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1 Initialization and Distribution of Activations

1.1 Informal statement

Initialization schemes have been shown to be crucial in the training procedure of deep neural
networks [20, 18]. Here, we propose an initialization scheme for SIREN that preserves the distribution
of activations through its layers and thus allows us to build deep architectures.

Statement of the initialization scheme. We propose to draw weights according to a uniform
distribution W ∼ U(−

√
6/fan_in,

√
6/fan_in). We claim that this leads to the input of each sine

activation being Gauss-Normal distributed, and the output of each sine activation approximately
arcsine-distributed with a standard deviation of 0.5. Further, we claim that the form as well as the
moments of these distributions do not change as the depth of the network grows.

Overview of the proof. Our initialization scheme relies on the fact that if the input to a neuron in a
layer is distributed the same way as its output, then by a simple recursive argument we can see that
the distributions will be preserved throughout the network.

Hence, we consider an input in the interval [−1, 1]. We assume it is drawn uniformly at random,
since we interpret it as a “normalized coordinate" in our applications. We first show in Lemma 1.1,
that pushing this input through a sine nonlinearity yields an arcsine distribution. The second layer
(and, as we will show, all following layers), computes a linear combination of such arcsine distributed
outputs (of known variance, Lemma 1.3). Following Lindeberg’s condition for the central limit
theorem, this linear combination will be normal distributed Lemma 1.5, with a variance that can be
calculated using the variance of the product of random variables (Lemma 1.4). It remains to show
that pushing a Gaussian distribution through the sine nonlinearity again yields an arcsine distributed
output Lemma 1.6, and thereby, we may apply the same argument to the distributions of activations
of the following layers.

We formally present the lemmas and their proof in the next section before formally stating the
initialization scheme and proving it in Section 1.3. We show empirically that the theory predicts very
well the behaviour of the initialization scheme in Section 1.4.

1.2 Preliminary results

First let us note that the sine function is periodic, of period 2π and odd: sin(−x) = − sin(x), i.e. it
is symmetric with respect to the origin. Since we are interested in mapping “coordinates” through
SIREN, we will consider an input as a random variable X uniformly distributed in [-1,1]. We will thus
study, without loss of generality, the frequency scaled SIREN that uses the activation sin

(
π
2x
)
. Which

is half a period (note that the distribution does not change on a full period, it is “just” considering
twice the half period).

Definition 1.1. The arcsine distribution is defined for a random variable X by its cumulative
distribution function (CDF) FX such as

X ∼ Arcsin(a, b),with CDF: FX(x) =
2

π
arcsin

(√
x− a
b− a

)
,with b > a.

Lemma 1.1. Given X ∼ U(−1, 1), and Y = sin
(
π
2X
)

we have Y ∼ Arcsin(−1, 1).

Proof. The cumulative distribution function (CDF) FX(x) = P(X ≤ x) is defined, for a random
variable that admits a continuous probability density function (PDF), f as the integral FX(x) =∫ x
−∞ f(t) dt. Hence, for the uniform distribution U(−1, 1) which is f(x) = 1

2 over the interval
[−1, 1] and 0 everywhere else, it is easy to show that: FX(x) = 1

2x+ 1
2 .

We are interested in the distribution of the output Y = sin
(
π
2X
)
. Noting that sin

(
π
2

)
is bijective on

[−1, 1], we have

FY (y) = P(sin
(π

2
X
)
≤ y) = P(X ≤ 2

π
arcsin y) = FX(

2

π
arcsin y),
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Substituting the CDF FX , noting it is the uniform distribution which has a compact support (this is
[-1,1]), we have

FY (y) =
1

π
arcsin y +

1

2
.

Using the identity arcsin
√
x = 1

2 arcsin(2x− 1) + π
4 , we conclude:

FY (y) ∼ Arcsin(−1, 1).

The PDF can be found, deriving the cdf: fY (y) = d
dyFY (y) = 1

π
1√

1−y2
.

Lemma 1.2. The variance of mX +n with X a random variable and m ∈ R+
/0, n ∈ R is Var[mX +

n] = m2Var[X].

Proof. For any random variable with a continuous pdf fX , its expectation is defined as E[X] =∫∞
−∞ fX(x)dx. The variance is defined as Var[X] = E[(X − E[X])2] = E[X2]− E[X]2. Thus, we

have Var[mX+n] = E[(mX+n)2]−E[mX+n]2 = E[m2X2 +2mnX+n2]−(mE[X]+n)2 =
m2(E[X2]− E[X]2) = m2Var[X].

Lemma 1.3. The variance of X ∼ Arcsin(a, b) is Var[X] = 1
8 (b− a)2.

Proof. First we prove that if Z ∼ Arcsin(0, 1) then Var[Z] = 1
8 . We have E[Z] = 1

2 by symmetry,
and Var[Z] = E[Z2]− E[Z]2 = E[Z2]− 1

4 . Remains to compute:

E[Z2] =

∫ 1

0

z2 · 1

π
√
z(1− z)

dz =
2

π

∫ 1

0

t4√
1− t2

dt =
2

π

∫ π/2

0

sin4 u du =
3

8
,

using a first change of variable: z = t2, dz = 2t dt and then a second change of variable t =
sin(u), dt = cos(u)du. The integral of sin4(u) is calculated remarking it is (sin2(u))2, and using
the formulas of the double angle: cos(2u) = 2 cos2(u)− 1 = 1− 2 sin2(u).

Second, we prove that if X ∼ Arcsin(α, β) then the linear combination mX + n ∼ Arcsin(αm+
n, βm+ n) with m ∈ R/0, n ∈ R, (using the same method as in Lemma 1.1 with Y = mX + n).

Posing X = mZ+n and using n = a and m = b−a, we have X ∼ Arcsin(m ·0 +n,m ·1 +n) =
Arcsin(a, b). Finally, Var[X] = Var[m · Z + n] = m2 ·Var[Z] = (b− a)2 · 1

8 (Lemma 1.2).

Lemma 1.4. For two independent random variables X and Y

Var[X · Y ] = Var[X] ·Var[Y ] + E[Y ]2 ·Var[X] + E[X]2 ·Var[Y ].

Proof. See [19].

Theorem 1.5. Central Limit Theorem with Lindeberg’s sufficient condition. Let Xk, k ∈ N be
independent random variables with expected values E[Xk] = µk and variances Var[Xk] = σk.
Posing s2

n =
∑n
k=1 σ

2
k. If the Xk statisfy the Lindenberg condition:

lim
n→∞

1

s2
n

n∑
k=1

E[(Xk − µk)2 · 1(|Xk − µk| > εsn)] = 0 (1)

∀ε > 0, then the Central Limit Theorem (CLT) holds. That is,

Sn =
1

sn

n∑
k=1

(Xk − µk), (2)

converges in distribution to the standard normal distribution as n→∞.

Proof. See [27, 2].

Lemma 1.6. Given a Gaussian distributed random variable X ∼ N (0, 1) and Y = sin π
2X we

have Y ∼ Arcsin(−1, 1).
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Figure 1: Top left: A plot of the standard normal distribution on [−3, 3] as well as the graph
of y = sin π

2x and its three reciprocal bijections y = 2
π arcsin(−x− 2), y = 2

π arcsinx and
y = 2

π arcsin(2− x) covering the interval [−3, 3] in which 99.7% of the probability mass of the
standard normal distribution lies. Bottom left: Plot of the approximation of the CDF of the standard
normal with a logistic function. Right: Comparison of the theoretically derived CDF of the output of
a sine nonlinearity (green) and the ground-truth Arcsine CDF (red), demonstrating that a standard
normal distributed input fed to a sine indeed yields an approximately Arcsine distributed output.

Proof. For a random variable X normally distributed we can approximate the CDF of its normal
distribution with the logistic function, as in [10]:

FX(x) =
1

2
+

1

2
erf(

x√
2

)

≈
(
1 + exp(−α · x)

)−1

≈ 1

2
+

1

2
tanh(β · x),

with α = 1.702 and β = 0.690. Similar to the proof of Lemma (1.1), we are looking for the CDF of
the random variable Y ∼ sin

(
π
2X
)
. However, the normal distribution does not have compact support.

This infinite support yields an infinite series describing the CDF of Y.

Hence, we make a second approximation that consists in approximating the CDF of Y on the interval
[−3, 3]. BecauseX ∼ N (0, 1), we know that 99.7% of the probability mass ofX lies on the compact
set [−3, 3]. Thus, ignoring the other contributions, we have:

FY (y) = P(sin
(π

2
X
)
≤ y)

= FX(3)− FX
(
2− 2

π
arcsinx

)
+ FX

( 2

π
arcsinx

)
− FX

(
− 2

π
arcsinx− 2

)
.

Using the logistic approximation of the CDF of X , this is:

FX(x) =
1

2
tanh(3β)

+
1

2

(
tanh

(
2β

π
z

)
− tanh

(
2β(1− 1

π
z)

)
− tanh

(
−2β(1 +

1

π
z)

))
,

with z = arcsinx. Using a taylor expansion in z = 0 (and noting that arcsin 0 = 0) we have:

FX(x)
0
=

1

2
tanh(3β) +

1

π
· arcsinx,

which approximates X ∼ Arcsin(−1, 1). Figure 1 illustrates the different steps of the proofs and the
approximations we made.

Lemma 1.7. The variance of X ∼ U(−a, b) is Var[X] = 1
12 (b− a)2

Proof. E[X] = a+b
2 . Var[X] = E[X2] − E[X]2 = 1

b−a [x
3

3 ]ba − (a+b
2 )2 = 1

b−a
b3−a3

3 − (a+b
2 )2,

developing the cube as b3 − a3 = (b− a)(a2 + ab+ b2) and simplifying yields the result.
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1.3 Formal statement and proof of the initialization scheme

Theorem 1.8. For a uniform input in [−1, 1], the activations throughout a SIREN are standard
normal distributed before each sine nonlinearity and arcsine-distributed after each sine nonlinearity,
irrespective of the depth of the network, if the weights are distributed uniformly in the interval [−c, c]
with c =

√
6/fan_in in each layer.

Proof. Assembling all the lemma, a sketch of the proof is:

• Each output Xl for the layer l is Xl ∼ Arcsin(−1, 1) (first layer: from a uniform distribution
Lemma 1.1, next layers: from a standard-normal Lemma 1.6) and Var[Xl] = 1

2 (Lemma 1.3).

• The input to the layer l + 1 is wTl Xl =
∑n
i wi,lXi,l (bias does not change distribution for high

enough frequency). Using weights wli ∼ U(−c, c) we have Var[wTl Xl] = Var[wl] · Var[Xl] =
1
12 (2c)2 · 1

2 = 1
6c

2 (from the variance of a uniform distribution Lemma 1.7, and an arcsine
distribution Lemma 1.3, as well as their product Lemma 1.4).

• Choosing c =
√

6
n , with the fan-in n (see dot product above) and using the CLT with weak

Lindenberg’s condition we have Var[wTl Xl] = n · 1
6

6
n = 1 Lemma 1.5 and wTl Xl ∼ N (0, 1)

• This holds true for all layers, since normal distribution through the sine non-linearity yields again
the arcsine distribution Lemma 1.2, Lemma 1.6

1.4 Empirical evaluation

We validate our theoretical derivation with an experiment. We assemble a 6-layer, single-input SIREN
with 2048 hidden units, and initialize it according to the proposed initialization scheme. We draw
28 inputs in a linear range from −1 to 1 and plot the histogram of activations after each linear layer
and after each sine activation. We further compute the 1D Fast Fourier Transform of all activations
in a layer. Lastly, we compute the sum of activations in the final layer and compute the gradient
of this sum w.r.t. each activation. The results can be visualized in Figure 2. The distribution of
activations nearly perfectly matches the predicted Gauss-Normal distribution after each linear layer
and the arcsine distribution after each sine nonlinearity. As discussed in the main text, frequency
components of the spectrum similarly remain comparable, with the maximum frequency growing only
slowly. We verified this initialization scheme empirically for a 50-layer SIREN with similar results.
Finally, similar to the distribution of activations, we plot the distribution of gradients and empirically
demonstrate that it stays almost perfectly constant across layers, demonstrating that SIREN does not
suffer from either vanishing or exploding gradients at initialization. We leave a formal investigation
of the distribution of gradients to future work.

2 Remarks about Training

All our networks were trained using ADAM [23]. In the following we compile experiments and
remarks about training SIREN.

2.1 Network depth

We performed additional experiments in which we increased the depth of our network from 3 hidden
layers (in the main paper) to 5, 10 and 15 layers of 256 units below, and plotted the accuracy of
the resulting network when solving the Poisson equation on the Cameraman image. Increasing the
network depth yields a higher accuracy (measured as a L2 loss) as well as a much faster convergence
rate as can be seen in Figure 3

6
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Figure 2: Activation and gradient statistics at initialization for a 6-layer SIREN. Increasing layers
from top to bottom. Orange dotted line visualizes analytically predicted distributions. Note how
the experiment closely matches theory, activation distributions stay consistent from layer to layer,
the maximum frequency throughout layers grows only slowly, and gradient statistics similarly stay
consistent from layer to layer.
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Figure 3: Accuracy (measured as mean L2 loss) vs. network depth, fitting 5, 10, 15 layers (256
units each) SIRENs solving the Poisson Equation (i.e. trained via the gradient of the network on the
gradient of the image) on the MIT Cameraman image.

2.2 Spikes in the learning curves

In Figure 3, one can observe spikes in the learning rate (green curve for 15 layers). A peculiarity of
SIRENs is that despite shortly getting worse, the networks seems to consistently recover from these
error spikes and continue increasing their accuracy. We hypothesize the recovery behaviour comes
from the bounded and periodic nature of the sine non-linearity. We have observed the intensity and
frequency of those error spikes can be reduced by tuning down the learning rate.

2.3 Normalization layers

We experimented with a variety of normalization layers. We note that the sine activation has
normalizing properties, and the proposed initialization scheme guarantees standard normal distributed
activations at initialization (see suppl.). Likely as a result of this, normalization layers did not lead to
performance gains.

3 Evaluating the Gradient of a SIREN is Evaluating another SIREN

We can write a loss L between a target and a SIREN output as:

L
(
target, (Wn ◦ φn−1 ◦ φn−2 . . . φ0)(x) + bn

)
. (3)

A sine layer is defined as:

φi(x) = (sin ◦Ti)(x), with Ti : x 7→Wix + bi = Ŵix̂, (4)

defining Ŵ = [W,b] and x̂ = [x, 1] for convenience.

The gradient of the loss with respect to the input can be calculated using the chain rule:

∇xL =
( ∂L
∂yn

· ∂yn
∂yn−1

· . . . ∂y1

∂y0
· ∂y0

∂x

)T
= (ŴT

0 · sin′(y0)) · . . . · (ŴT
n−1 · sin′(yn−1)) · ŴT

n · L′(yn) (5)

where yl(x̂) is defined as the network evaluated on input x̂ stopping before the non-linearity of layer
l, (x̂ is implicit in Equation (5) for the sake of readability):

y0(x̂) = Ŵ0x̂

yl(x̂) = (Ŵl ◦ sin)(yl−1) = (Ŵl ◦ sin ◦ . . .Ŵ0)(x̂) (6)

Remarking that the derivative sin′(yl) = cos(yl) = sin
(
yl + π

2

)
, and that we can absorb the π

2

phase offset in the bias by defining the new weight matrix W̌ = [W,b + π
2 ]. The gradient can be

rewritten:

∇xL = (ŴT
0 · sin(y̌0)) · . . . · (ŴT

n−1 · sin(y̌n−1)) · ŴT
n · L′(yn) (7)
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Figure 4: Poisson image reconstruction using the ReLU P.E. (left) and tanh (right) network architec-
tures. For both architectures, image reconstruction from the gradient is of lower quality than SIREN,
while reconstruction from the Laplacian is not at all accurate.

with y̌l the activations using the weights W̌l

y̌0(x̂) = W̌0x̂

y̌l(x̂) = (W̌l ◦ sin)(yl−1) = (W̌l ◦ sin ◦ . . .W̌0)(x̂) (8)

which is a forward pass evaluating a slightly different SIREN in which all the biases have been shifted
by π

2 .

Furthermore, in Equation (7) since every term of the form sin(yl) is a SIREN, and those terms
are multiplied by weight matrices between them, this shows that the gradient of a SIREN can be
evaluated by yet another SIREN. It also shows that a SIREN of L non linearities, requires the evaluation
of a SIREN-like network (whose computation graph is not a simple chain but only contains sine
non-linearities) of

∑N
l=1 l = L·(L+1)

2 non-linearities.

4 Experiment summary

Table 1: Overview of the input, outputs, losses and boundary values used in the experiments performed
in our paper.

Name Input Output Loss Boundary values

Image x ∈ R2 R
∫

Ω
‖Φ(x)− f(x)‖ dx n/a

Audio t ∈ R R
∫

Ω
‖Φ(t)− f(t)‖ dt n/a

Video (x, t) ∈ R3 R
∫

Ω
‖Φ(x, t)− f(x, t)‖ dxdt n/a

Poisson grad. x ∈ R2 R
∫

Ω
‖∇Φ(x)−∇f(x)‖ dx none

Poisson lapl. x ∈ R2 R
∫

Ω
‖∆Φ(x)−∆f(x)‖ dx none

Eikonal eqn. x ∈ R3 R see Eqn. (??) Φ(x) = 0,x ∈ Ω0

Helmholtz eqn. x ∈ R2 C
∫

Ω
‖(∆ + m(x)ω2)Φ(x)− f(x)‖dx PML (suppl. Sec. 5.1)

Wave eqn. (x, t) ∈ R2 C
∫

Ω
‖∂2

t Φ(x, t)− c2 ∆Φ(x, t)‖dx dt
∂Φt(x, 0) = 0, and
Φ(x, t) = f(x)

5 Solving the Poisson Equation

5.1 Architecture Comparisons

To show that our representation is unique in being able to represent signals while being supervised
solely by their derivatives, we test other neural network architectures and activation functions on
the Poisson image reconstruction task. We show that the performance of the ReLU P.E. network
architecture, which performed best on the single image fitting task besides SIREN, is not as accurate
in supervising on derivatives. This is shown in Fig. 4. Additionally, in Tab. 2, we compare the PSNR
of the reconstructed image, gradient image, and Laplace image between various architectures for
Poisson image reconstruction.
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Table 2: Quantitative comparison of reconstructed image, gradient image, and Laplace image in
the Poisson image reconstruction task on the starfish image. Reconstruction accuracy is reported in
PSNR after the images have been colorized and normalized.

Model Tanh ReLU P.E. SIREN
Supervised on Grad. Laplacian Grad. Laplacian Grad. Laplacian

Reconstructed Image 25.79 7.11 26.35 11.14 32.91 14.95
Reconstructed Grad. 19.11 11.14 19.33 11.35 46.85 23.45
Reconstructed Laplacian 18.59 16.35 14.24 18.31 19.88 57.13

One interesting observation from Tab. 2 is that other architectures such as ReLU P.E. have trouble
fitting the Laplace and gradient images even when directly supervised on them, despite being able to
fit images relatively accurately. This may be because the ground truth gradient and Laplace images
have many high frequency features which are challenging to represent with any architecture besides
SIRENs. In the normalized and colorized images (which PSNR is computed upon), the gradient image
fit with ReLU P.E. has “grainy” effects which are more noticeable on gradient and Laplacian images
than on natural images.

5.2 Implementation & Reproducibility Details

Data. We use the BSDS500 [34], which we center-crop to 321× 321 and resize to 256× 256. The
starfish image is the 19th image from this dataset. We will make the bear and pyramid images used in
the Poisson image editing experiment publicly available with our code. The ground truth gradient
image is computed using the Sobel filter, and is scaled by a constant factor of 10 for training. The
ground truth Laplace image is computed using a Laplace filter, and is scaled by a constant factor of
10,000 for training.

Architecture. We use the same 5-layer SIREN MLP for all experiments on fitting images and
gradients.

Hyperparameters. We train for 10,000 iterations, and at each iteration fit on every pixel in the
gradient or Laplacian image. We use the Adam optimizer with a learning rate of 1 × 10−4 for all
experiments, including the Poisson image editing experiments.

Runtime. We train for 10,000 iterations, requiring approximately 90 minutes to fit and evaluate a
SIREN.

Hardware. The networks are trained using NVIDIA Quadro RTX 6000 GPUs with 24 GB of
memory.

6 Representing Shapes with Signed Distance Functions

We performed an additional baseline using the ReLU positional encoding [36] shown in Figure 5.
Similar to the results we obtained using the ReLU positional encoding on images, zero-level set of
the SDF, in which the shape is encoded features high-frequencies that are not present while the level
of details remains low (despite being much higher that in ReLU, see main paper).

Data. We use the Thai statue from the The Stanford 3D Scanning Repository
(http://graphics.stanford.edu/data/3Dscanrep/). The room is a Free 3D model from Turbosquid.com.
We sample each mesh by subdividing it until we obtain 10 million points and their normals. Those
are then converted in .xyz formats we load from our code.

Evaluation. To evaluate the Chamfer distance, we sample 30 thousand points from our represented
meshes, as in [37]. Although changing the number of sampled points can affect the Chamfer values,
the same trend is observed.
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SIREN (ours) ReLU PE (baseline)

Figure 5: A comparison of SIREN used to fit a SDF from an oriented point cloud against the same
fitting performed by an MLP using a ReLU PE (proposed in [36]). Chamfer distance computed on
a [-1,1] box for the Thai statue: ReLU=3.78e-4 (see paper), ReLU PE=6.19e-5, SIREN=5.50e-5.
For the room representation shown in the paper, we observe the same trend in Chamfer distance
computed on a [-1,1] box: ReLU=4.33e-4, SIREN=3.99e-4.

Architecture. We use the same 5-layer SIREN MLP for all experiments on SDF, using 256 units in
each layer for the statue and 1024 units in each layer for the room.

Hyperparameters. We train for 50,000 iterations, and at each iteration fit on every voxel of the
volume. We use the Adam optimizer with a learning rate of 1× 10−4 for all experiments. We use the
cost described in our paper:

Lsdf =λ1

∫
Ω

∥∥ |∇xΦ(x)|−1
∥∥dx+

∫
Ω0

λ2 ‖Φ(x)‖+λ3

(
1−〈∇xΦ(x),n(x)〉

)
dx+λ2

∫
Ω\Ω0

ψ
(
Φ(x)

)
dx,

(9)
with the Eikonal constraint (gradient = 1) multiplied by λ1 = 5 · 101, the signed distance function
constraint as well as the off-surface penalization (the regularizer) multiplied by λ2 = 3 · 103, and the
oriented surface/normal constraint multiplied by λ3 = 1 · 102.

Runtime. We train for 50,000 iterations, requiring approximately 6h hours to fit and evaluate a
SIREN. Though, we remark that SIREN converge already very well after around 5,000-7,000 iterations,
much more iterations are needed for the baselines, hence the number of 50,000 iterations.

Hardware. The networks are trained using NVIDIA GTX Titan X GPUs with 12 GB of memory.

7 Solving the Helmholtz and Wave Equations

The Helmholtz and wave equations are second-order partial differential equations related to the
physical modeling of diffusion and waves. They are closely related through a Fourier-transform
relationship, with the Helmholtz equation given as

(∇2 +m(x)w2)︸ ︷︷ ︸
H(m)

Φ(x) = −f(x). (10)

Here, f(x) represents a known source function, Φ(x) is the unknown wavefield, and the squared
slowness m(x) = 1/c(x)2 is a function of the wave velocity c(x). In general, the solutions to the
Helmholtz equation are complex-valued and require numerical solvers to compute.

7.1 Helmholtz Perfectly Matched Layer Formulation

To solve the Helmholtz equation uniquely over a finite domain, we use a perfectly matched layer
formulation, which attenuates waves on the boundary of the domain. Following Chen et al. [13] we
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rewrite the Helmholtz equation as

∂

∂x1

(
ex2

ex1

∂Φ(x)

∂x1

)
+

∂

∂x2

(
ex1

ex2

∂Φ(x)

∂x2

)
+ ex1

ex2
k2Φ(x) = −f(x) (11)

where x = (x1, x2) ∈ Ω, exi
= 1− j σxi

ω , k = ω/c, and

σxi
=


a0ω

(
lxi

LPML

)2

xi ∈ ∂Ω

a0ω

(
lxi

LPML

)2

else

.

Here, a0 controls the amount of wave attenuation (we use a0 = 5), lxi
is the distance to the PML

boundary along the xi axis, and LPML is the width of the PML. Note that the PML is applied only to
the boundary of our domain ∂Ω = {x | 0.5 < ‖x‖∞ < 1} and that the equation is identical to the
original Helmholtz equation elsewhere. To train SIREN, we optimize Eq. 11 using the loss function
described in the main paper with λ(x) = k = batch size/5× 103.

7.2 Full-Waveform Inversion

For known source positions and sparsely sampled wavefields, full-waveform inversion (FWI) can be
used to jointly recover the wavefield and squared slowness over the entire domain. Specifically, FWI
involves solving the constrained partial differential equation

arg min
m,Φ

∑
1≤i≤N

∫
Ω

|Xr(Φi(x)− ri(x))|2 dx s.t. H(m) Φi(x) = −fi(x) 1 ≤ i ≤ N, ∀x ∈ Ω,

(12)
where there areN sources, Xr samples the wavefield at the receiver locations, and ri is the measured
receiver data for the ith source.

We solve this equation with a principled method based on the alternating direction method of
multipliers [11, 1]. To perform FWI with SIREN, we first pre-train the network to solve for the
wavefields given a uniform velocity model. This is consistent with the principled solver, which is
initialized with a uniform velocity. This pre-training process updates SIREN to minimize

LFWI, pretrain = LHelmholtz + λslownessLslowness (13)

where the first term is as described in the main paper, and the last term is simply ‖m(x) −m0‖1.
m(x) is parameterized using a single output of SIREN and we use an initial squared slowness value
of m0 = 1 in our experiments. The loss term Lslowness is calculated over all sampled locations x in
each minibatch. We also parameterize the multiple wavefields with additional SIREN outputs. This is
accommodated in the loss function by sampling all source locations at each optimization iteration and
applying the loss function to the corresponding wavefield outputs. Finally, we set k = batch size/104

and λslowness = batch size.

After pre-training, we perform FWI using SIREN with a penalty method variation [44] of Eq. 12 as a
loss function. This is formulated as

LFWI = LHelmholtz + λdataLdata (14)

where Ldata =
∑
i

‖Φi(x)− ri(x)‖1
∣∣∣
x∈Ωr

, and Ωr is the set of receiver coordinates. In other words,

we add a weighted loss term using the (PML) Helmholtz formulation on the receiver coordinates.
Here we use the same values of k and λslowness as for pre-training.

7.3 Helmholtz Implementation & Reproducibility Details

Data. The dataset consists of randomly sampled coordinates and a Gaussian source function, as
described previously. For neural FWI, the data term of the loss function uses the sampled wavefield
values from the output of the principled solver using the same source and receiver locations, but with
access to the ground truth velocity.
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Architecture. For all Helmholtz experiments, the SIREN architecture (and baselines) use 5 layers
with a hidden layer size of 256.

Hyperparameters. We set the loss function hyperparameters to the previously described values in
order to make each component of the loss approximately equal during the beginning of training. The
Adam optimizer with a learning rate of 2× 10−5 was used for all experiments.

Runtime. The single-source Helmholtz experiments were trained for 50,000 iterations requiring
approximately 3 hours (ReLU), 8 hours (tanh, SIREN), or 24 hours (RBF). For FWI, pretraining
required 80,000 (22 hours) iterations in order to suitably fit the 5 wavefields with a single network,
and then we performed full-waveform inversion for 10,000 iterations (5 hours) until the loss appeared
to converge. We set the batch size to fill the GPU memory; generally, we found that large batch sizes
ranging from 3000 to 13000 samples worked well.

Hardware. The experiments are conducted on a NVIDIA Quadro RTX 6000 GPU (24 GB of
memory).

7.4 Wave Equation Formulation

The wave equation is given by
∂2Φ

∂t2
− c2 ∂

2Φ

∂x2
= 0. (15)

Note that in contrast to the Helmholtz equation, the wave equation is dependent on time. Thus, we
parameterize the real-valued wavefield as a function of two spatial dimensions and time: Φ(t,x). We
are interested in solving an initial value problem with the following initial conditions

∂Φ(0,x)

∂t
= 0 (16)

Φ(0,x) = f(x). (17)

In the case of the acoustic wave equation, the first condition states that the initial particle velocity is
zero, and in the second condition, f(x) is an initial pressure distribution.

7.5 Solving the Wave Equation

We solve the wave equation by parameterizing Φ(t,x) with SIREN. Training is performed on randomly
sampled points x within the domain Ω = {x ∈ R2 | ‖x‖∞ < 1}. The network is supervised using a
loss function based on the wave equation:

Lwave =

∫
Ω

∥∥∥∥∂2Φ

∂t2
− c2 ∂

2Φ

∂x2

∥∥∥∥
1

+ λ1(x)

∥∥∥∥∂Φ

∂t

∥∥∥∥
1

+ λ2(x) ‖Φ− f(x)‖1 dx. (18)

Here, λ1 and λ2 are hyperparameters, and are non-zero only for t = 0. To train the network, we
sample values of x uniformly from Ω and slowly increase the value of t linearly as training progresses,
starting from zero. This allows the initial condition to slowly propagate to increasing time values. We
set λ1 = batch size/100 and λ2 = batch size/10 and let c = 1.

Results are shown in Fig. 6 for solving the wave equation with f(x) equal to a Gaussian centered at
the origin with a variance of 5× 10−4. We also compare to a baseline network with tanh activations
(similar to recent work on neural PDE solvers [38]), and additional visualizations are shown in the
video. SIREN achieves a solution that is close to that of a principled solver [41] while the tanh network
fails to converge to a meaningful result.

7.6 Wave Equation Implementation & Reproducibility Details

Data. The dataset is composed of randomly sampled coordinates 3D coordinates as described
previously. We use a Gaussian source function to approximate a point source, and clip the support
to values greater than 1e-5. During training, we scale the maximum value of the Gaussian to 0.02,
which we find improves convergence.
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Figure 6: Solving the wave equation initial value problem. For an initial condition corresponding to
a Gaussian pulse, SIREN recovers a wavefield that corresponds closely to a ground truth wavefield
computed using a principled wave solver [41]. A similar network using tanh activations fails to
converge to a good solution. MSE values are shown for each frame, where the time value is indicated
in the top row.

Architecture. To fit over the 3 dimensions of the wave equation, we increase the size of the
architecture, still using 5 layers, but with a hidden layer size of 512.

Hyperparameters. The loss function hyperparameters are set so that each component of the loss is
approximately equal as training progresses. We grow the interval of t from which training coordinates
are sampled linearly over 100,000 iterations (roughly 25 hours) from 0.0 to 0.4, which we find allows
a sufficient number of iterations for the network to fit the wave function as it expands. For all wave
equation experiments, we used the ADAM optimizer and a learning rate of 2× 10−5. A batch size of
115,000 is used, which fills the GPU memory.

Hardware. The experiments are conducted on a NVIDIA Quadro RTX 6000 GPU (24 GB of
memory).

8 Application to Image Processing

8.1 Formulation

As shown previously, one example of signal that SIRENs can be used to represent are natural images.
A continuous representation of natural images with a SIREN introduces a new way to approach
image processing tasks and inverse problems. Consider a mapping from continuous implicit image
representation Φ(x, y) to discrete image b

b = X (h ∗ Φθ (x, y)) , (19)

where X is the sampling sampling operator, h is a downsampling filter kernel, and Φ(x, y) is the
continuous implicit image representation defined by its parameters θ. Using this relationship, we can
fit a continuous SIREN representation given a discrete natural image b by supervising on the sampled
discrete image.

Many image processing problems can be solved by formulating an optimization problem which
minimizes data fidelity with partial or noisy measurements of b and some prior over natural images.
In our case, our prior is over the space of SIREN representations of natural images. This takes the
form:

minimize
{θ}

L (X (h ∗ Φθ (x, y)) , b) + λγ (Φθ (x, y)) , (20)
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Figure 7: Comparison of different implicit network architectures fitting a ground truth image (top
left). The representation is only supervised on the target image but we also show first- and second-
order derivatives of the function fit in rows 2 and 3, respectively. We compare with architectures
implemented using Softplus, ELU, SELU, and ReLU P.E. (L=4) on the cameraman image. The value
of L dictates the number of positional encodings concatenated for each input coordinate, and a choice
of L = 4 was made for images in [36].

where γ is a regularization function defined on the continuous function, and λ is the weight of the
regularizer.

8.2 Image Fitting.

As previously shown, the most simple representation task involves simply fitting an implicit neural
representation Φ : R2 7→ R3,x → Φ(x) to an image. Simply fitting the image proves to be
challenging for many architectures, and fitting higher-order derivatives is only possible using SIRENs.
In addition to the comparisons with ReLU, tanh, ReLU P.E., and ReLU with RBF input layer shown
in the paper, we show a qualitative comparison with additional neural network architectures in Fig. 7.

8.3 Image Inpainting

Traditional approaches to the single image inpainting task have either focused on diffusion-based [8, 5,
7] or patch based reconstruction [6, 25, 15]. With the advent of deep learning, a slew of new methods
have taken advantage of large amounts of data to learn complex statistics of natural images used
in reconstruction problems. These inpainting methods are based on convolutional neural networks
(CNNs) [28, 39] and generative adversarial networks (GANs) [22, 45, 29, 33]. Additionally, neural
network architectures for image recovery like CNNs have been shown to themselves act as a prior [42]
for natural images, allowing for solving inverse problems without the use of training data.

We show the capability of SIRENs to solve inverse problems through the example of single image
inpainting. By fitting a SIREN to an image and enforcing a prior on the representation, we can solve a
single image reconstruction problem. Examples of single image inpainting with and without priors
are shown in Fig. 8, where we compare performance on texture images versus Deep Image Prior [42],
Navier-Stokes, Fluid Dynamics Image Inpainting [7] (Diffusion), and SIRENs with no prior, total
variation prior (TV), and Frobenius norm of Hessian [32, 31] priors (FH) respectively. In Tab. 3,
we describe our quantitative results with mean and standard deviation over many independent runs.
These results show that SIREN representations can be used to achieve comparable performance to
other baseline methods for image inverse problems.

Note that this formulation of loss function can be equivalently formulated in a continuous partial
differential equation, and depending on choice of prior, a diffusion based update rule can be derived.
For more details on this, see the Rudin–Osher–Fatemi model in image processing [4, 3, 17].
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Deep Image Prior Diffusion SIREN (no prior) SIREN (TV prior) SIREN (FH prior)Sampling Mask

36.24 dB 23.11 dB 31.48 dB 34.88 dB 27.32 dB

18.26 dB 17.61 dB 15.59 dB 17.34 dB 17.71 dB

Ground Truth

Inputs Results

Figure 8: Comparison of various methods and priors on the single image inpainting task. We sample
10% of pixels from the ground truth image for training, learning a representation which can inpaint
the missing values. Note that for the image in the first row, where the TV prior is known to be
accurate, including the TV prior improves inpainting performance.

8.4 Implementation & Reproducibility Details

Data. The experiments were run on texture images, including the art image of resolution 513× 513
and tiles image of resolution 355× 533× 3. These images will be made publicly available with our
code. The sampling mask is generated randomly, with an average of 10% of pixels being sampled.
We will make the example mask for which these results were generated publicly available with our
code. As in all other applications, the image coordinates x ∈ R2 are normalized to be in the range of
[−1, 1]2. For evaluation, images are scaled in the range of [0, 1] and larger values are clipped.

Architectures. For the single image inpainting task with SIRENs, we use a 5-layer MLP. For single
image fitting on the cameraman image, we use 5-layer MLPs for all activation functions. For the
RBF-Input and ReLU P.E. models, we add an additional first layer with 256 activations (in the case
of RBF-Input) or positional encoding concatenation with positional encoding sinusoid frequencies of
2iπ for 0 ≤ i < L = 7 (in the case of ReLU P.E.).

Loss Functions. In order to evaluate a prior loss, we must enforce some condition on the higher-
order derivatives of the SIREN. This is done by sampling N random points xi ∈ [−1, 1]2, and
enforcing the prior on these points. We sample half as many points for the prior as there are pixels in
the image. In the case of TV regularization, this consists of a L1 norm on the gradient

γTV =
1

N

N∑
i=1

|∇Φθ(xi)|, (21)

while in the case of FH regularization, this consists of L1 norm on all sampled points’ Frobenius
norm of their Hessian matrix

γFH =
1

N

N∑
i=1

‖Hess(Φθ(xi))‖F . (22)

The prior loss is weighted with a regularization weight λ, and combined with the MSE loss on the
reconstructed sampled and blurred image points,

Limg = ‖X (h ∗ Φθ (x, y))− b‖2. (23)

Downsampling Kernel Implementation. Sampling images from a continuous function requires
convolution with a downsampling kernel to blur high frequencies and prevent aliasing. Since we
cannot perform a continuous convolution on a SIREN we must instead approximate with Monte Carlo
sampling of the SIREN to approximate fitting the blurred function. Consider the 2D image signal
where x = (x, y):

(h ∗ Φ) (x, y) =

∫
x′

∫
y′

Φ (x′, y′) · h(x− x′, y − y′)dy′dx′ ≈ 1

N

N∑
i=1

Φ(x+ xi, y + yi) (24)
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Table 3: Mean and standard deviation of the PSNR of the tiles texture and art texture images for
SIRENs with various priors. The statistics are computed over 10 independent runs.

No Prior No Prior TV Prior TV Prior FH Prior FH Prior
Image Mean PSNR Std. PSNR Mean PSNR Std. PSNR Mean PSNR Std. PSNR

Tiles 15.45 0.180 17.40 0.036 17.68 0.051
Art 32.41 0.283 34.44 0.222 27.18 0.116
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Figure 9: Example frames from fitting a video with SIREN and ReLU MLPs. SIREN more accurately
reconstructs fine details in the video. Mean (and standard deviation) of the PSNR over all frames is
reported.

where xi, yi are sampled from the kernel h as a normalized probability density function. For example,
a bilinear downsampling kernel is given by h(x, y) = max(0, 1 − |x|) max(0, 1 − |y|). Thus, we
sample xi, yi from a probability density function of p(xi, yi) = 1

2 max(0, 1− |x|) max(0, 1− |y|).
In our implementation, we found that not using a downsampling kernel resulted in equivalent
performance on the inpainting and image fitting task. However, it may be necessary in cases where
we aim to reconstruct our image at multiple resolutions (i.e. superresolution). We only sample one
blurred point, i.e. N = 1, per iteration and train for many iterations. This is done for computational
efficiency, as otherwise it is necessary to backpropagate the loss from all sampled coordinates.

Hyperparameters. For the image fitting experiment, we train all architectures using the Adam
optimizer and a learning rate of 1× 10−4. Hyperparameters were not rigorously optimized and were
found by random experimentation in the range of [1×10−6, 1×10−4]. We train for 15,000 iterations,
fitting all pixel values at each iteration.

For the image inpainting experiments, we use the published and OpenCV [12] implementations for
the baseline methods, and use an Adam optimizer with a learning rate of 5 × 10−5 for all SIREN
methods. We train for 5,000 iterations, fitting all pixel values at each iteration. For the TV prior, we
use a regularization weight of λ = 1× 10−4, while for the FH prior, we use a regularization weight
of λ = 1× 10−6.

Central Tendencies of Metrics. In Tab. 3, we show the central tendencies (mean and standard
deviation) of the quantitative PSNR scores obtained on the image inpainting experiment. Inpainting
with SIRENs is highly stable and not sensitive to the specific pixel mask sampled.

Hardware & Runtime. We run all experiments on a NVIDIA Quadro RTX 6000 GPU (24 GB of
memory). The single image fitting and regularization experiments require approximately 1 hour to
run.

9 Representing Video

We fit videos using SIREN and a baseline ReLU architecture as described in the main paper and video.
We also fit a second video, which consists of various vehicles moving in traffic and outdoor scenes,
shown in Fig. 9. Again, SIREN shows improved representation of fine details in the scene. In the
following we provide additional implementation details.

17



9.1 Reproducibility & Implementation Details

Data. The first dataset consists of a video of a cat, which is permissively li-
censed and available at the time of this writing from https://www.pexels.com/video/
the-full-facial-features-of-a-pet-cat-3040808/. The second dataset is the “bikes
sequence” available from the scikit-video Python package described here http://www.
scikit-video.org/stable/datasets.html. We crop and downsample the cat video to 300
frames of 512×512 resolution. The second dataset consists of 250 frames fit at the original resolution
of 272× 640 pixels.

Architecture. The SIREN and ReLU architectures use 5 layers with a hidden layer size of 1024.

Hyperparameters. The Adam optimizer with a learning rate of 1× 10−4 was used for all experi-
ments. We set the batch size to fill the memory of the GPUs (roughly 160,000).

Runtime. We train the videos for 100,000 iterations, requiring approximately 15 hours.

Hardware. The networks are trained using NVIDIA Titan X (Pascal) GPUs with 12 GB of mem-
ory.

10 Representing Audio Signals

Various methods exist for audio signal representation. Early work consists of representing audio
signals using various spectral features [26, 9, 24]. Spectrograms, representations of the spectrum of
frequencies of a signal as it varies with time, have been used in machine learning applications due
to the ease of applying widely successful image processing CNN architectures to them [21, 14, 40].
More recently, neural network architectures have been developed which can operate on raw audio
waveforms [43, 14, 35].

To demonstrate the versatility of SIRENs as implicit neural representations, we show that they can
efficiently model audio signals. Due to the highly periodic nature of audio signals with structure at
various time scales, we expect that SIRENs could accurately represent such signals efficiently and
provide an alternative representation for audio signals. We evaluate SIREN performance on raw audio
waveforms of varying length clips of music and speech. While other neural network architectures fail
to accurately model waveforms, SIRENs are able to quickly converge to a representation which can be
replayed with minimal distortion. We fit a SIREN to a sampled waveform a using a loss of the form:

L =

∫
Ω

‖Xa(Φ(x))− a(x)‖2 dx. (25)

where Xa samples the SIREN at the waveform measurement locations.

Fig. 10 displays the fit waveform to music and speech data respectively. We see that other neural
network architectures are not able to represent raw audio waveforms at all, while SIRENs produce an
accurate waveform. Additionally, we note that the number of parameters in out SIREN is far less than
the number of samples in the ground truth waveform. This ability to compress signals supports our
claim that periodic SIREN representations are well suited to representing audio signals, and perhaps
lossy compression algorithms for audio could be designed using SIRENs. Our supplemental video
contains audio from the SIREN, which is accurate and recognizable. Tab. 4 shows the converged
SIREN mean-squared error on the original audio signal and statistics on these metrics (these were
feasible to evaluate due to the relatively short training time of SIRENs on audio signals). This shows
SIRENs are highly stable in convergence.

10.1 Reproducibility & Implementation Details

Data. For music data, we use the first 7 seconds from Bach’s Cello Suite No.
1: Prelude available at https://www.yourclassical.org/story/2017/04/04/
daily-download-js-bach--cello-suite-no-1-prelude and for the speech we use
stock audio of a male actor counting from 0 to 9 available at http://soundbible.com/
2008-0-9-Male-Vocalized.html. These waveforms are have a sampling rate of 44100 samples
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Figure 10: Fitted waveforms and error for various implicit neural representation architectures. We fit
the network to the first 7 seconds of Bach’s Cello Suite No. 1: Prelude (Bach) and to a 12 second clip
of a male actor counting 0-9 (Counting). Only SIREN representations capture the waveform structure.

Table 4: Mean squared error of representing the raw audio waveform scaled in the range [−1, 1] with
a SIREN. The mean and variance of the reconstruction MSE are evaluated over 10 independent runs
of fitting. Each architecture is fitted for 5000 iterations.

Bach Bach Counting Counting
Architecture MSE Mean MSE Standard Dev. MSE Mean MSE Standard Dev.

ReLU 2.504× 10−2 1.706× 10−3 7.466× 10−3 8.217× 10−5

ReLU P.E. 2.380× 10−2 3.946× 10−4 9.078× 10−3 9.627× 10−4

SIREN 1.101× 10−5 2.539× 10−6 3.816× 10−4 1.632× 10−5

per second. As pre-processing, they are normalized to be in the range of [−1, 1]. We use the entire
set of samples to fit our SIREN in each batch.

Architecture. We use the same 5-layer MLP with sine nonlinearities as for all other SIREN applica-
tions.

Frequency Scaling. To account for the high sampling rate of audio signals, we scale the domain
x ∈ [−100, 100] instead of [−1, 1]. This is equivalent to adding a constant multiplication term to the
weights of the input layer of the SIREN.

Hyperparameters. We use the Adam optimizer with a learning rate of 5× 10−5 to generate the
results. We evaluated both learning rates of 5× 10−5 and 1× 10−4, finding that 5× 10−5 worked
slightly better. We train for 9,000 iterations for the figures generated, and 5,000 iterations for the
quantitative results listen in the table (the model is largely converged after only 2,000 iterations).

Hardware & Runtime. The experiments are conducted on a NVIDIA Quadro RTX 6000 GPU (24
GB of memory), where training for 9000 iterations takes roughly 20 minutes for the Bach signal and
30 minutes for the counting signal.

11 Learning a Space of Implicit Functions

A strong prior over the space of SIREN functions enables applications such as reconstruction from
noisy or few observations. We demonstrate that this can be done over the function space of SIRENs
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representing faces in the CelebA dataset [30]. We use the learned prior to perform image inpainting
of missing pixels.

11.1 Reproducibility & Implementation Details

Data. Partial observations (referred to as context) of the input image consist of coordinates and
pixel values O = {(xi, ci)}Ni=0 sampled from an image b ∈ RH×W×3. Like in [16], b ∈ R32×32×3

is center-cropped and downsampled from the images in the CelebA training dataset, containing
162,770 images. We evaluate our test performance on a similarly center-cropped and downsampled
version of the CelebA test dataset, containing 19,962 images.

Context Encoder. The results presented in the main paper use a convolutional neural network
encoder which operates on sparse images. More specifically, the partial observations are combined
into sparse images O ∈ R32×32×3, where observed pixel locations are either their value ci and
masked pixel locations are given a value of 0. The encoder C operates on these sparse images, and is
parameterized as a standard convolutional neural network (CNN) with an input convolutional layer
followed by four residual blocks with ReLU nonlinearities. Each intermediate feature map has 256
channels. This outputs per-pixel embeddings in R256, which are aggregated together into a single
context embedding using a fully connected layer.

We also describe the use of a set encoder as in [16] for encoding the partial observations. In this case,
partial observations consist of a list of coordinates and pixel values O = {(xi, ci)}Ni=0, (xi, ci) ∈ R5.
The encoder C is an MLP which operates on each of these observations independently. The MLP
consists of two hidden layers with sine nonlinearities, and outputs an embedding per pixel in R256.
The embeddings are aggregated together using a mean operation. Since each embedding depends only
on the context pixel, and the mean operation is symmetric, this set encoder is permutation invariant.

We consider one final encoder C based on partial convolutions [28]. Partial convolutions are designed
to operate on sparse images, conditioning outputs of each layer only on valid input pixels. In this
case, the partial observations are combined into a sparse image and mask, much like in the CNN
encoder case. However, the encoder is implemented using an input partial convolution followed
by four partial convolution residual layers with ReLU nonlinearities. Each intermediate map also
has 256 channels. The output per-pixel embeddings are similarly aggregated togheter into a single
context embedding using a fully connected layer.

Hypernetwork. We use a hypernetwork as our decoder, which maps the latent code to the weights
of a 5-layer SIREN with hidden features of size 256 (as in all other experiments). This hypernetwork
is a ReLU MLP with one hidden layer with 256 hidden features.

Loss Function. We train the encoder C and hypernetwork Ψ operating on contextO by minimizing
the loss function:

L =
1

HW
‖Φ(x)− b‖22︸ ︷︷ ︸
Limg

+λ1
1

k
‖z‖22︸ ︷︷ ︸
Llatent

+λ2
1

l
‖θ‖22︸ ︷︷ ︸
Lweights

(26)

where (H,W ) are the spatial dimensions of the images in the dataset, Φ = (Ψ◦C)(O) is the predicted
SIREN representation from the hypernetwork, b is the ground truth image, k is the dimensionality of
the embedding z, and l is the amount of weights Φ in the SIREN Φ.

Limg enforces the closeness of image represented by the SIREN to ground-truth, Llatent enforces a
Gaussian prior on latent code z, and Lweights is a regularization term on the weights of Φ which can
be interpreted as encouraging a lower frequency representation of the image. The regularization
terms are necessary since there are many possible SIREN representations for an image, so we need to
encourage unique solutions (lowest possible frequency) which lie in a more compact latent space
(Gaussian). For all of our results, we use regularization weighting parameters of λ1 = 1× 10−1 and
λ2 = 1× 102.

Hypernetwork Initialization. In order to improve performance, we devise a heuristic initialization
scheme for the hypernetwork which deviates from the default Kaiming initialization for ReLU MLP
networks [20]. Although a formal theoretical analysis of this initialization has not been well studied,
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Table 5: Quantitative comparison of inpainting on the CelebA test dataset. Metrics are reported
in pixel-wise mean squared error for varying numbers of context pixels. All of the methods for
generalizing over SIRENs use a hypernetwork as a decoder from latent code to SIREN weights. CNP
does not report quantitative metrics on half or full images given as context.

Number of Context Pixels 10 100 1000 512 (Half) 1024

CNP [16] 0.039 0.016 0.009 - -
Sine Set Encoder + Hypernet. 0.035 0.013 0.009 0.022 0.009
ReLU Set Encoder + Hypernet. 0.040 0.018 0.012 0.026 0.012
PConv CNN Encoder + Hypernet. 0.046 0.020 0.018 0.060 0.019
CNN Encoder + Hypernet. 0.033 0.009 0.008 0.020 0.008

we found that the initialization led to convergence of our encoder and hypernetwork models. We
only modify the default ReLU MLP initialization in the final layer of the hypernetwork by scaling
the Kaiming initialized weights by 1 × 10−2, and initializing the biases uniformly in the range of
[−1/n, 1/n] where n is the number of inputs to the layer of the SIREN being predicted.

The motivation for this scheme is that the initialization of the biases of the hypernetwork is a heuristic
initialization of SIRENs which leads to high quality convergence results. Thus, initializing the
weights of the hypernetwork with a small magnitude ensures that the SIREN weights outputted at
initialization of the hypernetwork are close to a initialization of a single SIREN, regardless of input to
the hypernetwork.

Training Procedure. In order to encourage invariance to the number of partial observations, we
randomly sample from 10 to 1000 context pixels to input into the convolutional or partial convolutional
encoder. In the case of the set encoder which is permutation invariant, we mimic the training procedure
of [16] by varying from 10 to 200 sampled context pixels.

Hyperparameters. As mentioned, we use loss parameters λ1 = 1 × 10−1 and λ2 = 1 × 102.
For all experiments, we use the Adam optimizer with a learning rate of 5 × 10−5, a batch size
of 200 images, and train for 175 epochs on the training dataset. We found these hyperparameters
by trial and error, having tested values of λ1 ∈ [10−3, 10−1], λ2 ∈ [101, 104], learning rates of
5× 10−5, 1× 10−4, and a batch size of 200 and 1000.

Runtime. We train the videos for 175 epochs on the downsampled CelebA training set, requiring
approximately 24 hours.

Hardware. The networks are trained using NVIDIA Quadro RTX 6000 GPUs with 24 GB of
memory.

11.2 Additional Results

We show additional results from the convolutional encoder in Fig. 11

We also show results from the set encoder with sine nonlinearities in Fig. 12, set encoder with ReLU
nonlinearities (as in the original CNP architecture) in Fig. 13, and convolutional encoder based on
partial convolutions in Fig. 14. All of these implementations use the same hypernetwork architecture
as a decoder from latent codes to SIREN weights. Tab. 5 shows comparisons between architectures
for the encoder.

Interestingly, the partial convolutional encoder performs worse than both the set encoders and
convolutional encoder. We suspect that the convolutional encoder has an easier time capturing
complex spatial relationships between the context pixels and using information from the masked
pixels instead of only conditioning on valid pixels. Regardless of encoder architecture, some prior
over the space of SIRENs has been learned which can be used to perform inpainting comparably to
methods such as CNP [16] operating on images directly.

21



C
o
n
te

x
t

In
p
a
in

te
d
 

Im
a
g
e
s

Number of context pixels
10 100 1000 512 GT

C
o
n
te

x
t

In
p
a
in

te
d
 

Im
a
g
e
s

C
o
n
te

x
t

In
p
a
in

te
d
 

Im
a
g
e
s

10 100 1000 512 GT

C
o
n
te

x
t

In
p
a
in

te
d
 

Im
a
g
e
s

Figure 11: Additional results using the CNN encoder with hypernetwork decoder.
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Figure 12: Additional results using the set encoder with sine nonlinearities with a hypernetwork
decoder.
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Figure 13: Additional results using the set encoder with ReLU nonlinearities with a hypernetwork
decoder.
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Figure 14: Additional results using a CNN with partial convolution encoder with a hypernetwork
decoder.
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