to challenge themselves even
more by imposing additional restrictions on their play. The game tracks some of these challenges
with the #conduct command [59]. These official challenges include eating only vegan or vegetarian
food, or not eating at all, or playing the game in “pacifist” mode without killing a single monster.
While very experienced players often try to adhere to several challenges at once, even moderately
experienced players often limit their use of certain polymorph spells (e.g., “polypiling”—changing
the form of several objects at once in the hope of getting better ones) or they try to beat the game
while minimizing the in-game score. We believe this established set of conducts will supply the
RL community with a steady stream of extended challenges once the standard NetHack Learning
Environment is solved by future methods.

B Observation Space

The Gym environment is implemented by wrapping a more low-level NetHack Python object into a
Python class responsible for the featurization, reward schedule and end-of-episode dynamics. While
the low-level NetHack object gives access to a large number of NetHack game internals, the Gym
wrapper exposes by default only a part of this data as numerical observation arrays, namely the
observation tensors glyphs, chars, colors, specials, blstats, message, inv_glyphs, inv_strs, inv_letters,
and inv_oclasses.

Glyphs, Chars, Colors, Specials: NetHack supports non-ASCII graphical user interfaces, dubbed
window-ports (see Figure 6 for an example). To support displaying different monsters, objects and
floor types in the NetHack dungeon map as different tiles, NetHack internally defines glyphs as ids
in the range 0, . . . , MAX_GLYPH, where MAX_GLYPH = 5991 in our build7. The glyph observation is
an integer array of shape (21, 79) of these game glyph ids.8 In NetHack’s standard terminal-based
user interface, these glyphs are mapped into ASCII characters of different colors which we return as
the chars, colors, and specials observations, both all which are of shape (21, 79); chars are ASCII
bytes in the range 0, . . . , 127 wheras colors are in range 0, . . . , 15. For additional highlighting (e.g.,
flipping background and foreground colors for the hero’s pet), NetHack also computes xor’ed values
which we return as the specials tensor.

Blstats: “Bottom line statistics”, a integer vector of length 25, containing the (x, y) coordinate of
the hero and the following 23 character stats that typically appear in the bottom line of the ASCII
interface: strength_percentage, strength, dexterity, constitution, intelligence, wis-
dom, charisma, score, hitpoints, max_hitpoints, depth, gold, energy, max_energy, ar-
mor_class, monster_level, experience_level, experience_points, time, hunger_state,
carrying_capacity, dungeon_number, and level_number.

Message: A padded byte vector of length 256 representing the current message shown to the player,
normally displayed in the top area of the GUI. We support different padding strategies and alphabet
sizes, but by default we choose an alphabet size of 96, where the last character is used for padding.

Inventory: In NetHack’s default ASCII user interface, the hero’s inventory can be opened and
closed during the game. Other user interfaces display a permanent inventory at all times. NLE
follows that strategy. The inventory observations consist of the following four arrays: inv_glyphs: an
integer vector of length 55 of glyph ids, padded with MAX_GLYPH; inv_strs: A padded byte array of
shape (55, 80) describing the inventory items; inv_letters: A padded byte vector of length 55 with
the corresponding ASCII character symbol; inv_oclasses: An integer vector of shape 55 with ids
describing the type of inventory objects, padded with MAXOCLASSES = 18.

7The exact number of monsters in NetHack depends on compile-time options as well as the target operating
system. For instance, the mail daemon & is only available on Unix-like operating systems, where it delivers
email in the form of a NetHack scroll if the system is configured to host a Unix mailbox.

8NetHack’s set of glyph ids is not necessarily well suited for machine learning. For example, more than
half of all glyph ids are of type “swallow”, most of which are guaranteed not to show up in any actual game of
NetHack. We provide additional tooling to determine the type of a given glyph id to process this observation
further.

16

The low-level NetHack Python object has some additional methods to query and modify NetHack’s
game state, e.g. the current RNG seeds. We refer to the source code to describe these.9

C Action Space

The game of NetHack uses ASCII inputs, i.e., individual keyboard presses including modifiers like
Ctrl and Meta. NLE pre-defines 98 actions, 16 of which are compass directions and 82 of which
are command actions. Table 1 gives a list of command actions, including their ASCII value and
the corresponding key binding in NetHack, while Table 3 lists the 16 compass directions. For a
detailed description of these actions, as well as other NetHack commands, we refer the reader to the
NetHack guide book [59]. Not all actions are sensible for standard RL training on NLE. E.g., the
VERSION or QUIT actions are unlikely to be useful for direct input from the agent. NLE defines a list
of USEFUL_ACTIONS that includes a subset of 76 actions; however, what is useful depends on the
circumstances. In addition, even though an action like SAVE is unlikely to be useful in most game
situations it corresponds to the letter S, which may be assigned to an inventory item or some other
in-game menu entry such that it does become a useful action in that context.

By default, NLE will auto-apply the MORE action in situations where the game waits for input to
display more messages.

Table 1: Command actions.10

Name Value Key Description

EXTCMD 35 # perform an extended command
EXTLIST 191 M-? list all extended commands
ADJUST 225 M-a adjust inventory letters
ANNOTATE 193 M-A name current level
APPLY 97 a apply (use) a tool (pick-axe, key, lamp...)
ATTRIBUTES 24 C-x show your attributes
AUTOPICKUP 64 @ toggle the pickup option on/off
CALL 67 C call (name) something
CAST 90 Z zap (cast) a spell
CHAT 227 M-c talk to someone
CLOSE 99 c close a door
CONDUCT 195 M-C list voluntary challenges you have maintained
DIP 228 M-d dip an object into something
DOWN 62 > go down (e.g., a staircase)
DROP 100 d drop an item
DROPTYPE 68 D drop specific item types
EAT 101 e eat something
ESC 27 C-[escape from the current query/action
ENGRAVE 69 E engrave writing on the floor
ENHANCE 229 M-e advance or check weapon and spell skills
FIRE 102 f fire ammunition from quiver
FIGHT 70 F Prefix: force fight even if you don’t see a monster
FORCE 230 M-f force a lock
GLANCE 59 ; show what type of thing a map symbol corresponds to
HELP 63 ? give a help message
HISTORY 86 V show long version and game history
INVENTORY 105 i show your inventory
INVENTTYPE 73 I inventory specific item types
INVOKE 233 M-i invoke an object’s special powers
JUMP 234 M-j jump to another location
KICK 4 C-d kick something
KNOWN 92 \ show what object types have been discovered
KNOWNCLASS 96 ‘ show discovered types for one class of objects
LOOK 58 : look at what is here
LOOT 236 M-l loot a box on the floor

9See, e.g., the nethack.py as well as pynethack.cc files in the NLE repository.
10The descriptions are mostly taken from the cmd.c file in the NetHack source code.

17

MONSTER 237 M-m use monster’s special ability
MORE 13 C-m read the next message
MOVE 109 m Prefix: move without picking up objects/fighting
MOVEFAR 77 M Prefix: run without picking up objects/fighting
OFFER 239 M-o offer a sacrifice to the gods
OPEN 111 o open a door
OPTIONS 79 O show option settings, possibly change them
OVERVIEW 15 C-o show a summary of the explored dungeon
PAY 112 p pay your shopping bill
PICKUP 44 , pick up things at the current location
PRAY 240 M-p pray to the gods for help
PREVMSG 16 C-p view recent game messages
PUTON 80 P put on an accessory (ring, amulet, etc)
QUAFF 113 q quaff (drink) something
QUIT 241 M-q exit without saving current game
QUIVER 81 Q select ammunition for quiver
READ 114 r read a scroll or spellbook
REDRAW 18 C-r redraw screen
REMOVE 82 R remove an accessory (ring, amulet, etc)
RIDE 210 M-R mount or dismount a saddled steed
RUB 242 M-r rub a lamp or a stone
RUSH 103 g Prefix: rush until something interesting is seen
SAVE 83 S save the game and exit
SEARCH 115 s search for traps and secret doors
SEEALL 42 * show all equipment in use
SEETRAP 94 ^ show the type of adjacent trap
SIT 243 M-s sit down
SWAP 120 x swap wielded and secondary weapons
TAKEOFF 84 T take off one piece of armor
TAKEOFFALL 65 A remove all armor
TELEPORT 20 C-t teleport around the level
THROW 116 t throw something
TIP 212 M-T empty a container
TRAVEL 95 _ travel to a specific location on the map
TURN 244 M-t turn undead away
TWOWEAPON 88 X toggle two-weapon combat
UNTRAP 245 M-u untrap something
UP 60 < go up (e.g., a staircase)
VERSION 246 M-v list compile time options
VERSIONSHORT 118 v show version
WAIT / SELF 46 . rest one move while doing nothing / apply to self
WEAR 87 W wear a piece of armor
WHATDOES 38 & tell what a command does
WHATIS 47 / show what type of thing a symbol corresponds to
WIELD 119 w wield (put in use) a weapon
WIPE 247 M-w wipe off your face
ZAP 112 z zap a wand

D Environment Speed Comparison

Table 4 shows a comparison between popular Gym environments and NLE. All environments were
controlled with a uniformly random policy using reset on terminal states. The tests were conducted on
a MacBook Pro equipped with an Intel Core i7 2.9 GHz, 16GB of RAM, MacOS Mojave, Python 3.7,
Conda 4.7.12, and latest available packages as of May 2020. ObstacleTowerEnv was instantiated with
(retro=False, real_time=False). Note that this data does not necessarily reflect performance
of these environments with better—or worse—policies, as each environment has computational
dynamics that depend on its state. However, we expect the difference in terms of magnitude to remain
mostly unchanged across these environments.

18

Table 3: Compass direction actions.

one-step move far

Direction Value Key Value Key

North 107 k 75 K
East 108 l 76 L
South 106 j 74 J
West 104 h 72 H
North East 117 u 85 U
South East 110 n 78 N
South West 98 b 66 B
North West 121 y 89 Y

Table 4: Comparison between NLE and popular environments when using their respective Python Gym
interface. SPS stands for “environment steps per second”. All environments but ObstacleTowerEnv
were run via gym with standard settings (and headless when possible), for 60 seconds.

Environment SPS steps episodes

NLE (score) 14.4K 868.75K 477
CartPole-v1 76.88K 4612.65K 207390
ALE (MontezumaRevengeNoFrameskip-v4) 0.90K 53.91K 611
Retro (Airstriker-Genesis) 1.31K 78.56K 52
ProcGen (procgen-coinrun-v0) 13.13K 787.98K 1283
ObstacleTowerEnv 0.06K 3.61K 6
MineRLNavigateDense-v0 0.06K 3.39K 0

E Task Details

For all tasks described below, we add a penalty of −0.001 to the reward function if the agent’s action
did not advance the in-game timer, which, for example, happens when the agent tries to move against
a wall or navigates menus. For all tasks, except the Gold task, we disable NetHack’s autopick option
[59]. Furthermore, we disable so-called bones files that would otherwise lead to agents occasionally
discovering the remains and ghosts of previous agents, considerably increasing the variance across
episodes.

Staircase The agent has to find the staircase down > to the next dungeon level. This task is already
challenging, as there is often no direct path to the staircase. Instead, the agent has to learn to reliably
open doors +, kick-in locked doors, search for hidden doors and passages #, avoid traps ^, or move

0 500M 1B
-25

0
25
50
75

staircase

0 500M 1B

0

500

1K
score

32
64
128
256
512

number of agent steps

m
ea

n
ep

iso
de

 re
tu

rn

Figure 7: Mean episode return of the last 100 episodes for models with different hidden sizes averaged
over five runs.

19

boulders O that obstruct a passage. The agent receives a reward of 100 once it reaches the staircase
down and the the episode terminates after 1000 agent steps.

Pet Many successful strategies for NetHack rely on taking good care of the hero’s pet (e.g., the
little dog d or kitten f that the hero starts with). Pets are controlled by the game, but their behavior is
influenced by the agent’s actions. In this task, the agent only receives a positive reward of 100 when
it reaches the staircase while the pet is next to the agent.

Eat To survive in NetHack, players have to make sure their character does not starve to death.
There are many edible objects in the game, for example food rations %, tins, and monster corpses. In
this task, the agent receives the increase of nutrition as determined by the in-game “Hunger” status as
reward [see 50, “Nutrition” entry for details]. A steady source of nutrition are monster corpses, but
for that the agent has to learn to locate and to kill monsters while avoiding to consume rotten corpses,
poisonous monster corpses such as Kobolds k or acidic monster corpses such as Acid Blobs b.

Gold Throughout the game, the player can collect gold $ to, for example, trade for useful items
with shopkeepers. The agent receives the amount of gold it collects as reward. This incentivizes the
agent to explore dungeon maps fully and to descend dungeon levels to discover new sources of gold.
There are many advanced strategies for obtaining large amounts of gold such as finding, identifying
and selling gems; stealing from or killing shopkeepers; or hunting for vaults or leprechaun halls. To
make this task easier for the agent, we enable NetHack’s autopickup option for gold.

Scout An important part of the game is exploring dungeon levels. Here, we reward the agent (+1)
for uncovering previously unknown tiles in the dungeon, for example by entering a new room or
following a newly discovered passage. Like the previous task, this incentivizes the agent to explore
dungeon levels and to descend.

Score In this task, the agent receives the increase of the in-game score between two time steps as
reward. The in-game score is governed by a complex calculation, but in early stages of the game it is
dominated by killing monsters and the number of dungeon levels that the agent descends [see 50,
“Score” entry for details].

Oracle While levels are procedurally generated, there are a number of landmarks that appear in
every game of NetHack. One such landmark is the Oracle @, which is randomly placed between
levels five and nine of the dungeon. Reliably finding the Oracle is difficult, as it requires the agent
to go down multiple staircases and often to exhaustively explore each level. In this task, the agent
receives a reward of 1000 if it manages to reach the Oracle.

F Baseline CNN Details

As embedding dimension of the glyphs we use 32 and for the hidden dimension for the observation
ot and the output of the LSTM ht, we use 128. For encoding the full map of glyphs as well as the
9× 9 crop, we use a 5-layer ConvNet architecture with filter size 3× 3, padding 1 and stride 1. The
input channel of the first layer of the ConvNet is the embedding size of the glyphs (32). Subsequent
layers have an input and output channel dimension of 16. We employ a gradient norm clipping of 40
and clip rewards using rc = tanh(r/100). We use RMSProp with a learning rate of 0.0002 without
momentum and with εRMSProp = 0.000001. Our entropy cost is set to 0.0001.

G Random Network Distillation Details

For RND hyperparameters we mostly follow the recommendations by the authors [13]:

• we initialize the weights according to the original paper, using an orthogonal distribution
with a gain of

√
2

• we use a two-headed value function rather than merely summing the intrinsic and extrinsic
reward

• we use a discounting factor of 0.999 for the extrinsic reward and 0.99 for the intrinsic reward

20

• we use non-episodic intrinsic reward and episodic extrinsic reward

• we use reward normalization for the intrinsic reward, dividing it by a running estimate of its
standard deviation

We modify a few of the parameters for use in our setting:

• we use exactly the same feature extraction architecture as the baseline model instead of the
pixel-based convolutional feature extractor

• we do not use observation normalization, again due to the symbolic nature of our observation
space

• before normalizing, we divide the intrinsic reward by ten so that it has less weight than the
extrinsic reward

• we clip intrinsic rewards in the same way that we clip extrinsic rewards, i.e., using rc =
tanh(r/100), so that the intrinsic and extrinsic rewards are on a similar scale

We downscale the forward modeling loss by a factor of 0.01 to slow down the rate at which the model
becomes familiar with a given state, since the intrinsic reward often collapsed quickly despite the
reward normalization. We determined these settings during a set of small-scale experiments.

We also tried using subsets of the full feature set (only the embedding of the full display of glyphs, or
only the embedding of the crop of glyphs around the agent) as well as the exact architecture used by
the original authors, but with the pixel input replaced by a random 8-dimensional embedding of the
symbolic observation space. However, we did not observe this improved results.

We tried using intrinsic reward only as the authors did in the original RND paper, but we found that
agents trained in this way made no significant progress through the dungeon, even on a single fixed
seed. This indicates that this form of intrinsic reward is not sufficient to make progress on NetHack.
As noted in Section 3, the intrinsic reward did help in some tasks for some characters when combined
with the extrinsic reward. Crucially, RND exploration is not sufficient for agents to learn to find the
Oracle, which leaves this as a difficult challenge for future exploration techniques.

H Dashboard

We release a web dashboard built with NodeJS (see Figure 10) to visualize experiment runs and
statistics for NLE, including replaying episodes that were recorded as tty files.

I NetHack Bots

Since the early stages of the development of NetHack, players have tried to build bots to play and
solve the game. Notable examples are TAEB, BotHack, and Saiph [65, 50]. These bot frameworks
largely rely on search heuristics and common planning methods, without generally making use of
any statistical learning methods. An exception is SWAGGINZZZ [2] which uses lookups, exhaustive
simulation and manipulation of the random number generator.

Successful bots have made use of exploits that are no longer present in recent versions of NetHack.
For example, BotHack employs the “pudding farming” strategy [see 50, “Pudding farming” entry]
to level up and to create items for the character by spawning and killing a large number of black
puddings P. This enabled the bot to become quite strong, which rendered late-game fights considerably
easier. This strategy was disabled by the NetHack DevTeam with a patch that is incorporated into
versions of NetHack above 3.6.0. Likewise, the random number generator manipulations employed
in SWAGGINZZZ are no longer possible.

We believe that it is very unlikely that in the future we will see a hand-crafted bot solving NetHack in
the way we defined it in Section 2.4. In fact, the creator of SWAGGINZZZ remarked that “[e]ven with
RNG manipulation, writing a bot that 99% ascends NetHack is extremely complicated. So much
stuff can go wrong, and there is no shortage of corner cases” [2].

21

0

20

40

60

m
ea

n
sc

or
e

staircase

0

20

40

pet

0

50

100

150

eat

0

100

200

300

400

gold

0

200

400

600

800
score

0

100

200

300

400

scout

20

30

40

50
oracle

1.0

1.25

1.5

1.75

2.0

m
ea

n
du

ng
eo

n
lv

l

1.0

1.25

1.5

1.75

2.0

1.0

1.5

2.0

2.5

1.0

2.0

3.0

4.0

5.0

1.0

2.0

3.0

4.0

5.0

2.0

4.0

6.0

1.0

1.25

1.5

1.75

2.0

1.0

1.02

1.04

1.06

m
ea

n
ex

p
lv

l

1.0

1.05

1.1

1.0

1.5

2.0

1.0

1.5

2.0

1.0

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

1.0

1.02

1.04

1.06

0 500M 1B
100

200

300

400

m
ea

n
ep

iso
de

 st
ep

0 500M 1B
100

200

300

400

0 500M 1B
0

5K

10K

0 500M 1B
0

1K

2K

3K

0 500M 1B
0

2K

4K

6K

8K

0 500M 1B
0

20K

40K

60K

0 500M 1B
0

250

500

750

1K

number of agent steps

CNN mon-hum-neu-mal
CNN tou-hum-neu-fem

CNN val-dwa-law-fem
CNN wiz-elf-cha-mal

RND mon-hum-neu-mal
RND val-dwa-law-fem

RND wiz-elf-cha-mal
RND tou-hum-neu-fem

Figure 8: Mean score, dungeon level reached, experience level achieved, and steps performed in the
environment in the last 100 episodes averaged over five runs.

J Viewing Agent Videos

We have uploaded some agent recordings to https://asciinema.org/~nle. These can be either
watched on the Asciinema portal, or on a terminal by running asciinema play -s 0.2 url
(asciinema itself is available as a pip package at https://pypi.org/project/asciinema).
The -s flag regulates the speed of the recordings, which can also be modified on the web interface by
pressing > (faster) or < (slower).

22

https://asciinema.org/~nle
https://pypi.org/project/asciinema

Table 5: Metrics averaged over last 1000 episodes for each task.

Task Model Character Score Time Exp Lvl Dungeon Lvl Win

staircase CNN mon-hum-neu-mal 20 252 1.0 1.0 77.26
tou-hum-neu-fem 6 288 1.0 1.0 50.42
val-dwa-law-fem 19 329 1.0 1.0 74.62
wiz-elf-cha-mal 20 253 1.0 1.0 80.42

RND mon-hum-neu-mal 26 199 1.0 1.0 90.84
tou-hum-neu-fem 8 203 1.0 1.0 56.94
val-dwa-law-fem 25 242 1.0 1.0 90.96
wiz-elf-cha-mal 20 317 1.0 1.0 67.46

pet CNN mon-hum-neu-mal 20 297 1.0 1.1 62.02
tou-hum-neu-fem 6 407 1.0 1.0 25.66
val-dwa-law-fem 18 379 1.0 1.0 63.30
wiz-elf-cha-mal 16 273 1.0 1.0 66.80

RND mon-hum-neu-mal 33 319 1.1 1.0 74.38
tou-hum-neu-fem 10 336 1.0 1.0 49.38
val-dwa-law-fem 28 311 1.0 1.0 81.56
wiz-elf-cha-mal 20 278 1.0 1.0 70.48

eat CNN mon-hum-neu-mal 36 1254 1.1 1.2 –
tou-hum-neu-fem 7 423 1.0 1.0 –
val-dwa-law-fem 75 1713 1.5 1.1 –
wiz-elf-cha-mal 50 1181 1.3 1.1 –

RND mon-hum-neu-mal 36 1102 1.0 1.2 –
tou-hum-neu-fem 9 404 1.0 1.0 –
val-dwa-law-fem 55 1421 1.2 1.1 –
wiz-elf-cha-mal 14 808 1.0 1.1 –

gold CNN mon-hum-neu-mal 307 947 1.8 4.2 –
tou-hum-neu-fem 71 788 1.0 2.0 –
val-dwa-law-fem 245 1032 1.6 3.5 –
wiz-elf-cha-mal 162 780 1.3 2.7 –

RND mon-hum-neu-mal 403 1006 2.2 5.0 –
tou-hum-neu-fem 92 816 1.0 2.2 –
val-dwa-law-fem 298 998 1.8 4.0 –
wiz-elf-cha-mal 217 789 1.5 3.3 –

score CNN mon-hum-neu-mal 748 932 3.2 5.4 –
tou-hum-neu-fem 11 795 1.0 1.1 –
val-dwa-law-fem 573 908 2.8 4.8 –
wiz-elf-cha-mal 314 615 1.6 3.5 –

RND mon-hum-neu-mal 780 863 3.1 5.4 –
tou-hum-neu-fem 219 490 1.1 2.6 –
val-dwa-law-fem 647 857 2.8 5.0 –
wiz-elf-cha-mal 352 585 1.6 3.5 –

scout CNN mon-hum-neu-mal 372 838 2.2 5.3 –
tou-hum-neu-fem 105 580 1.0 2.7 –
val-dwa-law-fem 331 852 1.9 5.1 –
wiz-elf-cha-mal 222 735 1.5 3.8 –

RND mon-hum-neu-mal 416 924 2.3 5.5 –
tou-hum-neu-fem 119 599 1.0 2.8 –
val-dwa-law-fem 304 1021 1.8 4.6 –
wiz-elf-cha-mal 231 719 1.5 3.8 –

oracle CNN mon-hum-neu-mal 24 876 1.0 1.1 0.00
tou-hum-neu-fem 9 674 1.0 1.1 0.00
val-dwa-law-fem 18 1323 1.0 1.1 0.02
wiz-elf-cha-mal 10 742 1.0 1.1 0.00

RND mon-hum-neu-mal 32 967 1.0 1.1 0.00
tou-hum-neu-fem 13 811 1.0 1.1 0.00
val-dwa-law-fem 26 1353 1.0 1.1 0.00
wiz-elf-cha-mal 14 791 1.0 1.1 0.00

23

Table 6: Top five of the last 1000 episodes in the score task.

Model Character Killer Name Score Exp Lvl Dungeon Lvl

CNN mon-hum-neu-mal warg 4408 7 9
forest centaur 4260 7 11
hill orc 2880 6 8
gnome lord 2848 6 9
crocodile 2806 6 8

tou-hum-neu-fem jackal 200 1 3
hobgoblin 200 1 5
hobbit 200 1 3
giant rat 190 1 4
large kobold 174 1 4

val-dwa-law-fem gnome lord 2176 5 12
ape 1948 6 7
gremlin 1924 5 11
gnome king 1916 5 11
vampire 1864 4 10

wiz-elf-cha-mal dingo 1104 3 9
giant ant 1008 3 8
gnome mummy 988 3 8
coyote 988 3 9
kicking a wall 972 3 8

RND mon-hum-neu-mal rothe 3664 5 7
rotted dwarf corpse 3206 5 7
leocrotta 2771 5 11
winter wolf cub 2724 6 9
starvation 2718 6 6

tou-hum-neu-fem grid bug 1432 1 7
sewer rat 1253 1 4
bolt of cold 1248 1 3
goblin 1125 1 4
goblin 1078 1 4

val-dwa-law-fem bugbear 2186 6 9
starvation 2150 5 10
ogre 2095 5 9
rothe 2084 6 8
Uruk-hai called Haiaigrisai of Aruka 2036 5 6

wiz-elf-cha-mal cave spider 1662 2 7
iguana 1332 2 5
starvation 1329 1 5
starvation 1311 1 5
gnome lord 1298 5 9

24

0

1.0

2.0

3.0

ki
lle

d
by

 st
ar

va
tio

n
[%

]

staircase

0
0.5
1.0
1.5
2.0
2.5

pet

0

5.0

10

15

20

eat

0
5.0
10
15
20
25

gold

0

5.0

10

15

20

score

0

5.0

10

15

20

scout

0

5.0

10

15

20

oracle

0

1.0

2.0

3.0

4.0

ki
lle

d
by

 ro
tte

d
[%

]

0

1.0

2.0

3.0

4.0

5.0

0

5.0

10

15

0

2.0

4.0

6.0

0

2.0

4.0

6.0

0
2.0
4.0
6.0
8.0
10

0

2.0

4.0

6.0

0

0.5

1.0

1.5

ki
lle

d
by

 tr
ap

 [%
]

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

2.5

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

0

0.5

1.0

1.5

2.0

2.5

0

0.1

0.2

0.3

0.4

0.5

ki
lle

d
by

 w
an

d
[%

]

0

0.2

0.4

0.6

0
0.2
0.4
0.6
0.8
1.0

0

1.0

2.0

3.0

4.0

0

1.0

2.0

3.0

4.0

0

1.0

2.0

3.0

4.0

0

0.2

0.4

0.6

0.8

0

0.02

0.04

0.06

ki
lle

d
by

 g
no

m
e

lo
rd

 [%
]

0

0.05

0.1

0.15

0.2

0

0.1

0.2

0.3

0

1.0

2.0

3.0

0

2.0

4.0

6.0

8.0

0

2.0

4.0

6.0

8.0

0

0.1

0.2

0.3

0

0.02

0.04

0.06

0.08

ki
lle

d
by

 g
no

m
e

ki
ng

 [%
]

0

0.02

0.04

0.06

0.08

0

0.02

0.04

0.06

0.08

0
0.1
0.2
0.3
0.4
0.5

0

0.5

1.0

1.5

2.0

0

0.2

0.4

0.6

0.8

1.0

0

0.02

0.04

0.06

0.08

-0.04

-0.02

0

0.02

0.04

ki
lle

d
by

 c
ha

m
el

eo
n

[%
]

-0.04

-0.02

0

0.02

0.04

-0.04

-0.02

0

0.02

0.04

0
0.02
0.04
0.06
0.08
0.1

0
0.05
0.1

0.15
0.2

0.25

0

0.05

0.1

0.15

0.2

-0.04

-0.02

0

0.02

0.04

0 250K 500K

-0.04

-0.02

0

0.02

0.04

ki
lle

d
by

 m
in

d
fla

ye
r [

%
]

0 250K 500K
0

0.02

0.04

0.06

0 250K 500K
0

0.02

0.04

0.06

0 250K 500K
0

0.05

0.1

0.15

0 250K 500K
0

0.1

0.2

0.3

0 250K 500K
0

0.1

0.2

0.3

0 250K 500K
0

0.02

0.04

0.06

0.08

number of episodes

CNN mon-hum-neu-mal
CNN tou-hum-neu-fem

CNN val-dwa-law-fem
CNN wiz-elf-cha-mal

RND mon-hum-neu-mal
RND val-dwa-law-fem

RND wiz-elf-cha-mal
RND tou-hum-neu-fem

Figure 9: Analysis of different causes of death during training, averaged over the last 1000 episodes
and over five runs.

25

Fi
gu

re
10

:S
cr

ee
ns

ho
to

ft
he

w
eb

da
sh

bo
ar

d
in

cl
ud

ed
in

th
e
Ne

tH
ac

k
Le

ar
ni

ng
En

vi
ro

nm
en

t.

26

T
h
a
t
d
o
o
r
i
s
c
l
o
s
e
d
.

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

|
.
.
.
.
.
.
.
.
|
.
.
.
.
|

|
.
.
.
=
.
.
.
.
|

-
-
-
-
-
-

|
.
.
.
.
.
.
.
.
.
.
.
.
.
|
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
*
#
#
#
#
.
.
.
.
.
.
.
.
.
|

|
<
.
.
.
|

|
.
.
.
.
.
.
.
.
.
.
.
.
.
|

|
.
.
!
.
?
.
.
.
|

|
.
.
.
=
-
#
#
#
%
#
+

.
|
.
%
.
.
.
.
.
.
.
.
.
.
.
|

-
-
-
-
-
-
-
.
-
-

|
.
.
.
.
|

#
-
-
+
-
-
-
-
-
-
-
.
-
-
-
-

#
#
#
#
#
#
#
#
#
#
#
#

#

|
@
.
.
.
|

#
#
#

#
#

#
#

#
-
-
-
-
-

#
#

-
+
-
-
-
-

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
.
.
.
.
|

0
#

#
#

#
#

#
#
#
#
#
|
.
.
.
|

#
#
#

#
#

#
#
#
#
#
#
#
#
#
|
.
.
.
|

#
#
#

#
#

-
-
|
-
-
-

.
.
.
.
-
#
#
#

-
.
-
-
-
-
.
-
-

#
|
.
(
.
.
|

|
.
.
.
|

#
|
(
.
.
.
.
.
.
|

#
|
.
.
.
.
.
#
0
#
#
-
-
-
-
-

#
#

|
.
.
.
.
.
.
.
|

#
|
.
.
.
.
|

#
#
#
#
#
#
#
#
#
#
#
#
#
#
|
.
.
.
.
.
.
.
|

#
|
.
.
.
.
.
#
#
#

#
#
#
#

|
.
.
.
.
.
.
.
|

#
|
.
.
.
.
|

#
#
#
.
.
.
.
.
.
.
.
|

#
-
-
-
-
-
-

|
.
.
.
.
.
)
.
|

+
#

-
-
-
-
-
-
-
-
-

A
g
e
n
t
6
8
5
0
t
h
e
C
a
n
d
i
d
a
t
e

S
t
:
1
8
/
0
3
D
x
:
1
1
C
o
:
1
2
I
n
:
8
W
i
:
1
3
C
h
:
1
1
N
e
u
t
r
a
l
S
:

D
l
v
l
:
1
$
:
7
H
P
:
1
4
(
1
4
)
P
w
:
5
(
5
)
A
C
:
4
X
p
:
1
/
1
7
T
:
8
3
5
H
u
n
g
r
y

1

a
g
en

t

cl
o
se
d
d
o
or

b
o
u
ld
er

h
id
d
en

p
a
ss
a
g
e

sc
ro
ll

ri
n
g

p
o
ti
o
n

to
o
lro
o
m

Y
o
u
k
i
l
l
t
h
e
d
w
a
r
f
!

W
e
l
c
o
m
e
t
o
e
x
p
e
r
i
e
n
c
e
l
e
v
e
l
5
.
-
-
M
o
r
e
-
-

-
-

-
.
-
-

-
-
-

-
-
-
-
-
-
.
.
.
.

|
.
-
-
-
-
-
-
.
.
.
.
.
.
|

|
.
.
.
-
-
-
.
.
.
.
.
.
.
-

|
.
.
.
.
.
.
.
.
.
.
.
.
-
|

-
-
+
-
-
-
+
-
-
.
.
.
.
.
.
.
.
.
.
.
.
.
|

-
.
.
.
.
.
.
.
.
.
|
.
.
.
.
.
.
.
.
.
.
-
-

-
-

-
-
-
-
-
.
.
|
.
-
-
)
.
)
.
.
.
-
-

-
.
-
-

-
-
+
-

|
.
.
-
-
-
-
-
-
.
.
.
.
.
-
-
-
.
.
.
-
-

|
.
.

|
.
.
.
-
-

-
-
.
.
.
.
.
.
.
%
.
.
.
|

|
.

|
.
.
.
>
-

|
.
.
.
%
.
.
.
.
.
.
-
-

-
-
-
-
-
.
-
-
-
-
-
-
-
-
-
-
.
-
-
.
.
|

-
.
.
.
.
.
.
.
.
.
.
-

|
.
.
G
.
[
@
.
.
.
.
.
.
.
.
.
.
.
.
|
-
-
-
|
.
.
.
.
.
.
.
.
.
.
.
.
|

-
-
-
.
G
.
.
.
.
-
-
-
-
-
-
-
-
-
.
|

-
-
.
.
.
-
-
-
-
.
.
.
-
-

|
G
%
.
-
.
.
.
.
|

.
|

-
-
.
.
|

-
.
.
|

|
%
!
.
|
.
.
.
.
+

.
|

-
-
-
-

-
.
|

-
-
-
-
-
.
.
.
.
|

|
-
-

.
.
.
.
.
|

-
-
-
-
-
-
-

A
g
e
n
t
6
1
3
2
2
t
h
e
N
o
v
i
c
e

S
t
:
1
8
/
0
2
D
x
:
1
2
C
o
:
1
2
I
n
:
1
1
W
i
:
1
3
C
h
:
8
N
e
u
t
r
a
l
S
:

D
l
v
l
:
5
$
:
0
H
P
:
3
7
(
3
9
)
P
w
:
2
5
(
2
5
)
A
C
:
5
X
p
:
5
/
1
6
8
T
:
7
6
8
H
u
n
g
r
y

1

in
-g
a
m
e
m
es
sa
g
es

a
g
en

t
st
a
ts

a
g
en

t
ar
m
or

en
em

ie
s

fo
o
d

co
rp
se

w
ea
p
o
n

fo
g
o
f
w
ar

u
n
ex
p
lo
re
d
te
rr
it
or
y

L
e
g
e
n
d

"
-
-

A
m
u
l
e
t

)
-
-

W
e
a
p
o
n

[
-
-

A
r
m
o
r

!
-
-

P
o
t
i
o
n

?
-
-

S
c
r
o
l
l

/
-
-

W
a
n
d

=
-
-

R
i
n
g

+
-
-

S
p
e
l
l
b
o
o
k

*
-
-

G
e
m

(
-
-

T
o
o
l

O
-
-

B
o
u
l
d
e
r

$
-
-

G
o
l
d

%
-
-

C
o
m
e
s
t
i
b
l
e

Fi
gu

re
11

:A
nn

ot
at

ed
ex

am
pl

e
of

an
ag

en
ta

tt
w

o
di

ff
er

en
ts

ta
ge

s
in

N
et

H
ac

k
(L

ef
t:

a
pr

oc
ed

ur
al

ly
ge

ne
ra

te
d

fir
st

le
ve

lo
ft

he
D

un
ge

on
s

of
D

oo
m

,r
ig

ht
:G

no
m

is
h

M
in

es
).

27

T
h
a
t
d
o
o
r
i
s
c
l
o
s
e
d
.

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

|
.
.
.
.
.
.
.
.
|
.
.
.
.
|

|
.
.
.
=
.
.
.
.
|

-
-
-
-
-
-

|
.
.
.
.
.
.
.
.
.
.
.
.
.
|
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
*
#
#
#
#
.
.
.
.
.
.
.
.
.
|

|
<
.
.
.
|

|
.
.
.
.
.
.
.
.
.
.
.
.
.
|

|
.
.
!
.
?
.
.
.
|

|
.
.
.
=
-
#
#
#
%
#
+

.
|
.
%
.
.
.
.
.
.
.
.
.
.
.
|

-
-
-
-
-
-
-
.
-
-

|
.
.
.
.
|

#
-
-
+
-
-
-
-
-
-
-
.
-
-
-
-

#
#
#
#
#
#
#
#
#
#
#
#

#

|
@
.
.
.
|

#
#
#

#
#

#
#

#
-
-
-
-
-

#
#

-
+
-
-
-
-

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
.
.
.
.
|

0
#

#
#

#
#

#
#
#
#
#
|
.
.
.
|

#
#
#

#
#

#
#
#
#
#
#
#
#
#
|
.
.
.
|

#
#
#

#
#

-
-
|
-
-
-

.
.
.
.
-
#
#
#

-
.
-
-
-
-
.
-
-

#
|
.
(
.
.
|

|
.
.
.
|

#
|
(
.
.
.
.
.
.
|

#
|
.
.
.
.
.
#
0
#
#
-
-
-
-
-

#
#

|
.
.
.
.
.
.
.
|

#
|
.
.
.
.
|

#
#
#
#
#
#
#
#
#
#
#
#
#
#
|
.
.
.
.
.
.
.
|

#
|
.
.
.
.
.
#
#
#

#
#
#
#

|
.
.
.
.
.
.
.
|

#
|
.
.
.
.
|

#
#
#
.
.
.
.
.
.
.
.
|

#
-
-
-
-
-
-

|
.
.
.
.
.
)
.
|

+
#

-
-
-
-
-
-
-
-
-

A
g
e
n
t
6
8
5
0
t
h
e
C
a
n
d
i
d
a
t
e

S
t
:
1
8
/
0
3
D
x
:
1
1
C
o
:
1
2
I
n
:
8
W
i
:
1
3
C
h
:
1
1
N
e
u
t
r
a
l
S
:

D
l
v
l
:
1
$
:
7
H
P
:
1
4
(
1
4
)
P
w
:
5
(
5
)
A
C
:
4
X
p
:
1
/
1
7
T
:
8
3
5
H
u
n
g
r
y

1

C
N
N

C
N
N

M
L
P

M
L
P

o
t

L
S
T
M

h
t

s t
−
1

s t

π
M
L
P

Fi
gu

re
12

:O
ve

rv
ie

w
of

th
e

co
re

ar
ch

ite
ct

ur
e

of
th

e
ba

se
lin

e
m

od
el

s
re

le
as

ed
w

ith
NL

E.

28

