
Organization: In the supplement, we present the detailed proof of the Theorem 1, Theorem 2 and
Corollary 1 in section A, section B and section C, respectively. We then present a subgroup-based
QMC on sphere Sd−1 in Section D. We give the detailed proof of Theorem 3 and Theorem 4 in
section E and section F, respectively. We then present QMC for generative CycleGAN in section G
and section H. At last, we present the experimental results of kernel approximation on SIFT1M
dataset in Figure 7.

A Proof of Theorem 1

Theorem. Suppose n is a prime number and 2d|(n − 1). Let g be a primitive root of n. Let
z = [g0, g

n−1
2d , g

2(n−1)
2d , · · · , g

(d−1)(n−1)
2d ] mod n. Construct a rank-1 lattice X = {x0, · · · ,xn−1}

with xi = iz mod n
n , i ∈ {0, ..., n− 1}. Then, there are n−1

2d distinct pairwise toroidal distance values
among X , and for each distance value, there are the same number of pairs that obtain this value.

Proof. From the definition of the rank-1 lattice, we know that

‖xi − xj‖Tp =

∥∥∥∥ iz mod n
n

− jz mod n
n

∥∥∥∥
Tp

=

∥∥∥∥ (i− j)z mod n
n

∥∥∥∥
Tp

=

∥∥∥∥kz mod n
n

∥∥∥∥
Tp

= ‖xk‖Tp ,

(24)

where ‖x‖Tp denotes the lp-norm-based toroidal distance between x and 0, and k ≡ i− j mod n.

For non-identical pair xi,xj ∈ X = {x0, · · · ,xn−1}, we know i 6= j. Thus, i − j ≡ k ∈
{1, · · · , n− 1}. Moreover, for each k, there are n pairs of i, j ∈ {0, · · · , n− 1} obtaining i− j ≡
k mod n. Therefore, the non-identical pairwise toroidal distance is determined by ‖xk‖Tp for
k ∈ {1, · · · , n− 1}. Moreover, each ‖xk‖Tp corresponds to n pairwise distances.

From the definition of the lp-norm-based toroidal distance, we know that

‖xk‖Tp =

∥∥∥∥min
(
kz mod n

n
,
n− kz mod n

n

)∥∥∥∥
p

=

∥∥∥∥min
(
kz mod n

n
,

(−kz) mod n
n

)∥∥∥∥
p

, (25)

where min(·, ·) denotes the element-wise min operation between two inputs.

Since n is a prime number, from the number theory, we know that for a primitive root g, the residue
of {g0, g1, · · · , gn−2} modulo n forms a cyclic group under multiplication, and gn−1 ≡ 1 mod n.
Moreover, there is a one-to-one correspondence between the residue of {g0, g1, · · · , gn−2} modulo
n and the set {1, 2, · · · , n− 1}. Then, we know that ∃k′, gk′ ≡ k mod n. It follows that

‖xk‖Tp =

∥∥∥∥∥min

(
gk
′
z mod n
n

,
(−gk′z) mod n

n

)∥∥∥∥∥
p

. (26)

Since (g
n−1
2 )2 = gn−1 ≡ 1 mod n and g is a primitive root, we know that

g
n−1
2 ≡ −1 mod n. Denote {z,−z} := {z1, z2, · · · , zd,−z1, z2, · · · ,−zd}. Since z =

[g0, g
n−1
2d , g

2(n−1)
2d , · · · , g

(d−1)(n−1)
2d ] mod n, we know that

{z,−z} ≡ {z, g
n−1
2 z} mod n (27)

≡ {g0, g
n−1
2d , g

2(n−1)
2d , · · · , g

(d−1)(n−1)
2d , g

n−1
2 +0, g

n−1
2 +n−1

2d , · · · , g
n−1
2 +

(d−1)(n−1)
2d } mod n

(28)

≡ {g0, g
n−1
2d , g

2(n−1)
2d , · · · , g

(d−1)(n−1)
2d , g

d(n−1)
2d , g

(d+1)(n−1)
2d , · · · , g

(2d−1)(n−1)
2d } mod n.

(29)

It follows that H := {z1, z2, · · · , zd,−z1, z2, · · · ,−zd} mod n forms a subgroup of the group
{g0, g1, · · · , gn−2} mod n. From Lagrange’s theorem in group theory [10], we know that the cosets
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of the subgroup H partition the entire group {g0, g1, · · · , gn−2} into equal-size, non-overlapping
sets, i.e., cosets g0H, g1H, · · · , g n−1−2d

2d H , and the number of cosets of H is n−1
2d .

Together with Eq.(26), we know that distance ‖xk‖Tp for k′ ∈ {0, · · · , n − 2} has n−1
2d dif-

ferent values simultaneously hold for all p ∈ (0,∞), i.e,
∥∥∥min

(
ghz mod n

n , (−ghz) mod n
n

)∥∥∥
p

for

h ∈ {0, · · · , n−1
2d − 1} . And for each distance value, there are the same number of terms ‖xk‖Tp

that obtain this value. Since each ‖xk‖Tp corresponds to n pairwise distance ‖xi − xj‖Tp , where
k ≡ i − j mod n, there are n−1

2d distinct pairwise toroidal distance. Moreover, for each distance
value, there are the same number of pairs that obtain this value.

B Proof of Theorem 2

Theorem. Suppose n is a prime number and n ≥ 2d+ 1. Let z = [z1, z2, · · · , zd] with 1 ≤ zk ≤
n − 1. Construct non-degenerate rank-1 lattice X = {x0, · · · ,xn−1} with xi = iz mod n

n , i ∈
{0, ..., n− 1}. Then, the minimum pairwise toroidal distance can be bounded as

d(d+ 1)

2n
≤ min
i,j∈{0,··· ,n−1},i6=j

‖xi − xj‖T1
≤ (n+ 1)d

4n
(30)√

6d(d+ 1)(2d+ 1)

6n
≤ min
i,j∈{0,··· ,n−1},i6=j

‖xi − xj‖T2
≤
√

(n+ 1)d

12n
, (31)

where ‖ · ‖T1
and ‖ · ‖T2

denotes the l1-norm-based toroidal distance and the l2-norm-based toroidal
distance, respectively.

Proof. From the definition of the rank-1 lattice, we know that

‖xi − xj‖Tp =

∥∥∥∥ iz mod n
n

− jz mod n
n

∥∥∥∥
Tp

=

∥∥∥∥ (i− j)z mod n
n

∥∥∥∥
Tp

=

∥∥∥∥kz mod n
n

∥∥∥∥
Tp

= ‖xk‖Tp ,

(32)
where ‖x‖Tp denotes the lp-norm-based toroidal distance, we know that between x and 0, and
k ≡ i− j mod n.

Thus, the minimum pairwise toroidal distance is equivalent to Eq. (33)
min

i,j∈{0,··· ,n−1},i6=j
‖xi − xj‖Tp = min

k∈{1,··· ,n−1}
‖xk‖Tp . (33)

Since the minimum value is smaller than the average value, it follows that

min
i,j∈{0,··· ,n−1},i6=j

‖xi − xj‖Tp = min
k∈{1,··· ,n−1}

‖xk‖Tp ≤
∑n−1
k=1 ‖xk‖Tp
n− 1

. (34)

Since n is a prime number, from number theory, we know that for a primitive root g, the residue
of {g0, g1, · · · , gn−2} modulo n forms a cyclic group under multiplication, and gn−1 ≡ 1 mod n.
Moreover, there is a one-to-one correspondence between the residue of {g0, g1, · · · , gn−2} modulo
n and the set {1, 2, · · · , n − 1}. Then, for each tth component of z = [z1, z2, · · · , zd], we know
that ∃mt such that gmt ≡ zt mod n. Therefore, the set

{
kzt mod n

∣∣∀k ∈ {1, · · · , n− 1}
}

is a
permutation of the set {1, · · · , n− 1}.

From the definition of the lp-norm-based toroidal distance, we know that each tth compo-
nent of ‖xk‖Tp is determined by min(kzt mod n, n − kzt mod n). Because the set{
kzt mod n

∣∣∀k ∈ {1, · · · , n− 1}
}

is a permutation of set {1, · · · , n − 1}, we know that the set{
min(kzt mod n, n− kzt mod n)

∣∣∀k ∈ {1, · · · , n− 1}
}

consists of two copy of permutation of
the set {1, · · · , n−1

2 }. It follows that
n−1∑
k=1

‖xk‖T1 =

∑d
t=1

∑n−1
k=1 min(kzt mod n, n− kzt mod n)

n
=

2d
∑n−1

2

k=1 k

n
=
d(n+ 1)(n− 1)

4n
.

(35)
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Similarly, for l2-norm-based toroidal distance, we have that

n−1∑
k=1

‖xk‖2T2
=

∑d
t=1

∑n−1
k=1 min(kzt mod n, n− kzt mod n)2

n2
=

2d
∑n−1

2

k=1 k
2

n2
=
d(n− 1)(n+ 1)

12n
.

(36)

By Cauchy–Schwarz inequality, we know that

n−1∑
k=1

‖xk‖T2
≤

√√√√(n− 1)

n−1∑
k=1

‖xk‖2T2
= (n− 1)

√
d(n+ 1)

12n
. (37)

Together with Eq.(34), it follows that

min
i,j∈{0,··· ,n−1},i6=j

‖xi − xj‖T1
= min
k∈{1,··· ,n−1}

‖xk‖T1
≤ (n+ 1)d

4n
(38)

min
i,j∈{0,··· ,n−1},i6=j

‖xi − xj‖T2 = min
k∈{1,··· ,n−1}

‖xk‖T2 ≤
√

(n+ 1)d

12n
. (39)

Now, we are going to prove the lower bound. For a non-degenerate rank-1 lattice, the components
of generating vector z = [z1, · · · , zd] should be all different. Then, we know the components
of xk,∀k ∈ {1, · · · , n − 1} should be all different. Thus, the min norm point is achieved at
x∗ = [1/n, 2/n, · · · , d/n]. Since n ≥ 2d+ 1, it follows that

min
i,j∈{0,··· ,n−1},i6=j

‖xi − xj‖T1
= min
k∈{1,··· ,n−1}

‖xk‖T1
≥ ‖x∗‖T1

=
(d+ 1)d

2n
(40)

min
i,j∈{0,··· ,n−1},i6=j

‖xi − xj‖T2
= min
k∈{1,··· ,n−1}

‖xk‖T2
≥ ‖x∗‖T2

=

√
6d(d+ 1)(2d+ 1)

6n
. (41)

C Proof of Corollary 1

Corollary 1. Suppose n = 2d + 1 is a prime number. Let g be a primitive root of n. Let z =

[g0, g
n−1
2d , g

2(n−1)
2d , · · · , g

(d−1)(n−1)
2d ] mod n. Construct rank-1 lattice X = {x0, · · · ,xn−1} with

xi = iz mod n
n , i ∈ {0, ..., n − 1}. Then, the pairwise toroidal distance of the lattice X attains the

upper bound.

‖xi − xj‖T1
=

(n+ 1)d

4n
,∀i, j ∈ {0, · · · , n− 1}, i 6= j, (42)

‖xi − xj‖T2 =

√
(n+ 1)d

12n
,∀i, j ∈ {0, · · · , n− 1}, i 6= j. (43)

Proof. From the definition of the rank-1 lattice, we know that

‖xi − xj‖Tp =

∥∥∥∥ iz mod n
n

− jz mod n
n

∥∥∥∥
Tp

=

∥∥∥∥ (i− j)z mod n
n

∥∥∥∥
Tp

=

∥∥∥∥kz mod n
n

∥∥∥∥
Tp

= ‖xk‖Tp ,

(44)

where ‖x‖Tp denote the lp-norm-based toroidal distance, we know that between x and 0, and
k ≡ i− j mod n.

From Theorem 1, we know that ‖xi −xj‖Tp ∀i, j ∈ {0, · · · , n− 1}, i 6= j has n−1
2d different values.

Since n = 2d+ 1, we know the pairwise toroidal distance has the same value. Therefore, we know
that

‖xi − xj‖Tp = ‖xk‖Tp =

∑n−1
k=1 ‖xk‖Tp
n− 1

,∀i, j ∈ {0, · · · , n− 1}, i 6= j. (45)
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From the proof of Theorem 2, we know that

n−1∑
k=1

‖xk‖T1
=

∑d
t=1

∑n−1
k=1 min(kzt mod n, n− kzt mod n)

n
=

2d
∑n−1

2

k=1 k

n
=
d(n+ 1)(n− 1)

4n
.

(46)

and

n−1∑
k=1

‖xk‖2T2
=

∑d
t=1

∑n−1
k=1 min(kzt mod n, n− kzt mod n)2

n2
=

2d
∑n−1

2

k=1 k
2

n2
=
d(n− 1)(n+ 1)

12n
.

(47)

Together Eq.(46) with Eq.(45), we know that

‖xi − xj‖T1 =
(n+ 1)d

4n
,∀i, j ∈ {0, · · · , n− 1}, i 6= j. (48)

Since ‖x1‖Tp = ‖x2‖Tp = · · · = ‖xn−1‖Tp , it follows that

n−1∑
k=1

‖xk‖T2
=

√√√√(n− 1)

n−1∑
k=1

‖xk‖2T2
. (49)

Together with Eq.(47), we know that

n−1∑
k=1

‖xk‖T2
=

√√√√(n− 1)

n−1∑
k=1

‖xk‖2T2
= (n− 1)

√
d(n+ 1)

12n
. (50)

Plug Eq.(50) into Eq.(45), if follows that

‖xi − xj‖T2
=

√
(n+ 1)d

12n
,∀i, j ∈ {0, · · · , n− 1}, i 6= j. (51)

From Theorem 2, we know that the l1-norm-based and l2-norm-based pairwise toroidal distance of
the lattice X attains the upper bound.

D Subgroup-based QMC on Sphere Sd−1

In this section, we propose a closed-form subgroup-based QMC method on the sphere Sd−1 instead
of unit cube [0, 1]d. QMC uniformly on sphere can be used to construct samples for isotropic
distribution, which is helpful for variance reduction of the gradient estimators in Evolutionary strategy
for reinforcement learning [30].

Lyu [23] constructs structured sampling matrix on Sd−1 by minimizing the discrete Riesz energy. In
contrast, we construct samples by a closed-form construction without the time-consuming optimiza-
tion procedure. Our construction can achieve a small mutual coherence.

Without loss of generality, we assume that d = 2m,N = 2n, and n is a prime such that m|(n− 1).
Let F ∈ Cn×n be a n × n discrete Fourier matrix. Fk,j = e

2πikj
n is the (k, j)thentry of F , where

i =
√
−1. Let Λ = {k1, k2, ..., km} ⊂ {1, ..., n− 1} be a subset of indexes.

The structured sampling matrix V in [23] can be defined as equation (52).

V = 1√
m

[
ReFΛ −ImFΛ

ImFΛ ReFΛ

]
∈ Rd×N (52)
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where Re and Im denote the real and image part of a complex number, and FΛ in equation (53) is the
matrix constructed by m rows of F

FΛ=

 e
2πik11
n · · · e

2πik1n
n

...
. . .

...
e

2πikm1
n · · · e

2πikmn
n

 ∈ Cm×n. (53)

With the V given in equation (52), we know that ‖vi‖2 = 1 for i ∈ {1, ..., n}. Thus, each column of
matrix V is a point on Sd−1.

Let g denote a primitive root modulo n. We construct the index Λ = {k1, k2, ..., km} as

Λ = {g0, g
n−1
m , g

2(n−1)
m , · · · , g

(m−1)(n−1)
m } mod n. (54)

The set {g0, g
n−1
m , g

2(n−1)
m , · · · , g

(m−1)(n−1)
m } mod n forms a subgroup of the the group

{g0, g1, · · · , gn−2} mod n. Based on this, we derive upper bounds of the mutual coherence of
the points set V . The results are summarized in Theorem 3 and Theorem 4.
Theorem 3. Suppose d = 2m,N = 2n, and n is a prime such that m|(n − 1). Construct matrix
V as in Eq.(52) with index set Λ as Eq.(54). Let mutual coherence µ(V ) := maxi 6=j |v>i vj |. Then
µ(V ) ≤

√
n
m .

Theorem 4. Suppose d = 2m,N = 2n, and n is a prime such that m|(n − 1), and m ≤ n
2
3 .

Construct matrix V as in Eq.(52) with index set Λ as Eq.(54). Let mutual coherence µ(V ) :=

maxi6=j |v>i vj |. Then µ(V ) ≤ Cm−1/2n1/6 log1/6m, where C denotes a positive constant inde-
pendent of m and n.

Theorem 3 and Theorem 4 show that our construction can achieve a bounded mutual coherence. A
smaller mutual coherence means that the points are more evenly spread on sphere Sd−1.

Remark: Our construction does not require a restrictive constraint of the dimension of data. The
only assumption of data dimension d is that d is a even number, i.e.,2|d, which is commonly satisfied
in practice. Moreover, the product V >x can be accelerated by fast Fourier transform as in [23].

D.1 Evaluation of the mutual coherence

We evaluate our subgroup-based spherical QMC by comparing with the construction in [23] and i.i.d
Gaussian sampling.

We set the dimension d as in {50, 100, 200, 500, 1000}. For each dimension d, we set the number of
points N = 2n, with n as the first ten prime numbers such that d2 divides n−1, i.e., d2

∣∣(n−1). Both
subgroup-based QMC and Lyu’s method are deterministic. For Gaussian sampling method, we report
the mean ± standard deviation of mutual coherence over 50 independent runs. The mutual coherence
for each dimension are reported in Table 3. The smaller the mutual coherence, the better.

We can observe that our subgroup-based spherical QMC achieves a competitive mutual coherence
compared with Lyu’s method in [23]. Note that our method does not require a time consuming opti-
mization procedure, thus it is appealing for applications that demands a fast construction. Moreover,
both our subgroup-based QMC and Lyu’s method obtain a significant smaller coherence than i.i.d
Gaussian sampling.
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Table 3: Mutual coherence of points set constructed by different methods. Smaller is better.

d=50

202 302 502 802 1202 1402 1502 2102 2302 2402
SubGroup 0.1490 0.2289 0.1923 0.2930 0.2608 0.3402 0.3358 0.3211 0.4534 0.3353
Lyu [23] 0.2313 0.2377 0.2901 0.2902 0.3005 0.3154 0.3155 0.3209 0.3595 0.3718

Gaussian 0.5400± 0.5738± 0.5904± 0.6158± 0.6270± 0.6254± 0.6328± 0.6447± 0.6520± 0.6517±
0.0254 0.0291 0.0257 0.0249 0.0209 0.0184 0.0219 0.0184 0.0204 0.0216

d=100

202 302 502 802 1202 1402 1502 2102 2302 2402
SubGroup 0.1105 0.1529 0.1923 0.1764 0.2397 0.2749 0.2513 0.2679 0.4534 0.3353
Lyu [23] 0.1234 0.1581 0.1586 0.1870 0.2041 0.2191 0.1976 0.2047 0.2244 0.2218

Gaussian 0.4033± 0.4210± 0.4422± 0.4577± 0.4616± 0.4734± 0.4716± 0.4878± 0.4866± 0.4947±
0.0272 0.0274 0.0225 0.0230 0.0170 0.0174 0.0234 0.0167 0.0172 0.0192

d=200

202 802 1202 1402 2402 2602 3202 3602 3802 5602
SubGroup 0.0100 0.1251 0.1835 0.1966 0.2365 0.1553 0.1910 0.1914 0.2529 0.2457
Lyu [23] 0.0100 0.1108 0.1223 0.1262 0.1417 0.1444 0.1505 0.1648 0.1624 0.1679

Gaussian 0.2887± 0.3295± 0.3362± 0.3447± 0.3564± 0.3578± 0.3645± 0.3648± 0.3689± 0.3768±
0.0163 0.0155 0.0148 0.0182 0.0140 0.0142 0.0143 0.0142 0.0140 0.0151

d=500

502 1502 4502 6002 6502 8002 9502 11002 14002 17002
SubGroup 0.0040 0.0723 0.1051 0.1209 0.1107 0.1168 0.1199 0.1425 0.1587 0.1273
Lyu [23] 0.0040 0.0650 0.0946 0.0934 0.0930 0.1004 0.0980 0.1022 0.1077 0.1110

Gaussian 0.2040± 0.2218± 0.2388± 0.2425± 0.2448± 0.2498± 0.2528± 0.2527± 0.2579± 0.2607±
0.0111 0.0099 0.0092 0.0081 0.0113 0.0110 0.0100 0.0084 0.0113 0.0092

d=1000

6002 8002 11002 14002 17002 18002 21002 26002 32002 38002
SubGroup 0.0754 0.0778 0.0819 0.0921 0.0935 0.0764 0.1065 0.0931 0.0908 0.1125
Lyu [23] 0.0594 0.0637 0.0662 0.0680 0.0684 0.0744 0.0774 0.0815 0.0781 0.0814

Gaussian 0.1736± 0.1764± 0.1797± 0.1828± 0.1846± 0.1840± 0.1869± 0.1888± 0.1909± 0.1920±
0.0067 0.0059 0.0060 0.0062 0.0052 0.0057 0.0052 0.0055 0.0067 0.0056

E Proof of Theorem 3

Proof. Let ci ∈ Cm be the ith column of matrix FΛ ∈ Cm×n in Eq.(53). Let vi ∈ R2m be the ith
column of matrix V ∈ R2m×2n in Eq.(52). For 1 ≤ i, j ≤ n, i 6= j, we know that

v>i vi+n = 0, (55)

v>i+nvj+n = v>i vj = Re(c∗i cj), (56)

v>i+nvj = −v>i vj+n = Im(c∗i cj), (57)

where ∗ denote the complex conjugate, Re(·) and Im(·) denote the real and image part of the input
complex number.

It follows that

µ(V ) ≤= max
1≤k,r≤2n,k 6=r

|v>k vr| ≤ max
1≤i,j≤n,i 6=j

|c∗i vj | = µ(FΛ) (58)

From the definition of FΛ in Eq.(53), we know that

µ(FΛ) = max
1≤i,j≤n,i 6=j

|c∗i vj | = max
1≤i,j≤n,i 6=j

1

m

∣∣∣∣∣∑
z∈Λ

e
2πiz(j−i)

n

∣∣∣∣∣ (59)

= max
1≤k≤n−1

1

m

∣∣∣∣∣∑
z∈Λ

e
2πizk
n

∣∣∣∣∣ (60)

Because Λ is a subgroup of the multiplicative group {g0, g1, · · · , gn−2} mod n, from [4], we know
that

max
1≤k≤n−1

∣∣∣∣∣∑
z∈Λ

e
2πizk
n

∣∣∣∣∣ ≤ √n (61)

Finally, we know that

µ(V ) ≤ µ(FΛ) ≤
√
n

m
. (62)
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F Proof of Theorem 4

Proof. Because Λ is a subgroup of the multiplicative group {g0, g1, · · · , gn−2} mod n, and m ≤
n2/3, from Theorem 1 in [31], we know that

max
1≤k≤n−1

∣∣∣∣∣∑
z∈Λ

e
2πizk
n

∣∣∣∣∣ ≤ Cm1/2n1/6 log1/6m (63)

From the proof of Theorem 3, we have that

µ(V ) ≤ µ(FΛ) = max
1≤k≤n−1

1

m

∣∣∣∣∣∑
z∈Λ

e
2πizk
n

∣∣∣∣∣ ≤ Cm−1/2n1/6 log1/6m (64)

G QMC for Generative models

Our subgroup rank-1 lattice can be used for generative models. Buchholz et al. [5] suggest using
QMC for variational inference to maximize the evidence lower bound (ELBO). We present a new
method by directly learning the inverse of the cumulative distribution function (CDF).

In variational autoencoder, the objective is the evidence lower bound (ELBO) [15] defined as

L(x, φ, θ) = Eqφ(z|x) [log pθ(x|z)]− KL [qφ(z|x)||pθ(z)] . (65)

The ELBO consists of two terms, i.e., the reconstruction term Eqφ(z|x) [log pθ(x|z)] and the regular-
ization term KL [qφ(z|x)||pθ(z)]. The reconstruction term is learning to fit, while the regularization
term controls the distance between distribution qφ(z|x) to the prior distribution pθ(z).

The reconstruction term Eqφ(z|x) [log pθ(x|z)] can be reformulated as

Eqφ(z|x) [log pθ(x|z)] =

∫
Z
qφ(z|x) log pθ(x|z)dz (66)

=

∫
[0,1]d

log pθ
(
x|Φ−1(ε)

)
dε. (67)

where Φ−1(·) denotes the inverse cumulative distribution function with respect to the density qφ(z|x).

Eq.(67) provides an alternative training scheme, we directly learn the inverse of CDF F (ε;x) =
Φ−1(ε) given x instead of the density qφ(z|x). We parameterize F (ε, x) as a neural network with
input ε and data x. The inverse of CDF function F (ε, x) can be seen as an encoder of x for inference.
It is worth noting that learning the inverse of CDF can bring more flexibility without the assumption
of the distribution, e.g., Gaussian.

To ensure the distribution q close to the prior distribution p(z), we can use other regularization
terms instead of the KL-divergence for any implicit distribution q, e.g., the maximum mean dis-
crepancy. Besides this, we can also use a discriminator-based adversarial loss similar to adversarial
autoencoders [24]

L̃(x, F,D)=Epθ(z) [log(D(z))]+Ep(ε) [log(1−D(F (ε, x)))] , (68)

where p(ε) denotes a uniform distribution on unit cube [0, 1]d, D is the discriminator, F denotes the
inverse of CDF mapping.

When the domain Z coincides with a target domain Y , we can use an empirical data distribution Y
as the prior. This leads to a training scheme similar to cycle GAN [36]. In contrast to cycle GAN, the
encoder F depends on both data x in source domain and ε in unit cube. The expectation term Ep(ε)[·]
can be approximated by QMC methods.
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H Generative Inference for CycleGAN

We evaluate our subgroup rank-1 lattice on training generative model. As shown in section G, we
can learn the inverse CDF functions F (ε, x) as a generator from domain X to domain Y in cycle
GAN. We set F (ε, x) = G1(x) +G2(ε), where G1 and G2 denotes the neural networks. Network
G1 maps input image x to a target mean, while network G2 maps ε ∈ [0, 1]d as the residue. Similarly,
F̃ (ε̃, y) = G̃1(y) + G̃2(ε̃) denotes an generator from domain Y to domain X .

We implement the model based on the open-sourced Pytorch code of [36]. All G1, G2, G̃1 and G̃2

employ the default ResNet architecture with 9 blocks in [36]. The input size of both ε and ε̃ are
d = 256 × 256. We keep all the hyperparameters same for all the methods as the default value in
[36].

We compare our subgroup rank-1 lattice with Monte Carlo sampling for training the generative model.
For subgroup rank-1 lattice, we set the number of points n = 12d+ 1 = 786433. We do not store all
the points, instead we sample i ∈ {0, · · · , n− 1} uniformly and construct ε and ε̃ based on Eq.(3)
during the training process. For Monte Carlo sampling, ε and ε̃ are sampled from Uniform[0, 1]d.

We train generative models on the Vangogh2photo data set and maps data set employed in [36]. We
present experimental results of the generated images from models trained with subgroup-based rank-1
lattice sampling, Monte-Carlo sampling, and standard version of CycleGAN. The experimental results
on Vangogh2photo dataset and maps dataset are shown in Figure 5 and Figure 6, respectively. From
Figure 5, we can observe that the images generated by the model trained with Monte-Carlo sampling
have some blurred patches. This phenomenon may be because the additional flexibility of randomness
makes the training more difficult to converge to a good model. In contrast, the model trained with
subgroup-based rank-1 lattice sampling generates more clearer images. It may be because the rank-1
lattice sampling has finite possible choices, i.e., n = 786433 possible points in the experiments,
which is much smaller than the case of Monte-Carlo uniform sampling. The rank-1 lattice sampling
is more deterministic than Monte Carlo sampling, which alleviates the training difficulty to fit a good
model. Since in our subgroup-based rank-1 lattice it is very simple to construct new samples, it can
serve as a good alternative to Monte Carlo sampling for generative model training.
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Figure 5: Illustration of the generated images from models trained with subgroup rank-1 lattice
sampling, Monte-Carlo sampling, and Standard version of CycleGAN.

Figure 6: Illustration of the generated images from models trained with subgroup rank-1 lattice
sampling, Monte-Carlo sampling, and Standard version of CycleGAN.
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(a) ‖K̃−K‖F‖K‖F
for Gaussian Kernel (b) ‖K̃−K‖F‖K‖F

for First-order Arc Kernel (c) ‖K̃−K‖F‖K‖F
for Zero-order Arc Kernel

(d) ‖K̃−K‖∞‖K‖∞
for Gaussian Kernel (e) ‖K̃−K‖∞‖K‖∞

for First-order Arc Kernel (f) ‖K̃−K‖∞‖K‖∞
for Zero-order Arc Kernel

Figure 7: Relative Mean and Max Reconstruction Error for Gaussian, Zero-order and First-order
Arc-cosine Kernel on SIFT1M dataset.
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