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1 Additional Results

This section presents additional qualitative results of our models for each evaluation scenario presented
in the paper.

1.1 Loss function ablations

We use the ShapeNet v2. [[L] chair category and train models by ablating parts of the loss function.
Due to the long training times per model, we provide ablations only on the chair category. Our
transformation chain and 3D feature supervision are shown to be necessary, as they improve the
baseline’s performance (Tab. [T). Similarly, performance degrades if the GAN loss or the perceptual
loss functions are omitted.
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Table 1: Loss function ablation. We report mean and standard deviation of the L; loss (lower is
better), structural similarity (SSIM) index (higher is better) and learned perceptual image patch
similarity (LPIPS) (lower is better). The ablation shows the importance of our proposed loss function.

Methods Chair

Li(}) SSIM(f) LPIPS ({)
CORN w.0 Lyafo 0.211 0.656 0.341
CORN w.o ﬁGAN/VGG 0.141 0.714 0.216
CORN w.0 LgaN 0.139 0.715 0.208
CORN w.o Lsp 0.133 0.724 0.182
CORN 0.132 0.722 0.180

1.2 Additional view synthesis results

We show additional qualitative results of our model on the ShapeNet v2 [[I]] cars and chairs categories
on the task of transforming a single-source view to a target camera pose.
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Figure 1: Additional qualitative results. Given a single source image and a target camera pose, our
method generates fine level details even for unobserved parts of the object. We provide the ground
truth view of the objects for reference.

In Fig. 2] we show additional results on the task of creating a sequence of consecutive target views
from a single input image.
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Figure 2: Additional rotation results. We used a single image to predict 108 views. Compared to
the ground truth image sequence (top row per model) our model (bottom row per model) generates
target views with high detail.

1.3 Additional results for out-of-domain view synthesis

In Fig. [3] we show additional results on using our pretrained model on out-of-domain images. We
take the model pretrained on the ShapeNet v2 dataset and apply it on images from the Cars [4]
dataset without retraining. We observe that the model predicts the structure and appearance correctly;
however, the detail degrades compared to the synthetic ShapeNet images. Further, the generated
images inhibit the training set’s characteristics, with the model being unable to model specularity or
all the adequate levels of details.
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Figure 3: Additional synthetic — real results. Given a single image of a real car, we predict 108
novel views. We use our model trained on the synthetic ShapeNet dataset without retraining.




1.4 Additional results on the Basel Face dataset

In Fig. ] we show additional results on the task of creating a sequence of consecutive target views
from a single input image on the Basel Face dataset [3].
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Figure 4: Additional face rotation results. We used a single image to predict 33 views.



1.5 Additional single view 3D reconstruction results

In Fig. [5] we show additional examples of using synthesized views for single image 3D reconstruction.
We use a single image to predict 15 novel views. We re-project 3D points to each foreground mask to
receive occupancy probabilities.
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Figure 5: Additional 3D reconstruction results. Given a single input image our method can
synthesize images from multiple viewpoints to generate the 3D reconstruction of an object.

2 Reproducibility

Here we give more information about the precise architecture used to build our model.

2.1 Network Architecture

Spatial and global object feature network. We use a pretrained ResNet-18 for global and upsample
blocks for the local feature extraction. In particular, we use the setup in Fig. [6al

Continuous function network. We use an MLP for the continuous function network. In particular,
we use the setup in Fig. [6b]

Neural renderer. Our neural renderer based on [9] uses disks of radius 2 pixels for splatting and
stores 16 points per pixel for z-buffering. Please refer to [9] for additional details.

Refinement network. We use a UNet for the refinement network, containing four down/upsample
blocks with skip connections. In particular, we use the setup in Fig.

2.2 Implementation details

The models are trained with the Adam optimizer, learning rate of 0.0002, and momentum parameters
(0, 0.99). Empirically, we found Arec = 10, A3 = 1, Apee = 1, and Mgy = 0.1 to lead to good
convergence. The models are trained for 45 epochs (chair) and 5 epochs (car). We implemented our
models in PyTorch [6]; they take 1-2 days to train on 4 Tesla V100 GPUs. For architectural details
please see the supplementary material. Code, data, and model files can be accessed on our jproject
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Figure 6: CORN architecture: (a) Our feature extractor uses a pretrained ResNet-18 for global
feature extraction (left). For local feature extraction (right) we use four upsampling blocks with skip
connections (red arrows). (b) Our continuous function network takes as input a position encoding,
local features and global features and produces a 3D feature at the given spatial location and an
occupancy probability. (¢) Our refinement network contains a UNet with four down/upsampling
blocks.

3 Baselines

On the task of novel view synthesis, we compare CORN against five current methods that use 2D
target view supervision. In our first experiment, we compare our approach against [8} 2} [T0} 5]], which
share a common evaluation protocol. At inference time, the models are presented with a single source
image and generate a fixed target view. To compare our method against SRN [7], we use a single
image to generate the 3D object representation. From this representation, we synthesize all 108 views
and compare them against the ground truth. Note that all these baseline methods have access to the
ground truth target images, while our method does not.

3.1 M2NV:

Multi-view to novel view (M2NV) [8] predicts the flow of multiple source images to a single target
camera pose. During training, the network predicts each flow map’s confidence scores and aggregates
the pixel values in the final target view. At test time, the method can take an arbitrary number of input
images.

Training. We use pretrained model weights for the ShapeNet chair and car categories, made available
by the authors.



Testing. For novel view synthesis on the test set, the model receives a single input view and generates
the requested target view.

32 CVC:

Monocular neural image-based rendering with continuous view control (CVC) [2] is another appear-
ance flow method. The approach estimates a 3D latent space that is implicitly rotated to the target
camera pose. A decoder uses the rotated latent space to output depth predictions. Using perspective
projection, they attain dense per-pixel correspondences, which are used to warp the pixels from the
source to the target view.

Training. We use pretrained model weights for the ShapeNet chair and car categories, made available
by the authors.

Testing. For novel view synthesis on the test set, the model receives a single input view, and we
generate the requested target view. In [2], this method is evaluated for target views that are within
[—40°, 40°] rotation from the source image. We evaluate it using the provided models over the entire
range of the dataset.

3.3 VIGAN:

View independent generative adversarial networks (VIGAN) [10] predicts novel views by learning
a view independent feature map. The network generates novel views in the target camera frame by
combining this feature map with the target camera pose. A decoder network synthesizes the final
image.

Training. We reimplemented VIGAN and modified the loss functions due to the non-convergence of
the original model. We remove all loss functions, except reconstruction, cyclic consistency, pixel
losses. The model was trained from scratch on our training dataset for 100,000 iterations (chairs) and
1,000,000 iterations (cars) with the hyperparameters proposed in the original paper.

Testing. For novel view synthesis on the test set, the model receives a single input view, and we
generate the requested target view.

34 TBN:

Transformable bottleneck networks (TBN) [5]] learn a discrete voxel representation from multiple
2D images. The model disentangles viewpoint transformations and the objects’ appearance by
introducing a transformable bottleneck layer. This bottleneck layer is transformed with arbitrary
SO(3) rotations and reprojected to the target camera pose to guarantee multi-view consistency.

Training. We use pretrained model weights for the ShapeNet chair and car categories, made available
by the authors. This method is trained using four input images.

Testing. For novel view synthesis on the test set, the model receives a single input view, and we
generate the requested target view.

3.5 SRN:

Scene representation networks (SRN) [7] are closely related to our method, learning a continuous
scene representation with multi-view consistency.

Training. We use existing models, trained on 50 source images per object.

Testing. We optimize for the latent vectors of objects in our test set until convergence using the
provided code and hyperparameter configurations.
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