
We thank the reviewers for their valuable feedback. In this rebuttal, we address the reviewers’ comments and questions.1

[R1] “Line 122: it’s not obvious to me that the smoothed bound is more stable” The bound (8) stabilizes training by2

multiplying the error term EN by a smoothing factor β ∈ (0, 1] at a given initialization. If β is sufficiently small, then3

the bound is dominated by the initialization term that decreases at rate γ̃, slower than the standard AMPI scheme since4

γ̃ ≥ γ. The bound (8) does not contain γ in the numerator – that was a typo in paper that we corrected in the Appendix,5

so the Eq. (26-27) are correct. The reason is that in the proof of Lemma 1, line 366 contains the loss at N − 1 step.6

[R1] “Very simple experiment, would greatly help the reader” We include in this rebuttal a numerical illustration of7

the smoothing technique (these results have also been integrated in the manuscript). We run experiments on a toy8

stochastic gridworld problem with the evaluation step error due to the sampling of state-transitions. We plot the average9

performance loss over 30 runs with varying values of smoothing factor β. As can be seen from the figure below, smaller10

values of β result in tighter confidence intervals, but slower convergence speed.
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[R1] “The above also applies for the discussion on overestimation”. The advantage of the bound (16) is that the term12

EN could be made small by appropriately tuning the temperature parameter αt to get the regularization gap Ω∗t (AVt
) to13

match the overestimation error εt. In exchange, the AN term remains and results in a different regularized fixed point.14

[R1] “The above applies for the combined smoothness + regularization algorithm” The combined bound (19) is15

beneficial since (a) it downweights terms ẼN and ÃN by a factor of β ∈ (0, 1], (b) allows to adjust the temperature16

parameter αt to match the noise level, making the term ẼN even smaller.17

[R1] On (24) and the approximation K(t) = K +O(m−1/2). We use the standard NTK arguments: if we taylor-18

expand K(t) (defined in (24)) around the initialization parameters θ(0), then all terms of order 1 and higher are19

O(m−1/2). Thus, K(t) = K + O(m−1/2), where K = K(0). The use of O(. . .) is in the following sense: the20

constants are absolute (don’t depend on m). This is because we suppose the initial NN parameters θ(0) are made of21

random matrices with iid N (0,m−1) entries.22

[R1] On the proof of Theorem 2. The disappearance of uj in the first inequality in lines 482 – 483 is a typo; the23

stray term +e−λmin(K) is a typo too; these will be corrected in the manuscript. We repeat the corrected argument24

for lines 482 – 483 here. Define vj(t) := uTj (V (t) − bk+1), where V (t) := Vθ(t) as usual. Then, the ODE just25

before line 482 can be rewritten as d
dtvj(t) = −λjvj(t). Integrating this ODE w.r.t time t gives vj(t) = e−λjtvj(0)26

∀t ∈ R. Taking absolute values gives |vj(t)| = e−λjt|vj(0)| ≤ e−λmin(K)t|vj(0)|, and plugging-in the definition of27

vj(t) above then gives |uTj (V (t)− bk+1)| ≤ e−λmin(K)t|uTj (V (0)− bk+1)|, ∀j ∈ [[S]], t ∈ R, and large m. Because28

the eigenvectors u1, u2, . . . are pairwise orthogonal, we deduce that ‖V (t)− bk+1‖2 ≤ e−λmin(K)t‖V (0)− bk+1‖2,29

and so V (t) converges to bk+1 (in any norm, since all norms are equivalent in finite-dim. spaces) exponentially fast.30

[R1] “Missing work”. We agree that other perspectives on the entropy regularization are worth mentioning, such as the31

ones you suggest on the loss landscape smoothing and value averaging effect of the KL divergence regularization.32

[R1] What is "overwhelming probability"? Our use of this term was a misnomer. Indeed, those approximation33

statements are to be understood in an almost-sure sense i.e P(statement holds for large m) = 1, over all random34

initializations of the parameters of the neural network Vθ. We note that we might be able to have more quantitative35

(nonasymptotic) statements using the results from [1], as suggested by [R2].36

[R2] “What is the norm in Cor. 1 and how that is derived from Thm. 1 with the projection error?” Cor. 1 bounds the37

norm of the approximation error vector εak+1 that appears in Thm. 1. Due to the norm equivalence in finite dimensions,38

Cor. 1 holds in any norm (at the price of changing the constants in theO(m−1/2); this constant is
√
S for the `∞-norm).39

Cor. 1 follows from Thm. 2, and should be understood in an almost-sure sense: P(‖Vθk+1
−bk+1‖∞ = O(m−1/2)) = 1,40

over random initializations of the neural net Vθ.41

[R3, R4] Indeed, we analyze the smoothing update on state values instead of weights. As R4 mentioned, this can be42

argued away using Lipschitz constants. We will add a discussion about that.43


